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Singular values, Ramanujan modular equations,
and Landen transformations

by

M. VUORINEN (Helsinki)

Abstract. A new connection between geometric function theory and number theory is
derived from Ramanujan’s work on modular equations. This connection involves the func-
tion wx (r) recurrent in the theory of plane quasiconformal maps. Ramanujan’s modular
identities yield numerous new functional identities for ¢ 4, (r) for various primes p.

1. Introduction. The argument 7 € (0, 1) of the complete elliptic inte-

gral
: dz
1.1 X(r) =
() () g\/(l—mz)(1~'r2m2)
is often called the modulus of X, and the equation
() _ X()
=Pp )

sy " X(r)

where 1’ := +/1 — r2 is the complement of r, is called the modular equation of
degree p. Modular equations occur in number theory [BB], [B], [SC]. In such
contexts, p is usually an integer or a rational number. Note that (1.2) makes
sense for all positive real numbers p, since K(r')/XK(r) is a homeomorphism
of (0,1) onto (0, co). If we use the notation [LV, Sect. IL.3]

(1.2) p>0,

A9 pxl) = /), W)= F g K>
the solution of (1.2) is
(1.4) 5= (pl/p(fr).

Since modular equations occur in different contexts such as number the-
ory [BB] and geometric function theory [LV], it is of interest to find those
values of p for which the function ¢, /p(r) reduces to a simpler, algebraic
function. As far as we know, there are neither systematic studies of these
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cases nor a list of positive numbers p nor even positive integers p for which
the solution s = (1 /,(r) can be explicitly given. Incase p = 2", n = 0,1,...,
then ¢, /,(r) is the algebraic function obtained by iterating the descending
Landen transformation n times (cf. Section 3). Note that for all K" > 0 and

€ (0,1), wx(r) can be expressed as an infinite Jacobi product (see (2.7)
and {J], [VV], [AV]}).

The purpose of this note is to study some other particular cases of the
function (1.4), using Ramanujan’s results on modular equations as a tool.
Ramanujan’s work on modular equations remained rather inaccessible until
1991, when B. C. Berndt published Vol. III in his series of edited versions
of Ramanujan’s notebooks [B]. The currently known original notebooks do
not contain proofs, but in [B] reconstructed proofs are given. Many of the
reconstructed proofs of modular equations in [B] are due to G. N. Watson,
as Berndt points out. As in [B], we mean by a modular equation not only
the transcendental equation (1.2), but also an algebraic equation that fol-
lows from (1.2) and involves » and s. An example is the classical Legendre
modular equation of degree 3,

(1.5) Vs + Vsl =1,

Although it is unorthodox to write the Legendre modular equation in terms
of @i (r), this notation is suitable for our purpose. An equivalent form of
(1.5) in Ramanujan’s (e, 8)-notation is

(1.5 YoB+ 4

witha =r?, 8=, /3(r)%. Dozens of algebraic modular equations of various
degrees were given by Ramanujan in his notebooks, and a helpful chart of
his work on this topic appears in [B, pp. 8-9]. Three proofs of (1.5) are
given in [H, pp. 214-218]. In some cases these algebraic modular equations
reduce to solvable polynomial equations, as does (1.5). In such cases one
can obtain the solution s of (1.2) as an explicit algebraic function of 7. In
particular, ¢y /3(r) can be explicitly determined from (1.5) (the solution was
recently worked out in [KZ}) and thus, by the symmetric formula (2.1) and
the composition property (2.2) and (3.6), we have explicit expressions for
2034 (r), p, ¢ € Z. However, even the formula for ¢, /3(r) is so long that it
would be difficult to write down Long formulas like that can be manipulated
reasonably only in computer symbolic computation programs, Theorem 2.3
below summarizes from [B] those results of Ramanujan that we shall use.
In this note we confine our attention to a particular case of the problem of
finding ¢, /,(r) explicitly, namely to the problem of finding the pth singular

value 1, of the complete elliptic integral X(r). The singular value r, is
defined by ([SC], [BB])

§ = 901/3(?")-

(T= )T —F) =
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T
(1.6) wrs) = 5V, P> 0.
Since (4(1/v/2) = /2, we see that the solution of (1.6) is
(11 o= 1145 (L/VE).

Thus if we can solve (1.2) for a given ,/p > 0 we also obtain the solution ry
of (1.6). For several integral values of p the solutions of (1.6) are given in
BB, p. 298]. The arithmetic character of r, was investigated in [SC].

The main observation of this note is that the quasiconformal distortion
function (1.3) satisfies numerous identities given by Ramanujan. We present
some applications of these identities. In Theorem 2.6 we give sore singular
values (cf. [BB, p. 139, p. 298]) and also give an evaluation of an infinite
product (cf. Corollary 2.8 below). We also provide some inequalities for the
function 8 = g (7} for all K > 0 in terms of the Landen transformation.
Recently similar inequalities were obtained in [AVV2], [P1-3], and [QVV].
The many modular identities of Ramanujan in [B] and in Section 2 may lead
to function-theoretic applications since ¢ {r) measures the extremal radial
distortion of a normalized K-guasiconformal map of the unit digk into itself
[LV]. Ramanujan’s work on modular equations was based on theta functions,
see [B] or the recent papers (BBG], [BC], [FK] and [S1], [S2]. At the end of
the paper we give a conjecture.

We use the notation ch z and th z for the hyperbolic cosine and tangent,
respectively, and arch z, arthz for their inverse functions.

2. Ramanujan modular equations. From the identity p(r)u(r') =
72 /4 it follows that the function @ x satisfies the following symmetric iden-
tity:

(2.1) or(r)® +oyx ()’ =1

for K > 0,r € (0,1). From (L.3) it follows trivially that ¢ x has the compo-
sition property

(2.2) wap(r) = pales(r)), AB>0,re(0,1),

which also implies that ¢y x(r) = R ().

In the next theorem we state those modular equations of Ramanujan
that we shall use later. There are many more similar results of Ramanujan
in [B] which probably could be used for the same purpose, and we hope to
stimulate further work by proving just a few such results. Note that Theorem
2.3(3) is due to Schrdter [B, p. 352] and was discovered mdependenﬂy by
Ramanujan.
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2.3. THEOREM. The function @y satisfies the following identities:
(1) For a =12, 8= p15(r)?, we have

(2872 +{(1 = 2)(1 = O} + 2{1605(1 — o) (1 ~ A)}/° = 1.
(2) For a =77 B =17(r)?, we have
(@8 + {01~ )1~ P =1
(3) For =12, B = y3(r)?, v = 10(r)? we have
{o(1 = NP8+ {v(1 = )}® = 2M3{p(1 - p)}*/%,
(4) For a =72, B = 123(r)*, we have

(@B)/8 + {(1 - a)(1 - A + 2*/*{ap(1 - a)(1 - )} /* =1,

, (8) For & = 1%, B = @y y7(r)?, or for & = p175(r)?, 8 = 1/5(r)?, we
ave

(@8)1* + {(1~a)(1 ~ B} ~ {aB(1 - o)1 - I3
1/2
= {50+ vas+ vIZaa=a)}

Proof. All of these identities are from [B]: (1) is [B, p. 280, Entry 13(i)];
(2) is p. 314, Entry 19(i); (3) is p. 352, Entry 3(vi); (4) is p. 411, Entry 15(i);
and (5) is p. 435, Entry 21(i). =

2.4. COROLLARY. The function g satisfies the following identities for
s €(0, 1)
(1) my + 2"y’ + 25/ aya'y I3 = 1, where z = o e(s), y= E,Dl/\/g(S),
1
(2) (20) % + (2'y)/* = 1, where @ = @ 55(s), y = 9y 5(5),
& (o) M4 + (a4 = P/(L ~ )%, where & = s (s), y =
P3E s
(4) (my)lltl -+ (mzyr)l/ti - 22/3($w1yyr)1/12 = 1, where x = 901/\/2@(3)’
¥ =9.5:(9),
(8) ()M + (a'y/ )/ ~ {aa'yy Y4 = {01+ my + o'y}, where
T = 90\/%(8)1 y= CP\/Q/—S(S)-
~ Proof All of these identities follow from Theorem 2.3 and (2.1)-(2.2)
in the same Way a8 s00m 83 7 is chosen appropriately. For this reason we give
here the details only for (5). Set r = ¢_sz(s). By (2.1) and (2.2) we sce that
a=p/3(r)? = ‘P\/ﬁ(s)z: l-a= 99\/375'(5')2,

and thus the assertion follows from Theorem 2.3(5). w
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2.5. COROLLARY. We have the following identities:

(1) 2w’ + 253 (u!Y?/% = 1; u = ¢ _z(1//2),

(2) 2(w)* = 1 u = ¢ 7(1/v2),

(3) vu + VUl = 24 u = p3(1/V2),

(4) 2w} + 22l YO = 1; 0 = {1/,

(5) 2{uw) " — (we')/2 = {11+ 2uu’)}1/2; %= w\/ﬁ(l/ﬁ)
Proof. All of these identities follow from Corollary 2.4 and (2.1)—(2.2)

in the same way. We give here the details only for (5). Set s = 1/v/2 in
Corollary 2.4(5) and observe that then &’ = y, y' = z, and thus (5) follows. m

Parts (1) and (2) of the next theorem are given on page 139 of [BB] in
a slightly different form, whereas part (3) is probably new.

2.6. THEOREM. The function ¢ has the following special values:

) oustivD =L

(2) ey 71/ V2) = ﬁ?@,

) or VD) = A
e 1 V25 + /821

z =

1
—~ +
392 | 3(25+ VeI 3. 2%/
Proof. (1) We write (1.5") as
Vreys(r) +/r'es(r) =1
and then set r = \/5(1 /+/2). Solving this yields the desired formula.

Parts (2) and (3) follow from Corollary 2.5(2) and (4), respectively. We
have used the Mathematica computer program for part (3). m

We next recall Jacobi’s product formula [J], [VV] for r € (0,1), K > 0O:

@) pxcr) = [] (2 - DEu()).
=1

2.8. CoroLLaRy. We have
i 2—1/3
tht ( (25— 1)~ ): .
11 (ei-0575) =25

Proof. Combine (2.7) and Theorem 2.6(1). »
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3. Approximation by the Landen transformation

3.1. Landen transformation. For r € (0,1} the elliptic integral 3C{r) sat-
isfies the Landen identity [AB], [BB], [L]

247
(3.2) K(l—l«r) = (14 r)K(r),
which yields the functional identity
27
3.3 =9
(3.3) ) =2 ( 240

for » € (0,1). The transformation r — 2./r/(1 +r) is called the ascending
Landen transformation, and its inverse 7 — (r/(1 + r'})? is called the de-
scending Landen transformation. To study these and their iterates we set
L(r,0) = r and define

Lir,—k) = ( L{r,—k + 1) )1)2’

(3.4) 14+ E(r,~k+1
Lir, k) = 2+/L{r,k — 1)

T 1+ L(rk—1)’
for k=1,2,... It follows easily from (3.3) that
(3.5) (L, —k)) = 2" u(r),
for all integers k, and also that
(3.6) p2e (1) = L(r, ¥)

for all integers & and 7 € (0, 1). We also see that the Landen transformation
satisfies the following composition property:

(3.7) | L(L(r,m),n) = L(r,m + n).
We next apply these identities to prove inequalities for the function @ (r).

3.8. THEOREM. For r € (0,1) and p = 1,2,..., ox(L(r,p)) =
L{pk(r),p) for K> 0. For K > 1 and r € (0,1), '

(1) L(r,~p)*"™® < L{pk (r), ~p) < 484K L(p, ~p)H/X
(2) AKLir,—p)* < L1k (r), —p) < L(r, —p)¥.

Proof. The identity follows from (3.6) and {2.2). For (1) observe first
that px(r) > 7 for K > 1, and similarly L{px(r), —p) > L{r,—p). Next,
since p(r)/log(4/r) and u(r)/log(1l/r) are decreasing and increasing, re-
spectively [AVV1, Lemma 4.2], we have, for ¢ € (0, 1),

1(sp)/ log(4/sy) < w(tp)/log(4/ty),
u(tp)/ log(1/ty) < p(sp)/ log(L/ sp),
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where s, = L(px (t), —p) and t, = L{t, —p). The proof of (1) now follows,
since u(sp) = p{tp)/ K. The proof of (2), which is similar, uses the relation
pr(r) <rfor K>1. =

"The next corollary is similar to a result of D. Partyka [P2, Theorem 1.3].
3.9. COROLLARY. For r€ (0,1) and K > 1, p=1,2,...,
(1) () 2 LL(r, -5, p).

Nezt, if K >1,r€(0,1), and pg is s0 large that 41~V X L(r, —po ) ¥ < 1,
then, for p=po,po+1,...,

(2) pr(r) < LA ~YE L(r,—p)' /¥, p).
Further, for K > 1, r € (0,1), p=1,2,...,
(3) L(41_KL(T'1 —p)Kip) < SollK(r) < L(L(Ts _p)K’p)_

Finally, for K > 1, r € (0,1),

(@ y1- L0802 S exclr) < /1 LE-FL(, 9 )
Proof These inequalities follow from Theorem 3.8, (3.7), and (2.1). =
Note that from (2.1) and (3.7) we obtain

(3.10) L{r, ) + L(r', )" = 1

for r € (0,1) and p € Z. The idea of using the Landen transformations

for the estimation of @i (r) was indicated in [AVV2, Remark 4.23], and it

was also independently studied by D. Partyka [P1, P2]. He has shown, for
instance, that these upper and lower bounds converge quite quickly to the
value of the function g (r); see Remark 3.22 below.

The function K(r), and thus also u(r), can be most efficiently computed
with the help of the well-known arithmetic-geometric mean iteration [BB].
The function @i {r) = p~*(u{r)/K) is more tedious to compute because of
the presence of 1!, We shall next discuss these functions in more detail.

First, Jacobi’s inversion formula gives ([J], [L], [VV])

3.11)  py) = J 1— ﬁ th¥ ((2n — Dy) = H th? ((Zn - 1)%),

n=1

for all ¥ € (0,00). From (3.11) we obtain

(3.12) 1 —th®y < p7(y) < th? (Z—:)

and
(3.13) : pfr) > arth V.
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Combining (3.13) with u(r) < log(2(1 +7")/r) [LV, p. 62] we obtain

1
(3.14) arth Vs < p(s) < log 2 + arch >

and putting s = L{r, —p) we get, by (3.5),
1
arth +/ L{r, —p)’ < 2Pp{r) < log 2 + arch =)
Substituting y = u(r) and solving for r = x~*(y) yields, forallp = 1, 2,...,

(3-16) L(\/ 1~ th&@”ﬂ),p) <p7Hy) < L1/ ch((2Py ~log2).),p),

where oy = max{a,0}. Note that in (3.16) both bounds for pu~*(y) are
elementary functions.

Finally we remark (cf. (3.15)) that Ramanujan derived a very close ap-
proximation for u(r). In [B, p. 91] this approximation is given in the form

(3.17) F(l-e®)

(3.15)

z

‘ 710 + /36 + 22

with F(t) = exp (— 2p(+/%)). Solving (3.17) for u(r) we get a close approx-
imation in terms of elementary functions for small r € (0,0.5).

3.18. Asympiotic behavior of singular values. Computer experiments led
us to the conjecture that for p — co we have the agymptotic formula
(3.19) p1/p(r) ~ dexp(—pu(r)).
The following analytic proof of (3.19) was kindly provided by G, D. Ander-
son. We have

exp(pu(r))1/p(r) = exp(op(r)) ™ (pu(r))
= exp(s)p~(s) = zexp(p(z)) — 4,

where s = pu(r), & = p~1(s), and the last limit follows from [LV, (2.11),
p. 62].

Note that (3.19) provides information about the asymptotic behavior of
singular values (1.7):

Tp2 = P1yp (1/\/5) ~ 4exp(m%p) (p — oo).

3.21. CONJECTURE. We have seen in Theorem 2.6 that for some alge-
braic numbers K > 0 the values wg (1/ \/5) are also algebraic. (Note that
{1/ \/5) = m/2 is not algebraic.) The following question arises: is it true
that g {r) is an algebraic number whenever both r and K are? We conjec-
ture that this is the case.

z—0,

(3.20)

3.22. Remark. In [P2, Theorem 1.5] the rate of convergence of the
Landen approximation is studied, and it is shown for instance that, for all
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O<z <1,

L{px(z), —n) < min{4""VELYE (4 —n),1}
< Lpx ()1~ ¥ /KY=1, _p)

for K21, n=23,..., and
L{px(z)(1 — 2™ )E _p)y < g-VE LUK (5 ) < L (), —n)

for 0 < K £1,n=1,2,... Further results appear in [P1, Theorem 1.2].
D. Partyka [P3] has also proved, for every K > 1, the identity

i (R v8) ) = 200 =1 -2 (IVE) ) =10,

0<r<l

2

as well as an analogous result for the case K € (0,1).
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Complex Unconditional Metric Approximation Property
for Cy(T) spaces

by

DANIEL LI (Paris)

Abstract. We study the Complex Unconditional Metric Approximation Property for
translation invariant spaces C4(T) of continuous functions on the circle group. We show
that although some “tiny” ({Sidon) sets do not have this property, there are “big” sets A
for which C (T} has (C-UMAP); though these sets are such that LF (T) contains fanctions
which are not continuous, we show that there is a linear invariant lifting from these L5 (T)
spaces into the Baire class 1 functions.

Introduction. The translation invariant subspaces of continuous func-
tions on T all have the Metric Approximation Property (MAP). We study in
this paper the spaces C,(T) which satisfy a stronger approximation property,
the Complex Unconditional Metric Approximation Property (C-UMAP).

The (Real) Unconditional Approximation Property (UMAP) was intro-
duced in 1989 by P. Casazza and N. Kalton as an extreme possibility of
approximation ([3], Th. 3.5), and they showed ([3], Th. 3.8) that it actually
coincides for a separable Banach space X with the existence for every e > 0
of an unconditional expansion of the identity of X with constant 1-+¢, which
means, by a result of A. Pelczyfiski and P. Wojtaszczyk ([21], Th. 1.1) that
for every £ > 0, X may be isometrically embedded in a Banach space ¥ with
a (14-£)-FDD for which there is a projection P : ¥ — X with [|[P|| < 1+e.
Its complex version was defined and studied in ({7], §§8 and 9).

To begin with, we construct subsets A C Z for which C4(T) has
(C-UMAP). They are of two kinds: the first contain arbitrarily long arith-
metical progressions, so that they are not A(1)-sets, but their pace tends to
infinity; the second are Sidon sets, but have a pace which does not tend to
infinity.

1991 Mathematics Subject Classification: Primary 46B20, 43A46, 41A65: Secondary
42A10, 42A55, 43A25.

Key words and phrases: Unconditional Metric Approximation Property, translation
invariant spaces of contimious functions, Rosenthal set, Riesz set, inear invariant lifting.
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