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WAVELET TRANSFORM FOR TIME-FREQUENCY
REPRESENTATION AND FILTRATION

OF DISCRETE SIGNALS

Abstract. A method to analyse and filter real-valued discrete signals of
finite duration s(n), n = 0, 1, . . . , N − 1, where N = 2p, p > 0, by means of
time-frequency representation is presented. This is achieved by defining an
invertible discrete transform representing a signal either in the time or in the
time-frequency domain, which is based on decomposition of a signal with
respect to a system of basic orthonormal discrete wavelet functions. Such
discrete wavelet functions are defined using the Meyer generating wavelet
spectrum and the classical discrete Fourier transform between the time and
the frequency domains.

1. Introduction. In the sequel we assume that the considered discrete
signals represent values of some complex-valued function of time f at N =
2p, p > 0, equidistant time points, i.e. s(n) = f(t0 +n∆t), n = 0, 1, . . . , N−
1, ∆t > 0. We use the symbol l2N to denote the Hilbert space of complex-
valued discrete signals s(n), n = 0, 1, . . . , N−1, with scalar product 〈u, v〉 =∑N−1

n=0 u(n)v(n). The discrete Fourier transform (DFT) of such a signal is
defined by

(1) s̃(ν) =
N−1∑
n=0

s(n) exp(−i2πνn/N), ν = −N/2+1,−N/2+2, . . . , N/2,

and the inverse transform is defined as

(2) s(n) =
1
N

N/2∑
ν=−N/2+1

s̃(ν) exp(i2πνn/N), n = 0, 1, . . . , N − 1.
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This transform is a good tool for analysis of a discrete signal as long as the
frequency characteristics of its successive temporal components are similar.
In that case it can be used to filter the stationary frequency components of
the signal [5]. However, as one can plainly see from the formula (1), changing
the signal value s(k) at one point with index k influences the whole Fourier
spectrum s̃(ν), ν = −N/2+1,−N/2+2, . . . , N/2, so we cannot expect that
the DFT will be an appropriate tool for analysis of transient signals whose
frequency characteristics vary with time.

The aim of this work is to propose a new method for spectro-temporal
analysis and filtering of finite duration signals having non-stationary fre-
quency characteristics, which is based on the concept of the discrete wavelet
transform of square-integrable functions of a real variable widely described
in the wavelet literature [1], [2], [4]. It should be remarked that in the litera-
ture one can find at least two [2], [3], [8] definitions of a wavelet transform for
discrete signals of finite duration, which, however, do not seem to be appro-
priate for time-frequency filtering of such signals. In [3] the dilation operator
of discrete functions appears to be inconvenient if the analyzed signal is to
be interpreted as a sampled continuously defined function of time. The sec-
ond definition [2], [8] gives no formulae for discrete wavelet functions used,
nor for their discrete Fourier transforms, so one has to examine the time
and frequency domain localization of the wavelets used in the transform.

According to Meyer’s results [6], [7] there exist wavelets g such that
the system of functions gjk(t) = 2j/2g(2jt − k), j, k = 0,±1,±2, . . . , is
an orthonormal base in the space L2(R), i.e. for f ∈ L2(R) we have the
representation

f =
∞∑

j=−∞

∞∑
k=−∞

cjkgjk, where cjk =
∞∫

−∞

f(t)gjk(t) dt, j, k = 0,±1,±2, . . .

The Fourier transform of the orthonormal functions gjk, j, k = 0,±1,±2, . . . ,
is given by the formula (see [1]) ĝjk(ω) = 2−j/2 exp(−i2πk2−jω)ĝ(2−jω),
where ĝ = F [g] is the Fourier transform of the wavelet g. After applying the
Parseval identity the formula for the coefficients cjk, j, k = 0,±1,±2, . . . ,
takes the form (see [1])

(3) cjk = 2−j/2F−1[f̂(ω)ĝ(2−jω)](2−jk).

If the wavelet g satisfies the condition ĝ(0) = 0, then we easily obtain

(4) f(t) = f̂(0) + F−1
[ ∞∑

j=−∞
2−j/2

∞∑
k=−∞

cjk exp(−i2πk2−jω)ĝ(2−jω)
]
(t).

Equations (3) and (4), respectively, define the direct and inverse discrete
wavelet transform in the case of functions of a real variable. The Meyer
wavelet g generating an orthonormal base is defined by its Fourier transform
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as follows (see [4], [6], [7]): ĝ(ω) = exp(−iπω)θ(ω), where θ : R → R is
continuous and satisfies for 0 < ε ≤ 1/6 the conditions:

(5)

θ(t) = θ(−t) for t ∈ R,

θ(t) = 0 for |t| 6∈ [1/2− ε, 1 + 2ε],
θ(t) = 1 for |t| ∈ [1/2 + ε, 1− 2ε],

θ2(t) + θ2(1− t) = 1 for |t| ∈ [1/2− ε, 1/2 + ε],
θ(2t) = θ(1− t) for |t| ∈ [1/2− ε, 1/2 + ε].

It should be noted that in that case the orthonormal functions gjk, j, k =
0,±1,±2, . . . , are real-valued because their Fourier transforms ĝjk have her-
mitian symmetry.

For the reasons which will become clear later let us now assume that
for 0 < ε ≤ 1/6 also a function θ′ : R → R is defined, which satisfies the
conditions:

(6)

θ′(t) = θ′(−t) for t ∈ R,

θ′(t) = 0 for |t| 6∈ [1/2− ε, 1],
θ′(t) = θ(t) for |t| ∈ [1/2− ε, 1− 2ε],
θ′(t) = 1 for |t| ∈ [1− 2ε, 1),

θ′(1) = θ′(1/2) = 1/
√

2.

2. Definition and properties of the discrete wavelet functions.
Since we are dealing with discrete signals of finite duration we abandon the
idea of obtaining an orthonormal system of wavelets in the space l2N by
translations and dilations of a generating function. Instead, we define them
in the discrete frequency domain, by discretizing modulated and dilated
versions of a generating spectrum.

Definition 1. Let N = 2p, p > 0, 0 < ε ≤ 1/6 and let real functions
θ and θ′ satisfy the conditions (5) and (6). Then the discrete functions
wjk, j = −p,−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, defined by their discrete
Fourier transforms

w̃jk(ν) = 2−j/2ĝj(2−jν/N) exp(−i2πk2−jν/N),
ν = −N/2 + 1,−N/2 + 2, . . . , N/2,

where ĝj(t) = ĝ(t) = θ(t) exp(−iπt) for j = −p,−p+1, . . . ,−2 and ĝ−1(t) =
θ′(t) exp(−iπt) for j = −1, will be referred to as the discrete wavelet func-
tions.

Discrete wavelet spectra for j = −p,−p+1, . . . ,−2 are thus obtained by
discretization of a continuous Meyer wavelet spectrum at frequency points
2−jν/N . It is important to note that while the original Meyer wavelets are



436 W. Popiński

non-periodic functions with unbounded supports our definition of discrete
wavelets leads to periodic functions of an integer variable (with period N),
due to the periodicity of the DFT. They strongly depart from discretizations
of the corresponding dilations and translations of Meyer continuous wavelet
for low values of j, i.e. close to −p (for j = −p the discrete wavelet w−p,0 is
simply a cosine function), and they approximate such discretizations better
for j close to −2.

In Lemma 1 we prove that the discrete wavelet functions are real-valued
and satisfy the condition

∑N−1
n=0 wjk(n) = 0 for j = −p,−p + 1, . . . ,−1 and

k = 0, 1, . . . , 2jN − 1.

Lemma 1. If N = 2p, p > 0 and β : R → R is a symmetric real function
with β(0) = 0, then the discrete functions rjk(n), j = −p,−p + 1, . . . ,−1,
k = 0, 1, . . . , 2jN − 1, n = 0, 1, . . . , N − 1, with discrete Fourier transforms
given by

r̃jk(ν) = β(ν) exp(−iπ2−jν/N) exp(−i2πk2−jν/N),
ν = −N/2 + 1,−N/2 + 2, . . . , N/2,

are real-valued and have zero mean values.

P r o o f. First we prove that the rjk are real-valued. From the definition
of r̃jk and from (2) it follows that

rjk(n) =
1
N

N/2∑
ν=−N/2+1

β(ν) exp(−i2π(k2−j + 2−j/2)ν/N) exp(i2πnν/N)

and since β is symmetric, β(0) = 0 and exp(iπ(n−k2−j − 2−j/2)) = ±1 for
j = −p,−p + 1, . . . ,−1 and k = 0, 1, . . . , 2jN − 1, we easily obtain

rjk(n) =
1
N

N/2−1∑
ν=1

2β(ν) cos(2π(n− k2−j − 2−j/2)ν/N)± 1
N

β(N/2).

It follows immediately that the values rjk(n), n = 0, 1, . . . , N − 1, are real
numbers, because β is real-valued.

Now we prove the second property of rjk. By (2) for fixed j, k we have

N

N−1∑
n=0

rjk(n) =
N−1∑
n=0

N/2∑
ν=−N/2+1

r̃jk(ν) exp(i2πnν/N)

=
N/2∑

ν=−N/2+1

r̃jk(ν)
N−1∑
n=0

exp(i2πnν/N)

and hence in view of the equality (1 − exp(i2πν))/(1 − exp(i2πν/N)) = 0
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for 0 < |ν| < N , we get
N−1∑
n=0

rjk(n) =
1
N

r̃jk(0)N = r̃jk(0) = 0,

since the condition β(0) = 0 implies r̃jk(0) = 0 for j = −p,−p + 1, . . . ,−1
and k = 0, 1, . . . , 2jN − 1, which proves the lemma.

In order to prove that the discrete wavelet functions w̃jk, j = −p,
−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, form an orthonormal system in the
space l2N we need the following three lemmas.

Lemma 2. For arbitrary complex-valued discrete signals u(n), v(n), n =
0, 1, . . . , N − 1,

(7) 〈u, v〉 =
N−1∑
n=0

u(n)v(n) =
1
N

N/2∑
ν=−N/2+1

ũ(ν)ṽ(ν) =
1
N
〈ũ, ṽ 〉.

P r o o f. Applying (2) we can write

u(n) =
1
N

N/2∑
ν=−N/2+1

ũ(ν) exp(i2πnν/N),

v(n) =
1
N

N/2∑
µ=−N/2+1

ṽ(µ) exp(i2πnµ/N)

for n = 0, 1, . . . , N − 1, and consequently
N−1∑
n=0

u(n)v(n) =
1

N2

N/2∑
ν=−N/2+1

N/2∑
µ=−N/2+1

ũ(ν)ṽ(µ)
N−1∑
n=0

exp(i2πn(ν − µ)/N).

In view of the equality
N−1∑
n=0

exp(i2πnk/N) =
1− exp(i2πk)

1− exp(i2πk/N)
= 0 for k 6= 0,±N,±2N, . . .

we get
N−1∑
n=0

exp(i2πn(ν − µ)/N) = Nδνµ,

where δνµ is the Kronecker delta, and in consequence

N−1∑
n=0

u(n)v(n) =
1
N

N/2∑
ν=−N/2+1

ũ(ν)ṽ(ν),

which establishes (7).
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Lemma 3. If N = 2p, p > 1 and for a given 0 < ε ≤ 1/6 the real
functions θ and θ′ satisfy the conditions (5) and (6), then the functions
Fj : [0, 2j+1N ] → R defined by

Fj(s) = θ(2−js/N)θ(2−j−1s/N) for j = −p,−p + 1, . . . ,−3,

F−2(s) = θ(22s/N)θ′(2s/N) for j = −2,

are symmetric with respect to the point sj = 2jN and Fj(2jN + s) = 0 for
2j+1Nε ≤ |s| ≤ 2jN .

P r o o f. We prove that the function r defined for 0 ≤ s ≤ 2 by r(s) =
θ(s)θ(s/2) is symmetric with respect to the point 1 and satisfies r(1 + s) =
r(1− s) = 0 for 2ε ≤ |s| ≤ 1; in view of the equality Fj(s) = r(2−js/N) this
implies the assertion for j = −p,−p + 1, . . . ,−3.

Since θ satisfies (5), necessarily r(1 + s) = r(1− s) = 0 for 2ε ≤ |s| ≤ 1,
and for 0 ≤ |s| ≤ 2ε the same conditions yield

r(1+s) = θ(2(1/2+s/2))θ(1−(1/2−s/2)) = θ(1/2−s/2)θ(1−s) = r(1−s).

The proof in the case j = −2 is analogous because (5) and (6) imply
that r(s) = θ(s)θ(s/2) = θ(s)θ′(s/2) for 0 ≤ s ≤ 2 since 0 < ε ≤ 1/6.

Lemma 4. If N = 2p, p > 2 and integers j and ∆k satisfy 2−p ≤ j ≤ −1
and 0 ≤ |∆k| < 2jN , then for ν0j = 2jN/2 and ν′0j = 2jN we have

ν′
0j−1∑

ν=ν0j+1

cos(2π∆k2−jν/N) = 0 for ∆k = 2l + 1,

1 +
ν′
0j−1∑

ν=ν0j+1

cos(2π∆k2−jν/N) = 2j−1Nδ0,∆k for ∆k = 2l.

P r o o f. In order to prove the equality for ∆k = 2l + 1 observe that
ν′
0j−1∑

ν=ν0j+1

exp(i2π∆k2−jν/N)

= exp(i2π∆k2−j(ν0j + 1)/N)
ν′
0j−ν0j−2∑

ν=0

exp(i2π∆k2−jν/N)

= exp(i2π∆k2−jν0j/N) exp(i2π∆k2−j/N)

×
1− exp(i2π∆k2−j(ν′0j − ν0j − 1)/N)

1− exp(i2π∆k2−j/N)

so taking into account the equalities 2−jν0j/N = 1/2, 2−j(ν′0j − ν0j)/N =
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1/2 and exp(iπ(2l + 1)) = −1 we obtain
ν′
0j−1∑

ν=ν0j+1

exp(i2π∆k2−jν/N) =
exp(i2π∆k2−j/N) + 1
exp(i2π∆k2−j/N)− 1

=
exp(iπ∆k2−j/N) + exp(−iπ∆k2−j/N)
exp(iπ∆k2−j/N)− exp(−iπ∆k2−j/N)

=
2 cos(π∆k2−j/N)
2i sin(π∆k2−j/N)

= −i cot(π∆k2−j/N).

The last equality implies that the real part of the computed sum equals zero,
which proves the assertion for ∆k = 2l + 1.

Now assume that ∆k = 2l, l 6= 0. Since 2−jν0j/N = 1/2 and exp(i2πl) =
1, we have

1 +
ν′
0j−1∑

ν=ν0j+1

exp(i2π∆k2−jν/N)

= 1 + exp(i2π∆k2−jν0j/N)
ν′
0j−ν0j−1∑

ν=1

exp(i2π∆k2−jν/N)

=
ν′
0j−ν0j−1∑

ν=0

exp(i2π∆k2−jν/N)

=
1− exp(i2π∆k2−j(ν′0j − ν0j)/N)

1− exp(i2π∆k2−j/N)
= 0

because 2−j(ν′0j − ν0j)/N = 1/2. For ∆k = 0 we have

1 +
ν′
0j−1∑

ν=ν0j+1

exp(i2π∆k2−jν/N) = ν′0j − ν0j = N2j/2,

which completes the proof.

In Theorem 1 we prove that the discrete wavelet functions form an or-
thonormal system in l2N .

Theorem 1. Let N = 2p, p > 0. Then the discrete wavelet functions
wjk, j = −p,−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, with discrete Fourier
transforms given in Definition 1, form an orthonormal system in the Hilbert
space l2N , i.e.

〈wjk, wj′k′〉 =
N−1∑
n=0

wjk(n)wj′k′(n) = δjj′δkk′ .
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P r o o f. Since the wjk are real-valued, by Lemma 2 we have

〈wjk, wj′k′〉 =
N−1∑
n=0

wjk(n)wj′k′(n) =
1
N

N/2∑
ν=−N/2+1

w̃jk(ν)w̃j′k′(ν)

and in view of Definition 1 we obtain for j, j′ = −p,−p + 1, . . . ,−1, k =
0, 1, . . . , 2jN − 1 and k′ = 0, 1, . . . , 2j′

N − 1,

(8) 〈wjk, wj′k′〉

=
2−(j+j′)/2

N

N/2∑
ν=−N/2+1

θj(2−jν/N)θj′(2−j′
ν/N)Φjj′kk′(ν),

where θj = θ for j = −p,−p + 1, . . . ,−2, θ−1 = θ′ and

Φjj′kk′(ν) = exp(−iπ2−jν/N) exp(iπ2−j′
ν/N)

× exp(−i2πk2−jν/N) exp(i2πk′2−j′
ν/N).

First we show that 〈wjk, wj′k′〉 = 0 for j 6= j′. Observe that (5)
and (6) imply that the symmetric functions θ and θ′ are for 0 < ε ≤
1/6 different from zero only for 1/3 < |t| < 4/3. We can of course as-
sume that j′ = j + ∆j, where ∆j > 0. The values of θj(2−jν/N) are
different from zero only for 2jN/3 < |ν| < 2j4N/3, and the values of
θj+∆j(2−j−∆jν/N) only for 2∆j2jN/3 < |ν| < 2∆j2j4N/3; consequently,
for ∆j ≥ 2 we have θj(2−jν/N)θj+∆j(2−j−∆jν/N) = 0 for ν = −N/2 +
1,−N/2 + 2, . . . , N/2 and this clearly forces 〈wjk, wj+∆j,k′〉 = 0 for ∆j ≥
2.

Now consider the case j′ = j + 1. The function Fj(t) = θj(2−jt/N)
× θj+1(2−j−1t/N) is symmetric and real-valued and the function
Im Φj,j+1,k,k′(t) = sin(π(k′−2k−1/2)2−jt/N) is antisymmetric. The equali-
ties Im Φj,j+1,k,k′(0) = 0, Im Φj,j+1,k,k′(N/2) = sin(π(k′−2k−1/2)2−j−1) =
0 for j = −p,−p+1, . . . ,−2, k = 0, 1, . . . , 2jN−1 and k′ = 0, 1, . . . , 2j+1N−
1 now clearly imply that the imaginary part of the considered scalar product
〈wjk, wj+1,k′〉 is zero. Furthermore, since the function Re Φj,j+1,k,k′(t) =
cos(π(k′ − 2k − 1/2)2−jt/N) is symmetric and Fj(N/2) = θj(2−j/2)θj+1

× (2−j−1/2) = 0 and Fj(0) = 0 for j = −p,−p + 1, . . . ,−2, from the last
formula for 〈wjk, wj+1,k′〉 we easily obtain

(9) 〈wjk, wj+1,k′〉 =
2−(2j+1)/2

N

N/2−1∑
ν=1

2Fj(ν) Re Φj,j+1,k,k′(ν)

for j = −p,−p+1, . . . ,−2, k = 0, 1, . . . , 2jN−1 and k′ = 0, 1 . . . , 2j+1N−1.
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By Lemma 3 the real function Fj(2jN +s) defined for 0 ≤ |s| ≤ 2jN , j =
−p,−p + 1, . . . ,−2, is symmetric and equal to zero for 2jN/3 ≤ |s| ≤ 2jN .
The function Re Φj,j+1,k,k′(2jN + s) is antisymmetric for the same values
of s and, what is more, for j = −p,−p + 1, . . . ,−2, k = 0, 1, . . . , 2jN − 1
and k′ = 0, 1, . . . , 2j+1N − 1 we have Re Φj,j+1,k,k′(2jN) = cos(π(k′ − 2k −
1/2)) = 0. The inequalities 2jN + 2jN/3 = 2j4N/3 ≤ N/3 < N/2 and
2jN − 2jN/3 = 2j2N/3 ≥ 2/3 > 0 for j = −p,−p + 1, . . . ,−2, where
N = 2p, now yield

〈wjk, wj+1,k′〉

=
2−(2j+1)/2

N

∑
−2jN/3<µ<2jN/3

2Fj(2jN + µ) Re Φj,j+1,k,k′(2jN + µ) = 0.

We still have to consider the case of j = −p,−p + 1, . . . ,−1 and
k, k′ = 0, 1, . . . , 2jN − 1. From (8) we obtain

〈wjk, wjk′〉 =
2−j

N

N/2∑
ν=−N/2+1

θ2
j (2−jν/N)Φjjkk′(ν),

where Φjjkk′(ν) = exp(i2π∆k2−jν/N), ∆k = k′ − k, θj = θ for j = −p,
−p+1, . . . ,−2 and θ−1 = θ′. Since θ2

j (2−jt/N) is symmetric and real-valued
and sin(π∆k2−j) = 0 and θj(0) = 0 for j = −p,−p + 1, . . . ,−1 it follows
that

〈wjk, wjk′〉 =
2−j+1

N

N/2−1∑
ν=1

θ2
j (2−jν/N) cos(2π∆k2−jν/N)

+
2−j

N
θ2

j (2−j/2) cos(π∆k2−j)

for j = −p,−p + 1, . . . ,−1 and k, k′ = 0, 1, . . . , 2jN − 1.
Remembering that N = 2p we see that for j = −p the index k can only

have one value k = 2−pN−1 = 0 and then necessarily ∆k = 0. Further, since
θ(t) = θ′(t) = 0 for t > 4/3 and θ(1) = θ(1/2) = θ′(1/2) = θ′(1) = 1/

√
2,

we easily obtain 〈w−p,0, w−p,0〉 = 2θ2(1) = 1.
In the case j = −p+1 we have 0 ≤ k ≤ 2−p+1N−1 = 1 and consequently

∆k = 0, 1, and it follows from the same formula for 〈wjk, wjk′〉 that

〈w−p+1,k, w−p+1,k′〉 = θ2(1/2) cos(2π∆k/2) + θ2(1) cos(2π∆k) = δ0,∆k.

From now on we can assume that p > 2 because we have already con-
sidered the cases p = 1, 2. For j = −p + 2,−p + 3, . . . ,−2 and k, k′ =
0, 1, . . . , 2jN − 1, we have θj = θ and we can write
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〈wjk, wjk′〉 =
2−j+1

N
(S1 + S2 + S3),

where

S1 =
ν2j∑

ν=ν1j

θ2(2−jν/N) cos(2π∆k2−jν/N),

S2 =
ν3j−1∑

ν=ν2j+1

θ2(2−jν/N) cos(2π∆k2−jν/N),

S3 =
ν4j∑

ν=ν3j

θ2(2−jν/N) cos(2π∆k2−jν/N),

and the natural numbers ν1j , ν2j , ν3j , ν4j satisfy

0 ≤ 2−j(ν1j − 1)/N < 1/2− ε ≤ 2−jν1j/N,

2−jν2j/N ≤ 1/2 + ε < 2−j(ν2j + 1)/N,

2−j(ν3j − 1)/N < 1− 2ε ≤ 2−jν3j/N,

2−jν4j/N ≤ 1 + 2ε < 2−j(ν4j + 1)/N.

Observe that ν4j < N/2 since (1+2ε)2jN < 2j4N/3 ≤ N/3 for 0 < ε ≤ 1/6
and j = −p + 2,−p + 3, . . . ,−2, and then we can also choose natural num-
bers ν0j and ν′0j such that 2−jν0j/N = 1/2 and 2−jν′0j/N = 1. Now,
since θ satisfies (5) we have θ2(t) + θ2(1 − t) = 1, θ(2t) = θ(1 − t) for
1/2 − ε ≤ t ≤ 1/2 + ε and θ(t) = 1 for 1/2 + ε ≤ t ≤ 1 − 2ε, and we can
write

S1 = 1/2 +
ν2j∑

ν=ν0j+1

cos(2π∆k2−jν/N) for ∆k = 2l,

S1 = − 1/2 +
ν2j∑

ν=ν0j+1

cos(2π∆k2−jν/N) for ∆k = 2l + 1,

S2 =
ν3j−1∑

ν=ν2j+1

cos(2π∆k2−jν/N),

S3 = 1/2 +
ν′
0j−1∑

ν=ν3j

cos(2π∆k2−jν/N).

Summing up we obtain

S1 + S2 + S3 = 1 +
ν′
0j−1∑

ν=ν0j+1

cos(2π∆k2−jν/N) for ∆k = 2l,
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S1 + S2 + S3 =
ν′
0j−1∑

ν=ν0j+1

cos(2π∆k2−jν/N) for ∆k = 2l + 1

and further since ∆k = k′ − k satisfies 0 ≤ |∆k| < 2jN we have, by
Lemma 4,

〈wjk, wjk′〉 =
2−j+1

N
(S1 + S2 + S3) = δ0,∆k

for j = −p + 2,−p + 3, . . . ,−2 and k, k′ = 0, 1, . . . , 2jN − 1.
In the case j = −1 we have θ−1 = θ′ and similarly to the previous case

we write

〈w−1,k, w−1,k′〉 =
4
N

(S′1 + S′2)

for k, k′ = 0, 1, . . . , N/2− 1, where

S′1 =
ν′
2∑

ν=ν′
1

θ′2(2ν/N) cos(2π∆k2ν/N),

S′2 =
ν′
3∑

ν=ν′
2+1

θ′2(2ν/N) cos(2π∆k2ν/N),

and the natural numbers ν′1, ν
′
2, ν

′
3 satisfy

0 ≤ 2(ν′1 − 1)/N < 1/2− ε ≤ 2ν′1/N,

2ν′2/N ≤ 1/2 + ε < 2(ν′2 + 1)/N, 2ν′3/N = 1.

We can also choose natural numbers ν0 and ν′0 such that 2ν0/N = 1/2 and
2ν′0/N = 1. The conditions (5) and (6) imply that θ′2(t) + θ′2(1− t) = 1 for
1/2− ε ≤ t ≤ 1/2 + ε, θ′(t) = 1 for 1/2 + ε ≤ t < 1 and also θ′2(1) = 1/2 so
the sums S′1, S

′
2 can be rewritten in the form

S′1 = 1/2 +
ν′
2∑

ν=ν0+1

cos(2π∆k2ν/N) for ∆k = 2l,

S′1 = − 1/2 +
ν′
2∑

ν=ν0+1

cos(2π∆k2ν/N) for ∆k = 2l + 1,

S′2 = 1/2 +
ν′
0−1∑

ν=ν′
2+1

cos(2π∆k2ν/N).
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Summing up we obtain

S′1 + S′2 = 1 +
ν′
0−1∑

ν=ν0+1

cos(2π∆k2ν/N) for ∆k = 2l,

S′1 + S′2 =
ν′
0−1∑

ν=ν0+1

cos(2π∆k2ν/N) for ∆k = 2l + 1

and further since ∆k = k′−k satisfies 0 ≤ |∆k| < N/2 we have, by Lemma 4,

〈w−1,k, w−1,k′〉 =
4
N

(S′1 + S′2) = δ0,∆k

for k, k′ = 0, 1, . . . , N/2− 1. This completes the proof of Theorem 1.

The last part of the above proof clarifies why we have to use θ′ instead
of θ in the definition of the discrete wavelet functions for j = −1.

The next lemma concerns the representation of discrete signals from
the space l2N with the use of the orthonormal system of discrete wavelet
functions.

Lemma 5. Any complex-valued discrete signal s(n), n = 0, 1, . . . , N − 1,
where N = 2p, p > 0, can be represented in the form

(10) s(n) = s00 +
−1∑

j=−p

2jN−1∑
k=0

sjkwjk(n), n = 0, 1, . . . , N − 1,

where wjk(n), j = −p,−p+1, . . . ,−1, k = 0, 1, . . . , 2jN−1, are the discrete
wavelet functions and the coefficients sjk are uniquely determined by the
formulae

s00 =
1
N

N−1∑
n=0

s(n),

sjk =
N−1∑
n=0

s(n)wjk(n) =
N−1∑
n=0

s(n)wjk(n),

for j = −p,−p+1, . . . ,−1 and k = 0, 1, . . . , 2jN−1. Moreover , for arbitrary
complex-valued signals u, v ∈ l2N ,

(11) 〈u, v〉 =
N−1∑
n=0

u(n)v(n) = Nu00v00 +
−1∑

j=−p

2jN−1∑
k=0

ujkvjk.

P r o o f. If we add to the set of discrete wavelet functions wjk, j =
−p,−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, the constant function w00(n) =
1/
√

N , n = 0, 1, . . . , N − 1, we obtain an orthonormal system in l2N , since
according to Theorem 1 the discrete wavelet functions form an orthonormal
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system in that space and having zero mean values they are also orthogonal
to the constant function w00, which was proved in Lemma 1. This extended
orthonormal system consists of N/2 + N/4 + . . . + N/N + 1 = N linearly
independent elements in the N -dimensional space l2N and since the discrete
wavelet functions wjk, j = −p,−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, are
real-valued, this immediately implies the validity of the decomposition (10)
together with the formulae for the coefficients sjk. The formula (11) follows
from (10) and from orthonormality of the extended system.

The coefficients sjk, j = −p,−p+1, . . . ,−1, k = 0, 1, . . . , 2jN−1, occur-
ring in (10) can be obtained without computing the values of the discrete
wavelet functions since Lemma 2 yields a formula analogous to (3):

(12) sjk = 〈s, wjk〉 =
2−j/2

N

N/2∑
ν=−N/2+1

s̃(ν)ĝj(2
−jν/N) exp(i2πk2−jν/N).

If the coefficients s00, sjk, j = −p,−p + 1, . . . ,−1, k = 0, 1, . . . , 2jN − 1,
are known, then the values of the signal s(n), n = 0, 1, . . . , N − 1, can be
obtained using the DFT according to the formula

(13) s(n) = s00 +
1
N

N/2∑
ν=−N/2+1

exp(i2πnν/N)
−1∑

j=−p

2jN−1∑
k=0

sjkw̃jk(ν),

which follows from (10) and from the definition of discrete wavelet functions.
The above formula is analogous to the formula (4) for functions of a real
variable.

The formulae (12) and (13) define the direct and inverse discrete wavelet
transform (DWT) of finite duration discrete signals s(n), n = 0, 1, . . . , N−1,
where N = 2p, p > 0.

3. Time-frequency filtration of discrete signals. Let us now make
two remarks about the discrete wavelet functions defined in the previous
section. If we define translation operators Tm, m = 0, 1, . . . , N − 1, for a
discrete signal s(n), n = 0, 1, . . . , N − 1, as in [3], i.e. (Tms)(n) = s(n −m
(mod N)), n = 0, 1, . . . , N − 1, then as one can easily verify [3] for v = Tms
we have ṽ(ν) = exp(−i2πmν/N)s̃(ν) for ν = −N/2+1,−N/2+2, . . . , N/2.
Thus for fixed j the discrete wavelet functions wjk, k = 0, 1, . . . , 2jN−1, can
be treated as translations Tmk

, mk = k2−j , of the discrete functions wj0,
which become more and more localized in time as j grows. The DWT is thus
sensitive to time-shift of the signal being analyzed. A translated version of
a signal leads to a different time distribution of the wavelet coefficients in
the spectro-temporal plane. Moreover, as already remarked in the proof of
Theorem 1, the supports of w̃jk and w̃j′k′ are disjoint if |j − j′| ≥ 2. These
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supports become more and more localized in the frequency domain as j
decreases. In Lemma 6 we prove that the supports of w̃jk, j = −p,−p +
1, . . . ,−1, k = 0, 1, . . . , 2jN − 1, cover the discrete frequency spectrum ν =
−N/2 + 1,−N/2 + 2, . . . , N/2.

Lemma 6. For each ν satisfying −N/2 + 1 ≤ ν ≤ N/2, where N = 2p,
p > 0, there exists an integer j such that −p ≤ j ≤ −1 and ĝj(2−jν/N) 6= 0.

P r o o f. According to Definition 1, ĝj(t) = θ(t) exp(−iπt) for j = −p,
−p + 1, . . . ,−2 and ĝ−1(t) = θ′(t) exp(−iπt). From (5), (6) and ε > 0 it
follows that θ(t) > 0 and θ′(t) > 0 for 1/2 ≤ |t| ≤ 1. Consequently,
ĝj(2−jν/N), j = −p,−p + 1, . . . ,−1, is different from zero for 2jN/2 ≤
|ν|≤2jN . Since

⋃−1
j=−p[2

jN/2, 2jN ]=[1/2, N/2], this proves the lemma.

The wavelet coefficients sjk of a discrete signal s are computed as scalar
products in the time domain: sjk = 〈s, wjk〉, or equivalently as scaled scalar
products in the frequency domain: 〈s̃, w̃jk〉 = N〈s, wjk〉. Thus in view of
the above indicated properties of wjk those coefficients contain information
simultaneously about the time and frequency components of the analyzed
signal. The information about the signal contained in its N time samples
is transformed into N wavelet coefficients, which describe the signal in the
time-frequency domain. This suggests that it is possible to use the above
defined DWT to perform time-frequency filtering of discrete signals. This
can be done by multiplying the wavelet coefficients sjk of the signal by real
coefficients ajk and then applying the inverse DWT to the set of products
sjkajk to obtain a filtered signal s′. The coefficients ajk can be set to zero for
wjk concentrated outside a specific time-frequency region, and left without
change for functions concentrated within this region. The real coefficients
ajk with values 0 or 1 define the time-frequency transfer function of the
filter, analogous to standard transfer functions of digital filters applied in
the frequency domain [5].

It should be remarked that this filtering technique is defined by means
of multiplication in the time-frequency domain and has no equivalent in the
time domain like convolution of signals in the case of filtering based on the
DFT. However, the same precautions as in the case of filtering using the DFT
should be taken when using the DWT. For instance, in order to avoid edge
effects, signals should be tapered by a time window [5], before transforming
them by the DWT. Although the described DWT is defined for complex-
valued discrete signals it is in general appropriate only for analysis of real-
valued signals. This can be seen if we examine the effect of transforming
the signal which is the sum of prograde and retrograde oscillations s(n) =
a exp(i2πpn) + b exp(−i2πpn), n = 0, 1, . . . , N − 1, where a 6= b, p > 0 are
real numbers. Analyzing the wavelet coefficients sjk of such a signal we
can detect the oscillation s(n) = (a + b) cos(2πpn) + i(a− b) sin(2πpn), n =
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0, 1, . . . , N −1, but because of hermitian symmetry of the discrete functions
w̃jk the DWT does not reveal that there are two frequency components in
the signal with different amplitudes and periods, which would be detected
by the DFT.

3. Conclusions. In order to perform the presented DWT a particular
function θ satisfying the conditions (5) must be chosen. It is enough to
define a real function β on the interval [−ε, ε] such that

β(t) =
{

γ(t) for 0 ≤ t ≤ ε,√
1− γ2(−t)) for −ε ≤ t ≤ 0,

where γ can be a polynomial, trigonometric or exponential function satis-
fying γ(0) = 1/

√
2 to assure continuity of β. The function θ may be con-

structed by symmetry, translation and dilation of β. For instance, γ(t) =
1− exp(αε2/(t− ε)2) with α = ln(1− 1/

√
2) can be used. The choice of γ

slightly influences the form of the discrete wavelets.
The discrete values of θ involved in (12) and (13) can be tabulated.

It suffices to compute the values needed by the highest frequency discrete
wavelet spectrum (j = −1) with step 2/N . Since θ(−t) = θ(t) and θ(t) =
0 for t 6∈ [1/2 − ε, 1 + 2ε], only the [(1/2 + 3ε)N/2] values θ(2m/N) for
(1/2−ε)N/2 < m < (1+2ε)N/2 must be computed. Then for a given j the
discrete values θ(2−jν/N), ν = 0, 1, . . . , N/2, involved in (12) and (13) can
be picked in a vector storing the values θ(2m/N), m = 0, 1, . . . , [(1+2ε)N/2],
with step 2−j−1. It is worth remarking that since the number of signal values
must satisfy the condition N = 2p, p > 0, it is possible to implement fast
DWT computer programs basing on formulae (12), (13) and widely applied
FFT algorithms [9].
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