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SUFFICIENT CONDITIONS FOR OSCILLATION AND
NONOSCILLATION OF THE SOLUTIONS OF

OPERATOR-DIFFERENTIAL EQUATIONS WITH
PIECEWISE CONSTANT ARGUMENT

Abstract. Effective sufficient conditions for oscillation and nonoscillation
of solutions of some operator-differential equations with piecewise constant
argument are found.

1. Introduction. In [1] sufficient conditions are obtained for oscillation
of all solutions of the operator-differential equation with piecewise constant
argument

(1) y′(t) + q(t)y(t) + p(t)y([t]) = 0,

where p, q ∈ C([0,∞); R) and limt→∞ p(t) = limt→∞ q(t) = ∞.
Some mathematical models in biology [3] are described by means of

equations of the form (1).
In [5] sufficient conditions are obtained for oscillation and nonoscillation

of solutions of the equations

y′(t) + p(t)f(y([t])) = 0,

y′(t) + p(t)f(y([t])) = h(t).

In the present paper the operator-differential equations with piecewise con-
stant argument

x′(t) + p(t)(Ax)([t]) = 0,(2)
x′(t) + p(t)(Ax)([t]) = h(t)(3)
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are investigated, where A is an operator with certain properties. Sufficient
conditions for oscillation and nonoscillation of solutions of equations (2)
and (3) are obtained. Some particular realizations of the operator A are
considered.

2. Preliminaries. Consider the operator-differential equations

x′(t) + p(t)(Ax)([t]) = 0,

x′(t) + p(t)(Ax)([t]) = h(t),

where A is an operator and p(·) is locally integrable function in R. Let t0
be a fixed real number. Denote by C([t0,∞); R) the set of all continuous
functions u : [t0,∞) → R, and by Lloc([t0,∞); R) the set of all functions
u : [t0,∞) → R which are Lebesgue integrable in each compact subinterval
of [t0,∞).

Definition 1. By a solution of equation (3) in the interval [t0,∞) we
mean any function x(t) satisfying the following conditions:

1. x ∈ C([t0,∞); R).
2. The derivative x′(t) exists at any point t ≥ t0 with the possible

exception of the integer values of t, at which the right-hand derivative exists.
3. The function x(t) satisfies equation (3) in each finite interval [n, n + 1)

⊂ [t0,∞), where n ≥ t0 and n is an integer.

The set of all functions satisfying conditions 1 and 2 of Definition 1 will
be denoted by Dt0 .

Definition 2. A solution x(t) of the equation (3) is said to be regular
if sup{x(t) : t ≥ T} > 0 for T ≥ Nx, where Nx ≥ t0 is an integer.

Definition 3. A regular solution x(t) of the equation (3) is said to os-
cillate if there exists a sequence {tn}∞n=1 of points such that limn→∞ tn = ∞
and x(tn) = 0.

Otherwise the regular solution x(t) is said to be nonoscillating.

Definition 4. A function u : [t0,∞) → R is said to eventually enjoy a
property P if there exists a point tP,u ≥ t0 such that for t ≥ tP,u it enjoys
the property P .

We introduce the following conditions:

H1. p ∈ Lloc([t0,∞); R), meas{s ≥ t : p(s) 6= 0} > 0.
H2. A : Dt0 → Lloc([t0,∞); R).
H3. If u ∈ Dt0 and u(t) ≡ 0 eventually, then (Au)(t) ≡ 0 eventually.
H4. If u ∈ Dt0 is eventually nonzero and of constant sign, then so is

Au, and they are of the same sign.
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3. Main results

Theorem 1. Let the following conditions hold :

1. Conditions H1–H4 are satisfied.
2. p(t) ≤ 0 for t ∈ [t0,∞).

Then all regular solutions of the equation (2) are nonoscillating.

P r o o f. Let x(t) be a regular solution of (2) in [Nx,∞), where Nx ≥ t0 is
an integer. Suppose that there exists an integer n ≥ Nx such that x(n) = 0.
From (2) it follows that x′(t) = −p(t)(Ax)(n) for t ∈ [n, n + 1). Then
x′(t) = 0 for t ∈ [n, n + 1), i.e., x(t) = const for n ≤ t < n + 1. Hence
if x(n) = 0 for any integer n ≥ Nx, then by continuity of x(t), x(t) ≡ 0
in [n,∞), which contradicts the requirement that x(t) be a regular solution
of (2). Hence there exists an integer m ≥ Nx such that x(m) 6= 0. Let
x(m) > 0 (the case x(m) < 0 is analogous). Then

x′(t) = −p(t)(Ax)(m) ≥ 0

for t ∈ [m,m + 1), and so 0 < x(m) ≤ x(t) ≤ x(m + 1).
Analogously, we obtain x(m + 2) > 0, etc. Hence x(t) > 0 for t ≥ m.

Theorem 2. Let the following conditions hold :

1. Conditions H1–H4 are satisfied.
2. p(t) ≥ 0 for t ≥ t0 and

lim sup
n→∞

n+1∫
n

p(t) dt < 1 for n integer , n ≥ t0.

3. (Au)(t) ≤ u(t) for any integer t ∈ [t0,∞) and any u ∈ Dt0 .

Then all regular solutions of the equation (2) are nonoscillating.

P r o o f. Let x(t) be a regular solution of (2) in [Nx,∞), where Nx ≥ t0
is an integer. There exists an integer n1 ≥ Nx and a number ε, 0 < ε < 1,
such that for n ≥ n1,

n+1∫
n

p(t) dt < 1− ε.

As in the proof of Theorem 1 we conclude that there exists an integer n2 ≥ n1

such that x(n2) 6= 0. Let x(n2) > 0 (the case x(n2) < 0 is analogous).
Integrate (2) from n2 to t for t ∈ [n2, n2 + 1) to obtain

x(t) = x(n2)−
t∫

n2

p(s)(Ax)([s]) ds



374 D. D. Bainov and M. B. Dimitrova

≥ x(n2)− (Ax)(n2)
n2+1∫
n2

p(s) ds

≥ (Ax)(n2)
[
1−

n2+1∫
n2

p(s) ds
]

> 0.

Repeating this process, we conclude that x(t) > 0 for t ∈ [n2 + 1, n2 + 2),
etc., i.e., x(t) > 0 for t ≥ n2.

Theorem 3. Let the following conditions hold :

1. Conditions H1–H4 and condition 3 of Theorem 2 are satisfied.
2. p(t) ≥ 0 for t ≥ t0 and

lim
n→∞

n+1∫
n

p(t) dt = 0 for n integer.

Then each bounded solution of the equation (2) is nonoscillating.

The proof of Theorem 3 follows the scheme of the proof of Theorem 2.

Theorem 4. Let the following conditions hold :

1. Condition H2 is satisfied.
2. p ∈ C([t0,∞); R).
3. h ∈ C([t0,∞); R).
4. limt→∞ h(t)/p(t) = ∞.
5. If u ∈ Dt0 is eventually nonzero and bounded , then so is Au.

Then all bounded regular solutions of the equation (3) are nonoscillating.

P r o o f. Let x(t) be a bounded regular solution of (3) in [Nx,∞), where
Nx ≥ t0 is an integer, i.e., there exists a constant M1 > 0 such that |x(t)| ≤
M1 for t ≥ Nx. From condition 5 it follows that there exists a constant
M2 > 0 and a number t1 ≥ Nx such that |(Ax)(t)| ≤ M2 for t ≥ t1. By
condition 4, there exists T ≥ t1 such that h(t) ≥ M2p(t) for t ≥ T .

Suppose that there exists a sequence {tn}∞n=1 of zeros of x(t) such that
limn→∞ tn = ∞. Denote by tk, tk+1 two consecutive zeros of x(t) such that
T ≤ tk ≤ tk+1.

Integrate (3) from tk to tk+1 and obtain

0 =
tk+1∫
tk

[h(s)− p(s)(Ax)([s])] ds ≥
tk+1∫
tk

[h(s)−M2p(s)] ds > 0.

Theorem 5. Let the following conditions hold :

1. Conditions H1, H2 and H4 are satisfied.
2. lim supn→∞

∫ n+1

n
p(t) dt = ∞.
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3. If u ∈ Dt0 , then limn→∞ u(n)/(Au)(n) < ∞.

Then all regular solutions of the equation (2) oscillate.

P r o o f. Suppose that x(t) is a nonoscillating solution of (2). Without
loss of generality we can assume that x(t) > 0 in [Nx,∞), Nx ≥ t0, Nx is
an integer. From H4 it follows that there exists an integer NAx ≥ Nx such
that (Ax)(t) > 0 for t ≥ NAx. Let N be an integer, N ≥ NAx. Integrate
(2) from N to N + 1 and obtain

x(N + 1)− x(N) = −
N+1∫
N

p(t)(Ax)([t]) dt = −(Ax)(N)
N+1∫
N

p(t) dt.

But −x(N) < x(N + 1)− x(N). Hence x(N) > (Ax)(N)
∫ N+1

N
p(t) dt, i.e.,

lim sup
N→∞

N+1∫
N

p(t) dt = lim
N→∞

x(N)
(Ax)(N)

< ∞,

which contradicts condition 2.

Theorem 6. Let the following conditions hold :

1. Conditions H1, H2 and H4 are satisfied.
2. p(t) ≥ 0 for t ≥ t0.
3. h ∈ Lloc([t0,∞); R) and

lim inf
t→∞

t∫
t0

h(s) ds = −∞, lim sup
t→∞

t∫
t0

h(s) ds = ∞.

Then all regular solutions of the equation (3) oscillate.

P r o o f. Suppose that x(t) is a nonoscillating solution of (3). Assume
that x(t) > 0 for t ≥ N , where N ≥ t0 is an integer. Integrate (3) from N
to t (t > N) and obtain

x(t) = x(N) +
t∫

N

h(s) ds−
t∫

N

p(s)(Ax)([s]) ds ≤ x(N) +
t∫

N

h(s) ds.

Hence lim inft→∞ x(t) < 0, which contradicts the assumption that x(t) is
eventually positive.

4. Some particular realizations of the operator A

Corollary 1. Let the following conditions hold :

1. (Ax)(t) = maxs∈M(t) x(s), where M(t) = [p1(t), q1(t)] is a com-
pact subset of [t0,∞) for t ≥ t0 and p1(t) < q1(t) for t ≥ t0, p1, q1 ∈
C([t0,∞); R), limt→∞ p1(t) = ∞.

2. Condition H1 and condition 2 of Theorem 1 are satisfied.
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Then all regular solutions x(t) of the equation

x′(t) + p(t) max
s∈M([t])

x(s) = 0

are nonoscillating.

P r o o f. It is immediately verified that condition 1 implies H3 and H4.
Condition H2 follows from Lemma 1 of [2]. Thus Corollary 1 follows from
Theorem 1.

Corollary 2. Let the following conditions hold :

1. (Ax)(t) = mins∈M(t) x(s), where M(t) is as in condition 1 of Corol-
lary 1.

2. Condition H1 and condition 2 of Theorem 1 are satisfied.

Then all regular solutions x(t) of the equation

(4) x′(t) + p(t) min
s∈M([t])

x(s) = 0

are nonoscillating.

P r o o f. It is immediately verified that condition 1 implies H3, H4 and
condition 3 of Theorem 2. Condition H2 follows from Lemma 1 of [2]. Thus
Corollary 2 follows from Theorem 2.

Corollary 3. Let the following conditions hold :

1. Condition 1 of Corollary 2 is satisfied.
2. Condition H1, condition 3 of Theorem 2 and condition 2 of Theorem 3

are satisfied.

Then each bounded solution of the equation (4) is nonoscillating.

P r o o f. Apply Corollary 2 and Theorem 3.

Corollary 4. Let the following conditions hold :

1. (Ax)(t) =
∫ t

t−a
k(t, s)x(s) ds, where a is a positive constant and k ∈

C([t0 + a)2; (0,∞)).
2. Condition 2 of Corollary 1 is satisfied.

Then all regular solutions x(t) of the equation

x′(t) + p(t)
[t]∫

[t]−a

k([t], s)x(s) ds = 0

are nonoscillating.

P r o o f. This follows from Theorem 1.



Oscillation and nonoscillation of solutions 377

Example 1. Consider the differential equation

(5) x′(t)− 1
a
et−[t]

[t]∫
[t]−a

e[t]−sx(s) ds = 0,

where a = const > 0 and t ≥ t0 > a + 2. Here the functions

p(t) = −1
a
et−[t], (Ax)(t) =

t∫
t−a

et−sx(s) ds

satisfy the conditions of Corollary 4. Thus all solutions of the equation (5)
are nonoscillating.

Corollary 5. Let the following conditions hold :

1. (Ax)(t) = f(x(g(t))), where g ∈ C([t1,∞); R) and t1 ≥ t0 is such that
g(t) ≥ t0 for t ≥ t1, limt→∞ g(t) = ∞, f ∈ C(R; R), uf(u) > 0, f(0) = 0.

2. Condition 2 of Corollary 1 is satisfied.

Then all regular solutions x(t) of the equation

x′(t) + p(t)f(x(g([t]))) = 0

are nonoscillating.

P r o o f. This follows from Theorem 1.

Example 2. Consider the differential equation

(6) x′(t)− et−3[t]x3([t]) = 0, t ≥ t0 > 0.

Here the functions f(u) = u3, p(t) = −et−3[t], and (Ax)(t) = x(t) satisfy
the conditions of Corollary 5. Thus all solutions of the equation (6) are
nonoscillating.

Corollary 6. Let the following conditions hold :

1. Condition 1 of Corollary 4 holds.
2. Conditions 2 and 3 of Theorem 6 hold.

Then all solutions of the equation

x′(t) + p(t)
[t]∫

[t]−a

k([t], s)x(s) ds = h(t)

are nonoscillating.

P r o o f. This follows from Theorem 6 since it is immediately verified
that the corresponding operator A satisfies conditions H2 and H4.
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