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Some classical function systems in separable Orlicz spaces
by

C. FINET (Mons) and G. B, TKEBUCHAVA (Thbilisi)

Abstract. The boundedness of (sub)sequences of partial Fourier and Fourier—Walsh
sums in subspaces of separable Orlicz spaces iz studied. The boundedness of the shift
operator and Paley function with respect to the Haar system is also investigated. These
results are applied to get the anmalogues of ihe classical theorems on basicness of the
trigonometric and Walsh systems in nonreflexive separable Orlicz spaces.

0. Introduction. A fundamental result in the study of orthonormal
systems is: the trigonometric and Walsh systems are bases in L? for 1 <
p < oo [14], [15]. Moreover, a necessary and sufficient condition for the
trigonometric (and for the Walsh) system to be a basis in a separable Orlicz
space is the reflexivity of the space [6], [16]. In this paper we are concerned
with any separable Orlicz space. Let us denote by Ly such a space. Of course
when Ly is nonreflexive neither system is a basis in the whole space Ly, but
what is happening if we restrict ourselves to an Orlicz subspace Lg of Ly?
We prove (Theorem 1.1) that these systems are both simultaneously bases
(or not bases) of Lg (in the norm of Ly ; see Definition 1.2). We also get a
necessary and sufficient condition on the subspace Lg for both systems to
be bases of Lg (in the norm of Ly) and we describe the “maximal” subspace
with that property: it is the Orlicz space Ly, (see Definition 1.1). To prove
these results we study the boundedness of the sequences of partial Fourier
and Fourier-Walsh sums. We also investigate subsequences of these sumis to
get more precise results.

The second part of this article is devoted to the shift operator 7', the
Paley function P with respect to the Haar system and the majorant S* of
Fourier-Haar partial sums. These operators are bounded in L? for 1 < p < oo.
It is well known that the norms of P and §* are equivalent [3], [4]. A
necessary and sufficient condition for T' to be bounded in an Orlicz space is
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194 C. Finet and G. E. Tkebuchava

the reflexivity of this space [10]. Then we can develop the same ideas as in
the first part. We work in any separable Orlicz space Ly and we study the
boundedness of these operators from an Orlicz subspace Lg (of Ly) into
Ly. They are simultaneously bounded (or not) and as before we find that
Ly is the “maximal” subspace Lg with the property that these operators
are bounded from Lg into Ly.

Let us note that when Ly is reflexive our results coincide with the well
known results mentioned above.

1. Preliminaries. Let J be a bounded interval of R. We denote by
LP = L8(I) the Lebesgue space of functions that are measurable and finite
almost everywhere on I; m(A) is the Lebesgue measure of the set 4 ¢ I
and 14 is the characteristic function of A. The constants appearing in the
article will be denoted by C.

Let Lps = Lp(I) be the Orlicz space (see [12]) generated by an

N-function M, ie. M is a convex continuous even function such that
M(0) =0 and

L M@y u
1 1 = — o
M Ty T R T
This space is endowed with the norm
@) 7l = s { > 0: | M(f(&)/w)do < 1},
I

Let M™ be the Young function complementary to M.
1t is well known [12] that

(3) [_LM'1 C LMz] < [30 >0 Jdug > 0 Vu Z Ug Mg(u) < MI(C‘u)]
= [FC >0 s £ O - laal.

In what follows N will be an N-function satisfying the A, condition, that
is, '

(4) E’C>03ugZOV’U > Ug N(Qu) < CN(U)

DEFINITION L.1. Ry is an A-function generating an Orlicz space g,
such that
(5) Ry(w)=u{&?N()dt, w22
1

In what follows the definition of Ry for 0 < u < 2 does not play any
role.
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The following properties are equivalent:
(8) N satisfies the Ay condition,
(T) Ly is separable,

(8) Nl <ooe [N(f) <o,

I
oo

@ FIrz1TuziVuzu o | £7TIN(E)dE < CN(u).
(For (6)4(7)<>(R) see [12], for (6)¢>(9) see [18].)
We note that the A, condition implies the following properties:

(10) Ry satisfies the A, condition,

oy 3¢ >1u >0Vu>u N(u £ CRy{u).
We remark that {11) is equivalent to (see (3), (5))

(12) Lpy CLy.

We uée the following Marcinkiewicz’s interpolation type theorem (see
(5)-(9))-
TusorEM A ([20], Vol. I, p. 118, Th. 4.34; {18}). Let A be a quasilinear

operator which has simultaneously strong type (p,p) for all 1 < p < oo and
weak type (1,1). Let Ly be a separable Orlicz space. Then A is defined on

LRN and

()  30>0¥fela, (NN <C(1+{RN(D),
I I

(b) AL gy L < 00

We remark that (b) follows from (a) immediately (see [20], Vol. I,
p. 174, Th. 10.14).

LEMMA A. Let N satisfy the Ay condition. Then Ly = Lgy if and only
if Ly is reflexive. ‘
Proof. This follows from the chain of equivalences:

[Ly = Lry] < [Ly C Lry]  (by (12))

& [3C > 0 Jup 2 0 Yu > up Ry () <N(Cu)]  (by (11))
& [Sl > 1 3ug > 0Vu>ug N(u) < %N(lu)l (see [1], [2], [T
& [N* satisfies the Ay condition]  (see [12])

& [Ly is reflexive]  (by (7), (4); see also [12)).
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Let us denote by 7, H = {hn}iZ;, W = {w,}22, the trigonometric,
Haar, Walsh (in the Paley enumeration) systems respectively, defined on
I; here and in what follows we set I = [0,2%n] for the trigonometric case
and I = [0,1] for the other cases (for the definitions of 7, H, W see for
example [8]). By 87, S, 5 we denote as usual the Fourier, Fourier—Haar,

Fourier-Walsh partial sum operators defined on L; = L1(I).

DEFINITION 1.2 [17]. We say that a sequence {z,} in a Banach space
B is a basis of a subspace X in the norm of B if for every z in X thereis a
unique series ) | nZn, @n = an(2), which converges to z in the norm of B.

We consider the following problem: when are trigonometric and Walsh
systems both bases of the Orlicz subspace Lg in the norm of the whole
Orlicz space Ly?

The main result is:

THEOREM 1.1. Let Ly be a separable Orlicz space and Lo be an Orlicz
subspace of Ly. The following assertions are eguivalent:

(a) the trigonometric system is a basis of Lg in the norm of Ly,

(b) the Walsh system is o basis of Lg in the norm of Ly,
(¢} Lo C Lg,, (see also (5) for the definition of Rn).

Since both systems are dense in L (see also (12)) it is sufficient to prove
(see for example [20], Vol. I, p. 266, Th. 6.4):

THEOREM 1.2. Under the same assumptions as in Theorem 1.1 the fol-
lowing assertions are equivalent:

(a') SUp,, HSEHLQ"'*LN < ©o,

(b) sup, J‘S?]'LN||LQ—'*LN < 0o,

(C) Lg C Lg,.

For that we need some lemimas.

LemMMA 1.1, Let N and Q be N-functions with N satisfying the Ag
condition. Then for every n > ny = min{n : Q(200n) > 200n} we have the
ineguality

2r

| N(Q7H(2002)ST (110,1/(300my))) = Cn™' Ry (Q71(200m)).
a

Proof. Let
Du(z) = sin (n +1/2)z
2sin(x/2)
be the Dirichlet kernel and b = 2kT/(2n4+ 1), k=1,...,2n-+ 1, be the
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zeros of Dy, on [0,27]. Let

1 2k—-1

thpn = E[gk,ﬂ, Flpin] = e

1 1
Ii’s:,n = [tk,n - 200n5tk,n + ?,OOTJ e [ak,na bk,’n]a

1 1
Jj’c,n = [a'k,'n - 200m bk,n - ]

200n,
It is well known [13] that for ¢ € Jyn, k=1,...,2n+ 1,
KL
Da(t) > A
Thus fort € Jypn, k=1,...,2n+1,
1
Dn(i) > ‘g%'

Iz € Iy, and 2 € [0,1/(2000)] then 2 — 2 € Jy,, and it follows for @ € Iy p,
that

27
|Sg(1[0,1/(200n)] (z))] = ‘ S Lp,1/(200n)(2) Dn(@ — 2) dz|
0

1/(200m)
= | |Da(@-2)dz>
C
As N is an increasing function satisfying the A, condition, we have

1000nz”

2T

§ N(Q@7(200m) 57 (10,1, (300m31))

0
241, -1
Q=1 (200n)
= 2y
205 | N ( 200nz )
k=1 Ipn
C 2+ 1" 7Q=1(200n)
2 = MY d
210071, o Z S N 200nx “
k=1 aj,n
1 —
Q~1(200n)
= g
¢ | N ( 2000z )

w/(2n+1)

1 (2n413Q~1{200n) /(20007 }
. CQ~'(200n) Nw)

2
200m Q~1(200n)/(200n) “

Since @ is an A'-function (see (1)), there exists ng = min{n: Q(200r) >200n}
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and for n > ny we have
27
S N(Q_1(200“)5{(1[0,1/(200@])) > C’n'lRN(Q“l(%On)).
G

Let us write n in base 2:

o0
= 261;21,

=0

E; € {0, 1}.

Put
(=]
s(n) =Y e — &l
i=0
We need some facts from [11] collected in the next

LeMMA 1.2 [11]. For every even inieger n there exist subsets E;, F;
(t=1,...,8(n)/2) of [0,1} such that
wal] DR DB DFDED ... D Fs(n)/z ) Es(n)/Zs
%m(Fi) = m(B;) = 4,
and if
gnfz) =2° =) 1Es(n)/2($)5 z€[0,1],
then

L ;
W _ 4 mEE,;\FH..l, 'L=1,...,3(?’b)/2—1,
wn ()85 (Wngn, ) “{ 14 ze R\, i=1,...,s(n)/2

LEMMA 1.3. Let N and Q be defined as in Lemma 1.1. Then there exists
C > 0 such that for every even integer n satisfying the condition

(13) 4@—1 (zs(n)) > Ha(n)
the following inequality holds:

1

fN@Q@ M2 ™)8)Y (wn(@) 18,y 0 (@))) di = C27* M R (Q7H(21)).

0

Proof. Let E;, F; be the sets defined as in Lemma 1.2. Then for all
i=1,...,s(n)/2 and x € Fy \ Fyq,
4:'5

|Svrv(wﬂ(m)1Ezs(n)/a (2))| 2 g.980n)"

As N is an increasing function satisfying the A, condition (see (13)) we
have :
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1

{ V(@ (22 8) (wal2)15,, 0y o (2))) A
o]

3(?’1)/2-l i -1 ('ﬂ)
£Q7H2s™)
>y | v(EEER)

i=1  Fi\Fiz1
a(n)/2-1 i—1¢ns(n)
L9712\
>C Zl N(———zs(n) _)4
a(n)/2—1 43+1

i (£QTHE™)
20Ty e (FEE)

i=1 44
—1q5(n)
cQ—l(Qs(n)) QT eE™™) N(u) i
= 28(n) S 2 0

4Q—1(23(n))/25(nj
C —17g48(n)

Proof of Theorem 1.2. The implications (c)i(a) and (c)=>(b)
follow from Theorem A, since the operators S and S¥ have strong type
(p,p) for all 1 < p < oo and weak type (1,1) (see [20], Vol. T, [9], ], [14], [15],
[19]) (We only remark that the corresponding estimates do 1101: depend
on n.)

(a)=>(c). In particular, for

fn(ﬂl’) = 2007’61[0’1/(20(]”)] (93), T e [0, 2’17], > 1,

we have
30> 09n>1  ||SZfallw < Cllfalle-
Since
Folllfnlla = Q1 (200n) 10,1/ 200ny  (se€ (2))
and

(), <
it follows that (see (2))

- ~1(200
{ N(S;.r ("——“Q (O n)l[o,l/(zoom](ﬂ?))) de < 1.

0
Thus using the A condition for N (see Lemma 1.1), we have

I >0V 2 no RN(Q_l(QOOn)) < Cn,

where ng is defined as in Lemma 1.1.
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Since Ry and @' are increasing and ( is convex, we obtain
IC >03uy >0 Vu>u Ry(u) <CQu) <Q(Cu).

This implies (c) (see (3)).
{b)=>(c). We proceed as in the proof of the previous implication using
the function

(@) = Wen, (8)gim, (2), 2z €I, k>1,
where gy, is defined as in Lemma 1.2 and my, = 35— 2%~1. We note that
(14)  s(mp) =2k, my < mpys < 8my, 250K <y < 280
It follows from Lemma 1.3 that
A0 > 03ky > 1VE 2 kg
and also (see (14))
AC > 0 Jug > 0 Vu > ug

The result follows as in the first part.

RN(Q—1(2s(mk))) < OQS(mk)
Ry(Q 7' (u) £ Cu.

In fact, the method applied in the proof of Theorem 1.2 gives more
information about subsequences.

THEOREM 1.3. Let Ly be a separable Orlicz space and G be a Young
function such that

Q(u) = o(En{u))
Then for every subsequence {n;} such that

as u — 0Q,

(a) Mmoo 1y = 00, we have
sup “SE:; ”LQ""'LN = 005
J
(b) sup; s(ny) = oo, we have
sup ”S;r”Lq—rLN = 00,
J

The proof is similar to the one of Theorem 1.2. We only remark that for
(b} we consider the sequence {n}} defined by

e T if n; is even,
77 | ny—1 ifn;is odd.
Clearly, one has sup; s(n}) = co and since
1852 Fllaw < 1S Fllav + 1 £l s

it is sluf?_cient to prove (b) for {n}} (see part (b)=(c) in the proof of Theo-
rem 1.2).
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2. Shift operator, Paley function and majorant of Fourier par-
tial sums with respect to the Haar system. Let us recall the definition
of these operators (see [8], pp. 68, 76, [5]). For f € L', the shift operator is

o0

T(f,a) = (£, hn)hnsa(®);

n=1

the Paley function is

P(f.2) = [ Y @)

n==]

the majorant of Fourier partial sums is
§*(f,z) = sup|S3H(f, 2)!.
n
Our main result of this part is

THEOREM 2.1. Let Ly be a separable Orlicz space. Then the following
assertions are eguivalent:

(a‘) LQ - L-RN)

(B) 1T 2o—ry < oo

(C) “P”LQ‘—’LN < 00,

(@) [15™[lzg—zn < o0

To prove Theorem 2.1, we need the following

THEOREM 2.2. The operator T maps L' into L® and has weak type (1,1},
more precisely

W>0vi eIt mize 5T, >} < S Wl

Proof. Let us recall that a dyadic interval A; (on [0,1}), j = 2 414,
I=0,1,...,i=1,...,2 is defined by

i—-1 1 — i—-1 1
1.’:\3':(—“2! ;g): Aj:l:_yf"g]:

for 5 = 2.

and
supp hj C Ej
Let
9(m) = 7 (g, %)

be a polynomial with respect to the Haar system and y > [|g]|z:. Then the
following Calderén-Zygmund decomposition is well known ([8], p. 73):

There exist measurable everywhere finite functions f;, 1 = 1,2, and a set
O, such that g = f1 -+ fa,

(15} |fil <2y ae onl,
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(18) fillze < ligllpr
and

supp fa C O,
If O, # 0, then

1
(17) m(0y) < QIIQIILM
(18) 0y =) 4.,
k
where A, , k=1,2,..., are disjoint dyadic intervals. Moreover,
(19) A; € Oy = (fa, hy) =0

Using (15), (16), we have

(20)  m{z e I [T(STA) >y} < |

|TCSTAIE  S2 A 2s
y? TR
< A3

< ~§|lf1uL1 < gugnn.

Further we have (see (18}, (19))

{:cEI Zhﬁ-l W f2, by #0}
{ U AJ+1} m{U U 5j+1}

b JiA;CAm,
s m{ U(Am S AW}:‘H-)}'

(For the last inequality we use the fact that A; C Ap, implies 4,4, C

Ay U Ay 11.) Since m(Am, 41) < m(Ap, o) (see definition of A;) we have
(see also (18))

(22) m{supp T'(S7(f2))) < 2m(0,).
From (17), (20) and (22), we obtain
mie € I':|T(g,z)| > y}
=m{z € I:{T(SF(f1,2)) + T(S2(f2,2))] > v}
< m{supp TSz fo)} +mfz € I+ {T(SH (1, 2))] > v}

(21)  m{suppT(SY f1)) =

2 2
< EHQHLI + §||Q'”L1~
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Thus for y > 0 for every polynomial g with respect to the Haar system we
have

m{z € I:|T(g,2)| > y} < gugnu-

(We proved this inequality for y > [iglr:, but for 0 < y < |ig|[z: 1t is
evident.) Since the Haar system is a basis in L! it follows from the last
estimate that for f € L* the sequence T(S2! f) converges in measure to T'f,
and,

m{s & I:|T(f,2)| > v} < B mis € 1+ |T(S]/F.2)] > )

40— o 4
< = 1 < - 1.
<2 T 15740l < 2151

LEMMA 2.1. Let N and @ be defined as in Lemma 1.1. Then there exists
C' > 0 such that for every n > ng = min{n : Q(2"*1) > 2"} we have the
inequality
1
(V@ T (Ap,1/27)) 2 C2"RN(QTH(2")).
0
The same inequality holds for P and S*.
Proof We first remark that the existence of ng follows from (1). We
put
fn(.’I:) =2n1[0,1/2n]($), £ [0,1], n=12,...
Then

fn(m) =h (93) + Z_: zk/2h2k+l(m).
k=0

And for @ € (275,279}, 2 < § < n—1, we have
n—1
(Tha(@)] = lha(e) + ha(a) + 3 hongalo)2"42]
h=1

n—1 7
2 | Z2k/2h2k+2($)| — (1 - ‘\/5) Z %_
k=1

Thus for z € (27"*+1,271) we obtain

1
And also
1
(24) Plne) 22, 157l 2 5.
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Using (4}, (10) and (23), we have, for n > ny,

SN(Q‘I(Z”)T(lm:l/%])) > S N(M ! ) de

0 3—ntl r
- 271Q 7 (2™
Q') N (u)
2055~ | 5t
g-n-—lQ—l(Qn)

> C27 Ry (Q71(2™).
And the same (see (24)) for ¢ and S*.

Proof of Theorem 2.1. (a)=(b), (c), (d). It is well known [14], [20],
[5] that the operators T', Q and S* have strong type (p,p) for all 1 < p < oo
and P, .5* have weak type (1,1) [19], [20]. Using these facts and Theorem 2.2
we apply Marcinkiewcz’s interpolation theorem (Theorem A).

(b)={a), (c)=(a) and (d)=(a) can be proved using Lemma 2.1 and the
corresponding part of the proof of Theorem 1.2,

Remarks. 3.1, By Lemma A, Theorems 1.2 and 2.1 give the well known
results mentioned above for reflexive Orlicz spaces.

3.2. Particular cases of Theorem 1.2 for the trigonometric system were
studied in [13)].

3.3. If sup; s(ny) < oo then Theorem 1.3 is false. This follows from
the representation of the Dirichlet-Walsh kernel by the sum of a hounded
number of Dirichlet~Walsh (Dirichlet-Haar) kernels DYY = D2 and the fact
that the Haar system is a basis in any separable Orlicz space.

03.4. One can prove by a similar method (see Theorem 2.2) that T f =
2521 Pk (Z)(f, hy) has weak type (1,1).

3.5. One can get some interesting applications of the previous results in
the multidimensional cases.

- 3.6. Theorems 1.2, 1.3, 2.1 may be expressed in terms of integral inequal-
ities (see Theorem A) for an arbitrary (non-A-) function W, satisfying (4).
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