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Irreducible polynomials with many roots of equal modulus
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Introduction. Let f(x) ∈ Z[x] be irreducible. Suppose that f(x) has m
roots on the circle |z| = c, at least one of which is real. We will show that
f(x) is of the form g(xm), where g(x) ∈ Z[x] and g(x) has no more than one
real root on any circle with centre at the origin in C.

David Boyd [1] proves this result in case the circle |z| = c contains roots
of maximum or minimum modulus. In a seminar given at the University
of British Columbia, he presented this theorem. In a discussion with the
author afterwards, he suggested that the result should hold where the circle
is of intermediate modulus. The purpose of this note is to give a proof of
this extension.

Theorem. Suppose that the irreducible polynomial f(x) ∈ Z[x] has m
roots, at least one real , on the circle |z| = c. Then f(x) = g(xm) where g(x)
has no more than one real root on any circle in C.

P r o o f. Let K be the splitting field of f . As in [1] we use induction on
m. If m = 1 the result is clear.

If m is even, then both c and −c are roots of f(x). Since f is irreducible, it
must be even, that is, f(x) is of the form h(x2). h now has m/2 roots of equal
modulus, one being real. By induction h(x) = g(xm/2) and f(x) = g(xm).

We now move to the case where m is odd. The following lemma gives an
important bridge:

Lemma. If α1, α2, α3 are roots of the irreducible polynomial f(x) ∈ Z[x]
and α2

1 = α2α3, then α1/α2 is a root of unity.

P r o o f. Let γ1, . . . , γn be the set of roots of f of largest modulus. For
1 ≤ i ≤ n there is some automorphism σi of K such that σi(α1) = γi. Since
then

γ2
i = σi(α2)σi(α3),

σi(α1) and σi(α2) must be of maximum modulus as well. This can be trans-
lated into a linear equation in the arguments of the γi’s, represented in the
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following matrix form:



1 − 1
2 − 1

2 · · · 0
∗ 1 ∗ ∗
∗ ∗ 1 ∗
...

...
...

. . .
...

∗ ∗ ∗ 1







arg(γ1)
arg(γ2)

...
arg(γn)


 =




0 or ± π
0 or ± π

...
0 or ± π


 ,

where the ordering is chosen so that the matrix on the left has entries of 1’s
along the diagonal. Each row has two other entries of − 1

2 with all the other
entries being 0. Not all rows are linearly independent since the row sums
are 0.

Suppose that the first k (but not the first k + 1) rows of this matrix
are linearly independent. We use row reduction as described below on the
first k rows in the above equation to obtain the identity matrix in the first
k×k block. After each stage in the reduction each row will have one positive
entry of 1 in the diagonal position with all other entries ≤ 0 and summing
to −1. If, in the reduction, any row is left with only two non-zero entries 1
and −1, then, as described in (3) below, we have proved the result.

Assume then that we have reduced to a stage where we have the matrix
M = (mij) on the left and we wish to reduce an entry mij with −1 ≤
mij < 0. We multiply the jth row by −mij and add this to this ith row.
We thus reduce the entry in the ijth position to zero, but add non-positive
values to each other entry in the row. The diagonal entry in the ith row now
becomes 1−mijmji. The only way this can be zero is for mij = mji = −1,
in which case the ith row is the negative of the jth row, contradicting linear
independence. Thus 1 −mijmji > 0 and we can divide the ith row by this
value. The diagonal value on this row is now 1 again, all other entries are
between −1 and 0 and the row sum is still zero. If we have not achieved the
result at some stage along the way, we eventually produce a matrix A = (aij)
of the following form:

kth row




1 0 0 0 ∗ · · ·
0 1 0 0 ∗ . . .
0 0 1 0 ∗ · · ·

. . .
0 0 0 1 ∗ · · ·
∗ ∗ ∗ ∗ 1 · · ·
...

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1π
...

rkπ
0 or ± π

...




with the ri ’s being rational. The (k + 1)th row remains unchanged, i.e. it
has only 3 non-zero entries of 1,− 1

2 ,− 1
2 .

Consider the following cases:
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(1) All the entries before the diagonal in the (k+1)th row are 0. Then the
first k + 1 rows are linearly independent, contradicting our original choice.

(2) For one column i with i ≤ k, ak+1,i = − 1
2 . But then this row must

be a multiple, by − 1
2 , of the ith row. However, this is impossible since

ak+1,k+1 = 1 6= − 1
2ai,k+1

since −1 < ai,k+1 ≤ 0.
(3) Two entries ak+1,i and ak+1,j before the diagonal in the (k + 1)th

row have the value − 1
2 . Since then

ak+1,k+1 = 1 = − 1
2 (ai,k+1 + aj,k+1),

we must have ai,k+1 = aj,k+1 = −1. But then the ith (or jth for that matter)
row has only two non-zero entries of 1 and −1.

From our choice of the σi’s, σk+1(α1) = γk+1, and σk+1(α2) = γi or γj ,
say γi. Then from the above

arg(γk+1)− arg(γi) = rπ

for some r ∈ Q. Thus ω = γk+1/γi is a root of unity and ω ∈ K. Now

α1 = σ−1
k+1(ωγi) = σ−1

k+1(ω)α2.

Since σ−1
k+1(ω) is a root of unity, the result follows.

C o n t i n u a t i o n o f p r o o f o f T h e o r e m. Let C = {α1, . . . , αm} be
the roots of f(x) on |z| = c with α1 real and α2i+1 = α2i, 1 ≤ i ≤ (m−1)/2.
Hence we have

α2
1 = α2α3 = . . . = αm−1αm,

and consequently

αm1 = α1 · (α2
1)(m−1)/2 = α1α2 . . . αm−1αm.

By the Lemma αj/α1 is a root of unity for 1 ≤ j ≤ m. Hence every auto-
morphism τi satisfying τi(α1) = αi permutes the elements of C.

Thus we get

αmi = τi(αmi ) = τi(α1) . . . τi(αm) = α1 . . . αm = αm1 ,

i.e. αi/α1 is a root of unity, and, for i = 1, . . . ,m, we get all mth roots of
unity.

Consequently, f(ζimα1) = 0 for i = 1, . . . ,m. Thus, we have

1
m

(f(x) + f(ζmx) + . . .+ f(ζm−1
m )) = g(xm),

for some g ∈ Q[x], by the orthogonality relations for the mth roots of unity.
Evidently, deg(g(xm)) ≤ deg(f(x)).
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Hence g(xm) = f(x), since both polynomials are monic, have a common
zero, α1, and f is irreducible.

N o t e s. 1. The Lemma would hold as well when relations of the form

αn1 = αn2
2 αn3

3 . . . αnkk

hold between conjugate roots where the ni’s are positive integers and∑k
i=1 ni = n. However, there are limits on what relation will work. Results

stated in Smyth [3] illustrate cases where relations of the form

αn1
1 αn2

2 . . . αnkk = 1

hold between conjugates where the ni’s are integers but no quotient of two
roots is a root of unity. In Lemma 1 of [2], Smyth gives a different proof of
the lemma in this paper using Dirichlet’s Theorem.

2. Having two roots differing by a root of unity is not sufficient to ef-
fect the reduction. Consider the polynomial x4 − 2x3 + 4x2 − 3x+ 1 which
has roots 1

2 (1 +
√

5)ζ5, 1
2 (1 − √5)ζ2

5 , 1
2 (1 − √5)ζ3

5 , 1
2 (1 +

√
5)ζ4

5 , where
ζ5 = exp(2πi/5).

3. There are other cases where the relation α2
1 = α2α3 holds between

conjugate roots where the polynomial has no real roots, but the reduction
occurs. Take for example x6 + x3 + 1, which gives the primitive ninth roots
of unity. We have ζ2

9 = ζ4
9ζ

7
9 .

However, in the case of the primitive fifteenth roots of unity the polyno-
mial is x8− x7 + x5− x4 + x3− x+ 1 and there is the relation ζ2

15 = ζ4
15ζ

13
15 .

There is even no need for a circle to contain what might be thought of as a
“set” of roots which occupy positions corresponding to some set of primitive
roots. Consider the twelfth degree polynomial x12 − 6x11 + 23x10 − 73x9 +
191x8− 405x7 + 766x6− 1164x5 + 1368x4− 1539x3 + 1863x2− 1701x+ 729,
having as roots the conjugates of 1

2 (1 +
√

13)ζ13. Six of the roots are on
the circle |z| = 1

2 (1 +
√

13) and six on |z| = 1
2 (
√

13 − 1). For α1 = 1
2 (1 +√

13)ζ13, α2 = 1
2 (1 +

√
13)ζ3

13, α3 = 1
2 (1 +

√
13)ζ12

13 , we have α2
1 = α2α3.

I would like to acknowledge the referee for the simplification which is
incorporated into the final steps in the proof of the Theorem.
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