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Irreducible polynomials with many roots of equal modulus
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RONALD FERGUSON (Vancouver, B.C.)

Introduction. Let f(z) € Z[z] be irreducible. Suppose that f(x) has m
roots on the circle |z| = ¢, at least one of which is real. We will show that
f(x) is of the form g(x™), where g(z) € Z[z] and g(x) has no more than one
real root on any circle with centre at the origin in C.

David Boyd [1] proves this result in case the circle |z| = ¢ contains roots
of maximum or minimum modulus. In a seminar given at the University
of British Columbia, he presented this theorem. In a discussion with the
author afterwards, he suggested that the result should hold where the circle
is of intermediate modulus. The purpose of this note is to give a proof of
this extension.

THEOREM. Suppose that the irreducible polynomial f(z) € Zlx] has m
roots, at least one real, on the circle |z| = c. Then f(x) = g(z™) where g(x)
has no more than one real Toot on any circle in C.

Proof. Let K be the splitting field of f. As in [1] we use induction on
m. If m =1 the result is clear.

If m is even, then both ¢ and —c are roots of f(x). Since f is irreducible, it
must be even, that is, f(z) is of the form h(z?). h now has m /2 roots of equal
modulus, one being real. By induction h(z) = g(z™/2) and f(z) = g(z™).

We now move to the case where m is odd. The following lemma gives an
important bridge:

LEMMA. If a1, as, ag are roots of the irreducible polynomial f(x) € Z[x]
and o? = asas, then ay/as is a root of unity.

Proof. Let ~1,...,7, be the set of roots of f of largest modulus. For
1 <4 < n there is some automorphism o; of K such that o;(ay) = ;. Since
then
7 = oi(as)oi(as),
o;(a1) and o;(c2) must be of maximum modulus as well. This can be trans-
lated into a linear equation in the arguments of the ;’s, represented in the
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following matrix form:

1 -1 1 ... 9

. 12 *2 X arg(v1) Oor £
arg(72) Oor 7

* % 1 ) — ) ,

% * 1 arg(vyn) Oor £7

where the ordering is chosen so that the matrix on the left has entries of 1’s
along the diagonal. Each row has two other entries of —% with all the other
entries being 0. Not all rows are linearly independent since the row sums
are 0.

Suppose that the first & (but not the first k£ + 1) rows of this matrix
are linearly independent. We use row reduction as described below on the
first k£ rows in the above equation to obtain the identity matrix in the first
k x k block. After each stage in the reduction each row will have one positive
entry of 1 in the diagonal position with all other entries < 0 and summing
to —1. If, in the reduction, any row is left with only two non-zero entries 1
and —1, then, as described in (3) below, we have proved the result.

Assume then that we have reduced to a stage where we have the matrix
M = (m;;) on the left and we wish to reduce an entry m;; with —1 <
m;; < 0. We multiply the jth row by —m;; and add this to this ith row.
We thus reduce the entry in the ijth position to zero, but add non-positive
values to each other entry in the row. The diagonal entry in the ith row now
becomes 1 — m;;jm;;. The only way this can be zero is for m;; = m;; = —1,
in which case the ith row is the negative of the jth row, contradicting linear
independence. Thus 1 — m;;m;; > 0 and we can divide the 7th row by this
value. The diagonal value on this row is now 1 again, all other entries are
between —1 and 0 and the row sum is still zero. If we have not achieved the
result at some stage along the way, we eventually produce a matrix A = (a;;)
of the following form:

1 0 0 0 * .- T
01 0 0 :
0 0 1 0
kth row 0 0 O 1 x - T
* ok ok * 1 -~ |0or &7

with the r;’s being rational. The (k + 1)th row remains unchanged, i.e. it
has only 3 non-zero entries of 1, —%, —%.
Consider the following cases:
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(1) All the entries before the diagonal in the (k+1)th row are 0. Then the
first k + 1 rows are linearly independent, contradicting our original choice.

(2) For one column i with i < k, agy1,; = —%. But then this row must

be a multiple, by —%, of the ith row. However, this is impossible since

g1 k1 = 1 # =300 51
since —1 < a; k41 < 0.
(3) Two entries ax+1,; and agt1,; before the diagonal in the (k + 1)th
row have the value —%. Since then
Apy1,k41 =1 = _%(ai,k-H + a5 k1),
we must have a; p+1 = a; x+1 = —1. But then the i¢th (or jth for that matter)
row has only two non-zero entries of 1 and —1.

From our choice of the 0;’s, op41(01) = Yr41, and op11(2) = v; or 7;,
say ;. Then from the above
arg(Ye+1) — arg(yi) = rw
for some r € Q. Thus w = 7,41 /7; is a root of unity and w € K. Now

—1 —1
a1 = Uk+1<w%‘) = Uk+1(w)a2'
Since Ukjl(w) is a root of unity, the result follows. m

Continuation of proof of Theorem. Let C = {ay,...,a,,} be
the roots of f(x) on |z| = ¢ with a; real and @911 =@, 1 <1< (m—1)/2.
Hence we have

Oz% = 0203 = ... = Oy —104p,
and consequently

m 2\(m—1)/2
o =y - (@)™ Y2 = qian . o1,

By the Lemma «;/a; is a root of unity for 1 < j < m. Hence every auto-
morphism 7; satisfying 7;(a1) = «; permutes the elements of C.
Thus we get

a* =1(a") =Ti(oq) .. Tilam) =01 .. ap, = ol
ie. a;/aq is a root of unity, and, for i = 1,...,m, we get all mth roots of

unity.
Consequently, f(¢i,a1) =0 for i = 1,...,m. Thus, we have

%(f(x) + f(Gna) + .+ F(GRTH) = g(@™),

for some g € Q[z], by the orthogonality relations for the mth roots of unity.
Evidently, deg(g(z™)) < deg(f(x)).
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Hence g(z™) = f(z), since both polynomials are monic, have a common
zero, aq, and f is irreducible. m

Notes. 1. The Lemma would hold as well when relations of the form

af =aj?as® .. ok
hold between conjugate roots where the n;’s are positive integers and
Zle n; = n. However, there are limits on what relation will work. Results
stated in Smyth [3] illustrate cases where relations of the form

ny nz nE _
aptay® .ot =1

hold between conjugates where the n;’s are integers but no quotient of two
roots is a root of unity. In Lemma 1 of [2], Smyth gives a different proof of
the lemma in this paper using Dirichlet’s Theorem.

2. Having two roots differing by a root of unity is not sufficient to ef-
fect the reduction. Consider the polynomial z* — 223 4 422 — 3z 4 1 which
has roots 1(1 + v5)¢s, (1 — V5)¢2, 2(1 — V5)¢3, (1 + V5)(2, where
(s = exp(27i/5).

3. There are other cases where the relation a? = asas holds between
conjugate roots where the polynomial has no real roots, but the reduction
occurs. Take for example 2% 4 2% 4 1, which gives the primitive ninth roots
of unity. We have (3 = (§¢J.

However, in the case of the primitive fifteenth roots of unity the polyno-
mial is 28 — 27 4+ 2% — 2% + 23 — 2 + 1 and there is the relation (% = ({;({3.

There is even no need for a circle to contain what might be thought of as a
“set” of roots which occupy positions corresponding to some set of primitive
roots. Consider the twelfth degree polynomial 212 — 6x!! + 23219 — 732° +
19128 — 40527 + 76625 — 116425 4 13682* — 153923 + 186322 — 1701z + 729,
having as roots the conjugates of %(1 + v/13)(13. Six of the roots are on

the circle |z| = (1 + v/13) and six on |z| = (V13 — 1). For a; = $(1 +

V13)Gis, a2 = (1 + V13)(Ps, a3 = (14 V13){{3, we have af = azas.

I would like to acknowledge the referee for the simplification which is
incorporated into the final steps in the proof of the Theorem.
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