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MATHEMATICAL MODEL OF MIXING IN RUMEN

Abstract. A mathematical model of mixing food in rumen is presented.
The model is based on the idea of the Baker Transformation, but exhibits
some different phenomena: the transformation does not mix points at all
in some parts of the phase space (and under some conditions mixes them
strongly in other parts), as observed in ruminant animals.

1. Introduction. Some years ago in the Department of Animal Physi-
ology of the Warsaw Agricultural University, the following phenomenon was
observed in the digestive process of sheep (for these type of experiments
see [3]). Each sheep was given two types of food, which we will call A and
B. Every 5 minutes a sample of food was taken from a fixed location in
the rumen. After 1 hour the samples were found to be composed almost
entirely of either component A or component B; that is, the two substances
practically did not mix.

There arises the following question: what is the mixing mechanism in
the rumen?

The aim of this paper is to present a mathematical model of the mixing
process which could explain the phenomenon in question.

2. Rumen’s activity. The rumen (see Figure 2.1) is the first of four
stomachs in the body of ruminant animals. In principle, its functions are
similar for all ruminants (cattle, sheep, goats).

Food in the rumen floats on the surface of a liquid. Different sections of
the rumen contract almost periodically as shown in Figure 2.2.

During contraction, the volume of the section may diminish by half,
and the pressure inside increases significantly. One distinguishes two phases
in the rumen’s activity. In the first phase the food is mainly mixed, in
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Fig. 2.1. (a) In the ruminant animal the true stomach (abomasum) is preceded by several
other compartments. The first and largest of these, the rumen, serves as a giant fermen-
tation vat that aids in cellulose digestion. (b) The rumen seen from the left: 1. Saccus
dorsalis ruminis, the upper rumen; 2. Saccus ventralis ruminis, the lower rumen.
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Fig. 2.2. The scheme of motions of the rumen. The dotted parts are squeezed.

the second it is simultaneously mixed and transported to other parts of
the digestive system. In this paper we concentrate on the first phase only.
Simplifying the process we may divide the first phase into two parts: in
the first part—produced by a horizontal force—the rumen becomes longer
vertically and narrower horizontally (stages A and B in Figure 2.2). In the
second part—produced by a vertical force—the rumen returns to its initial
position (stages C and D in Figure 2.2).

One full cycle of the first stage lasts less than 1 minute. Assuming one
cycle per minute we are considering 60 iterations of the same action per
hour. In the theory of dynamical systems for mixing processes, 60 iterations
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normally bring the system to its asymptotic state, which means a uniform
distribution of matter in the entire phase space.

With a rough approximation the rumen motions can be considered two-
dimensional, since the acting forces are basically vertical and horizontal.
So we propose to take as the phase space corresponding to the rumen a
two-dimensional domain.

3. Construction of the model. As a model of the mixing process in
the rumen we propose the following dynamical system.

Let Q = [0, 1] × [0, 1] be the phase space (corresponding to the rumen).
We define a map T0 : Q → Q as follows. Suppose that λ ∈ (0, 2] is a given
number, let Q′

0 = [0, λ−1] × [0, 1], Q′′

0 = (λ−1, 1) × [0, 1].
For p = (x, y) ∈ Q′

0 (i.e. x ≤ λ−1) we set

(3.1) T0(p) =

(

λ 0
0 λ−1

)(

x
y

)

=

(

λx
λ−1y

)

∈ Q.

If p ∈ Q′′

0 (i.e. x > λ−1), then

(

λx
λ−1y

)

does not belong to Q.

To define T0 in this case we proceed as follows: we rotate the rectangle

Q′′ = [1, λ] × [0, λ−1] (which is the

(

λ 0
0 λ−1

)

image of Q′′

0 ) by 90◦ in the

counterclockwise direction about the point (1, 0) (the resulting rectangle is
denoted by Q′′′) and we translate Q′′′ by the vector [−(1 − λ−1), 0], so its
lower left vertex is (0, 0); we denote the obtained rectangle by QIV. Then

we apply the map

(

λ 0
0 λ−1

)

to QIV: let

QV =

(

λ 0
0 λ−1

)

QIV = [0, 1] × [0, 1 − λ−1].

Finally, let QVI be QV shifted by [0, λ−1]. The rectangles QVI and Q′

0 form
the whole phase space Q. The geometrical construction of T0 is described
in Figure 3.1.

Combining the above operations we eventually find that

(3.2) T0(p) =

(

1 − y
x

)

for p ∈ Q′′

0 (i.e. x > λ−1).

The dynamical system (Q,T0) describes the action of the rumen. How-
ever, it is not very convenient to analyze, so we define another dynamical
system as follows.

Let R = [0, 1] × [0, λ−1]. It is easy to see that for each p ∈ Q one of
the points T0(p), T 2

0 (p), T 3
0 (p) belongs to R. Let i = i(p), i ∈ {1, 2, 3}, be

the smallest integer such that T i(p) ∈ R. Now we define a derived map
T : R → R by T (p) = T i(p) for i = i(p), p ∈ R.
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Fig. 3.1. The scheme of construction of the map T0

The map T can be represented in the following form:

(3.3) T (x, y)

=







(λx, λ−1y) if x ≤ λ−1 (i(p) = 1),
(λ(1 − y), λ−1x) if x > λ−1 and y > 1 − λ−1 (i(p) = 2),
(λ(1 − x), λ−1(1 − y)) if x > λ−1 and y ≤ 1 − λ−1 (i(p) = 3).

Define

A = {p = (x, y) ∈ R : x ≤ λ−1},
B = {p = (x, y) ∈ R : x > λ−1, y > 1 − λ−1},
C = {p = (x, y) ∈ R : x > λ−1, y ≤ 1 − λ−1}.

For convenience we set

T1 = T |A, T2 = T |B .

4. Analysis of the model. Now we will study the dynamical system
(R,T ).

Theorem 4.1. Suppose that λ satisfies the following condition:

(4.1)
k+2
√

2 < λ <
k+1
√

2

for some natural number k ≥ 1. Then there exists a union of rectangles

U =
⋃4k

i=1 Qi such that T 4k|Qi
= id. Therefore, the map T does not mix

points in Q.

P r o o f. The image T (B) is the rectangle [λ − 1, 1] × [1/λ2, 1/λ]. Let r
be the largest natural number such that 1/λr > λ − 1, and set

Bi = [1/λi+1, 1/λi] × [1/λ2, 1/λ], i ∈ {1, . . . , r − 1}.
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Fig. 4.1. The location of the sets Bk and Dk

Since λ <
√

2 < (1 +
√

5)/2, it follows that 1− 1/λ < 1/λ2 and we have the
situation of Figure 4.1.

Define Di = T−1(Bi) = T−1
2 (Bi). Then Dk = (1/λ, 1)× (1−1/λk+1, 1−

1/λk+2).

We will show that the set P = T k
1 (Bk) ∩ Dk is not empty. Indeed, the

set T k
1 (Bk) is the rectangle (1/λ, 1) × (1/λk+2, 1/λk+1). Since λ > k+2

√
2,

we have λk+2 − λ − 1 > 0, which implies

1

λk+2
< 1 − 1

λk+1
<

1

λk+1
< 1 − 1

λk+2
.

Therefore the rectangles Dk and T k
1 (Bk) intersect as shown in Figure 4.2.

Fig. 4.2. The mutual position of the sets Dk and T k1 (Bk)
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Set S = T k
1 ◦ T2. Since the set P is not empty, S2(p) makes sense for

p = (x, y) ∈ P and

S2(x, y) = T k
1 ◦ T2 ◦ T k

1 ◦ T2(x, y) = T k
1 ◦ T2 ◦ T k

1

(

λ(1 − y),
1

λ
x

)

(4.2)

= T k
1 ◦ T2

(

λk+1(1 − y),
1

λk+1
x

)

= T k
1

(

λ

(

1 − 1

λk+1
x

)

, λk(1 − y)

)

= (λk+1 − x, 1 − y).

This means that S2 is the symmetry with respect to the point q =
(λk+1/2, 1/2). In view of assumption (4.1) the following inequalities hold:

1

λ
<

λk+1

2
< 1, 1 − 1

λk+1
<

1

2
<

1

λk+1
.

Therefore the point q belongs to the rectangle P . Thus the set Q =
P ∩ S−2(P ) is a non-empty rectangle and S4(p) makes sense for p ∈ Q.
Obviously

S4(p) = p for p ∈ Q.

Therefore

T 4(k+1)|T i(Q) = S4|T i(Q) = id

for i ∈ {0, . . . , 4(k + 1)}. The set U =
⋃4k−3

i=0 T i(Q) fulfils the requirement
of the Theorem.

The general description of the dynamics of (R,T ) is as follows. For a
given n we can split the space R into a finite union of rectangles Pj such
that T n restricted to Pj is of the following form: either

T n(p) = (An
j − λ−knx,Bn

j − λkny)

or

T n(p) = (An
j − λ−kny,Bn

j − λknx),

where An
j , Bn

j are some numbers associated with the rectangle Pj , and xn

is an integer depending on n only. The numbers kn may oscillate between
−∞ and +∞. For some points p and some iterations n the number kn may
be equal to 0, in spite of the fact that p does not belong to the set U . On
some parts of R we may observe a random behaviour of T n. Now we will
study one such case.

Assume that λ satisfies the following equation:

(4.3) λr+2 − λr+1 − 1 = 0

for some natural r. The equation (4.3) has exactly one root in the interval
(1, 2).
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This equation implies the following equalities:

(4.4) λ − 1 =
1

λr+1
, 1 − 1

λ
=

1

λr+2
.

Set

E =

[(

0,
1

λr+1

)

×
(

0,
1

λ

)]

∪
r+1
⋃

i=1

[(

1

λr−i
,

1

λr−i+1

)

×
(

0,
1

λi+1

)]

.

In view of (4.4) the set E is T -invariant. We will show that the dynamical
system (E,T ) is an ergodic Markov chain.

Denote by E0 the set (0, 1/λr+1) × (0, 1/λ) and let

Ei =

(

1

λr−i
,

1

λr−i+1

)

×
(

0,
1

λi+1

)

, i ∈ {1, . . . , r + 1}.

To any p ∈ E we assign a sequence in = in(p), n ∈ Z, in ∈ {0, 1, . . . , r + 1},
in the following way: in is the index of the set Ei to which T n(p) belongs.
We obtain a space of sequences

X = [(xn)+∞

−∞
, xn ∈ {0, 1, . . . , r + 1}] ⊂

+∞
∏

k=−∞

{0, 1, . . . , r + 1}k

on which T acts as the left shift σ.

Proposition 4.2. The dynamical system (X,σ) is an ergodic Markov

chain.

P r o o f. Let µ(A) be the normalized Lebesgue measure of a set A⊂E,
that is, µ(A) = |A|/|E|. Given n, we have to show that

(4.5) µ{xn = in | xn−1 = in−1, . . . , x1 = i1, x0 = i0}
= µ{xn = in | xn−1 = in−1} = pin−1,in

for any sequence i0, . . . , in ∈ {0, 1, . . . , r + 1}
Note that the set A = {x0 = i0, x1 = i1, . . . , xn−1 = in−1} is a rectangle

of maximal in E (i.e. its height is 1/λi0+1) and T n−1(A) is a rectangle of
maximal width (i.e. its base is (1/λr−i0 , 1/λr−i0+1)). Let A1 be the set
{xi0 = i0, xi1 = i1, . . . , xn−1 = in−1, xn = in}. If in−1 = 1, . . . , r + 1, then
µ{A1 |A} = 1 if in = in−1 + 1 (mod (r + 1)), and µ(A1 |A) = 0 otherwise.
If in−1 = 0, then since T n−1(A) = (0, 1/λr+1)×I, where I is an interval, we
have µ{A1 |A} = 1/λ if in = 0, and µ{A1 |A} = 1−1/λ if in = 1, otherwise
µ{A1 |FA} = 0. So the dynamical system (X,σ) is a Markov chain with
transition matrix
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M =















λ−1 1 − λ−1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0
...

...
. . . 1

1 0 · · · · · · 0















All the entries of the matrix M2(r+1) are positive, so the Markov chain is
ergodic.

In view of the Friedman–Ornstein Theorem [1] we have

Corollary 4.3. The dynamical system (E,T ) is a K-system with K-

partition ξ = {Ei}r+1
i=0 (see [2] and [6]).

Corollary 4.4. If λ = 2, then (E,T ) is a Bernoulli system: then

B = ∅ and the partition ξ = {A,C} is a B-partition.

The condition (4.3) is not the only condition which implies the existence
of a Markov partition for an invariant set E of the system (R,T ).

In the dynamical system (R,T ) we have at least two invariant sets, U
and E. The dynamical system (U, T ) is periodic (i.e. there exists an m such
that T m = id), and the system (E,T ) is random (i.e. its trajectories behave
like realizations of a stochastic process).

There arises a question: what is the typical behaviour in the sense of
Lebesgue measure of the system (Rλ, Tλ) for λ ∈ (0, 2)?

5. Conclusions. One can construct a lot of mathematical models
describing the rumen’s actions. The more realistic the model is, the more
difficult it is to study it qualitatively. The model presented above is a
simplest one. It is a very rough approximation to reality. However, it does
exhibit the phenomenon that the food is not well mixed in the rumen. The
model is based on the general idea of the Baker Transformation ([2], [5],
[6]) with some modification coming from physiology of the rumen’s actions.
The model has a complicated nature, the mixing process described by it is
different in different parts of the rumen. Coexistence of a periodic process
and a random one seems to be strange, but it occurs to be the reality of
some physiological processes. The model without its biological background
is an artificial dynamical system. So we see that sometimes even a seemingly
artificial mathematical construction may have some application. There also
arises a philosophical question: why Nature chose this type of mixing in
rumen, what is the reason for it. But that is not a mathematical problem.
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