Irreducible polynomials with many roots of equal modulus

by
Ronald Ferguson (Vancouver, B.C.)

Introduction. Let $f(x) \in \mathbb{Z}[x]$ be irreducible. Suppose that $f(x)$ has m roots on the circle $|z|=c$, at least one of which is real. We will show that $f(x)$ is of the form $g\left(x^{m}\right)$, where $g(x) \in \mathbb{Z}[x]$ and $g(x)$ has no more than one real root on any circle with centre at the origin in \mathbb{C}.

David Boyd [1] proves this result in case the circle $|z|=c$ contains roots of maximum or minimum modulus. In a seminar given at the University of British Columbia, he presented this theorem. In a discussion with the author afterwards, he suggested that the result should hold where the circle is of intermediate modulus. The purpose of this note is to give a proof of this extension.

Theorem. Suppose that the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ has m roots, at least one real, on the circle $|z|=c$. Then $f(x)=g\left(x^{m}\right)$ where $g(x)$ has no more than one real root on any circle in \mathbb{C}.

Proof. Let \mathcal{K} be the splitting field of f. As in [1] we use induction on m. If $m=1$ the result is clear.

If m is even, then both c and $-c$ are roots of $f(x)$. Since f is irreducible, it must be even, that is, $f(x)$ is of the form $h\left(x^{2}\right)$. h now has $m / 2$ roots of equal modulus, one being real. By induction $h(x)=g\left(x^{m / 2}\right)$ and $f(x)=g\left(x^{m}\right)$.

We now move to the case where m is odd. The following lemma gives an important bridge:

Lemma. If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are roots of the irreducible polynomial $f(x) \in \mathbb{Z}[x]$ and $\alpha_{1}^{2}=\alpha_{2} \alpha_{3}$, then α_{1} / α_{2} is a root of unity.

Proof. Let $\gamma_{1}, \ldots, \gamma_{n}$ be the set of roots of f of largest modulus. For $1 \leq i \leq n$ there is some automorphism σ_{i} of \mathcal{K} such that $\sigma_{i}\left(\alpha_{1}\right)=\gamma_{i}$. Since then

$$
\gamma_{i}^{2}=\sigma_{i}\left(\alpha_{2}\right) \sigma_{i}\left(\alpha_{3}\right)
$$

$\sigma_{i}\left(\alpha_{1}\right)$ and $\sigma_{i}\left(\alpha_{2}\right)$ must be of maximum modulus as well. This can be translated into a linear equation in the arguments of the γ_{i} 's, represented in the
following matrix form:

$$
\left(\begin{array}{ccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & \cdots & 0 \\
* & 1 & * & & * \\
* & * & 1 & & * \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
* & * & * & & 1
\end{array}\right)\left(\begin{array}{c}
\arg \left(\gamma_{1}\right) \\
\arg \left(\gamma_{2}\right) \\
\vdots \\
\arg \left(\gamma_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \text { or } \pm \pi \\
0 \text { or } \pm \pi \\
\vdots \\
0 \text { or } \pm \pi
\end{array}\right)
$$

where the ordering is chosen so that the matrix on the left has entries of 1's along the diagonal. Each row has two other entries of $-\frac{1}{2}$ with all the other entries being 0 . Not all rows are linearly independent since the row sums are 0 .

Suppose that the first k (but not the first $k+1$) rows of this matrix are linearly independent. We use row reduction as described below on the first k rows in the above equation to obtain the identity matrix in the first $k \times k$ block. After each stage in the reduction each row will have one positive entry of 1 in the diagonal position with all other entries ≤ 0 and summing to -1 . If, in the reduction, any row is left with only two non-zero entries 1 and -1 , then, as described in (3) below, we have proved the result.

Assume then that we have reduced to a stage where we have the matrix $M=\left(m_{i j}\right)$ on the left and we wish to reduce an entry $m_{i j}$ with $-1 \leq$ $m_{i j}<0$. We multiply the j th row by $-m_{i j}$ and add this to this i th row. We thus reduce the entry in the $i j$ th position to zero, but add non-positive values to each other entry in the row. The diagonal entry in the i th row now becomes $1-m_{i j} m_{j i}$. The only way this can be zero is for $m_{i j}=m_{j i}=-1$, in which case the i th row is the negative of the j th row, contradicting linear independence. Thus $1-m_{i j} m_{j i}>0$ and we can divide the i th row by this value. The diagonal value on this row is now 1 again, all other entries are between -1 and 0 and the row sum is still zero. If we have not achieved the result at some stage along the way, we eventually produce a matrix $A=\left(a_{i j}\right)$ of the following form:

$$
k \text { th row }\left(\begin{array}{ccccccc|c}
1 & 0 & 0 & & 0 & * & \cdots & r_{1} \pi \\
0 & 1 & 0 & & 0 & * & \cdots & \vdots \\
0 & 0 & 1 & & 0 & * & \cdots & \\
& & & \ddots & & & & \\
0 & 0 & 0 & & 1 & * & \cdots & r_{k} \pi \\
* & * & * & & * & 1 & \cdots & 0 \text { or } \pm \pi \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots
\end{array}\right)
$$

with the r_{i} 's being rational. The $(k+1)$ th row remains unchanged, i.e. it has only 3 non-zero entries of $1,-\frac{1}{2},-\frac{1}{2}$.

Consider the following cases:
(1) All the entries before the diagonal in the $(k+1)$ th row are 0 . Then the first $k+1$ rows are linearly independent, contradicting our original choice.
(2) For one column i with $i \leq k, a_{k+1, i}=-\frac{1}{2}$. But then this row must be a multiple, by $-\frac{1}{2}$, of the i th row. However, this is impossible since

$$
a_{k+1, k+1}=1 \neq-\frac{1}{2} a_{i, k+1}
$$

since $-1<a_{i, k+1} \leq 0$.
(3) Two entries $a_{k+1, i}$ and $a_{k+1, j}$ before the diagonal in the $(k+1)$ th row have the value $-\frac{1}{2}$. Since then

$$
a_{k+1, k+1}=1=-\frac{1}{2}\left(a_{i, k+1}+a_{j, k+1}\right)
$$

we must have $a_{i, k+1}=a_{j, k+1}=-1$. But then the i th (or j th for that matter) row has only two non-zero entries of 1 and -1 .

From our choice of the σ_{i} 's, $\sigma_{k+1}\left(\alpha_{1}\right)=\gamma_{k+1}$, and $\sigma_{k+1}\left(\alpha_{2}\right)=\gamma_{i}$ or γ_{j}, say γ_{i}. Then from the above

$$
\arg \left(\gamma_{k+1}\right)-\arg \left(\gamma_{i}\right)=r \pi
$$

for some $r \in \mathbb{Q}$. Thus $\omega=\gamma_{k+1} / \gamma_{i}$ is a root of unity and $\omega \in \mathcal{K}$. Now

$$
\alpha_{1}=\sigma_{k+1}^{-1}\left(\omega \gamma_{i}\right)=\sigma_{k+1}^{-1}(\omega) \alpha_{2}
$$

Since $\sigma_{k+1}^{-1}(\omega)$ is a root of unity, the result follows.
Continuation of proof of Theorem. Let $C=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ be the roots of $f(x)$ on $|z|=c$ with α_{1} real and $\alpha_{2 i+1}=\bar{\alpha}_{2 i}, 1 \leq i \leq(m-1) / 2$. Hence we have

$$
\alpha_{1}^{2}=\alpha_{2} \alpha_{3}=\ldots=\alpha_{m-1} \alpha_{m}
$$

and consequently

$$
\alpha_{1}^{m}=\alpha_{1} \cdot\left(\alpha_{1}^{2}\right)^{(m-1) / 2}=\alpha_{1} \alpha_{2} \ldots \alpha_{m-1} \alpha_{m}
$$

By the Lemma α_{j} / α_{1} is a root of unity for $1 \leq j \leq m$. Hence every automorphism τ_{i} satisfying $\tau_{i}\left(\alpha_{1}\right)=\alpha_{i}$ permutes the elements of C.

Thus we get

$$
\alpha_{i}^{m}=\tau_{i}\left(\alpha_{i}^{m}\right)=\tau_{i}\left(\alpha_{1}\right) \ldots \tau_{i}\left(\alpha_{m}\right)=\alpha_{1} \ldots \alpha_{m}=\alpha_{1}^{m}
$$

i.e. α_{i} / α_{1} is a root of unity, and, for $i=1, \ldots, m$, we get all m th roots of unity.

Consequently, $f\left(\zeta_{m}^{i} \alpha_{1}\right)=0$ for $i=1, \ldots, m$. Thus, we have

$$
\frac{1}{m}\left(f(x)+f\left(\zeta_{m} x\right)+\ldots+f\left(\zeta_{m}^{m-1}\right)\right)=g\left(x^{m}\right)
$$

for some $g \in \mathbb{Q}[x]$, by the orthogonality relations for the m th roots of unity. Evidently, $\operatorname{deg}\left(g\left(x^{m}\right)\right) \leq \operatorname{deg}(f(x))$.

Hence $g\left(x^{m}\right)=f(x)$, since both polynomials are monic, have a common zero, α_{1}, and f is irreducible.

Notes. 1. The Lemma would hold as well when relations of the form

$$
\alpha_{1}^{n}=\alpha_{2}^{n_{2}} \alpha_{3}^{n_{3}} \ldots \alpha_{k}^{n_{k}}
$$

hold between conjugate roots where the n_{i} 's are positive integers and $\sum_{i=1}^{k} n_{i}=n$. However, there are limits on what relation will work. Results stated in Smyth [3] illustrate cases where relations of the form

$$
\alpha_{1}^{n_{1}} \alpha_{2}^{n_{2}} \ldots \alpha_{k}^{n_{k}}=1
$$

hold between conjugates where the n_{i} 's are integers but no quotient of two roots is a root of unity. In Lemma 1 of [2], Smyth gives a different proof of the lemma in this paper using Dirichlet's Theorem.
2. Having two roots differing by a root of unity is not sufficient to effect the reduction. Consider the polynomial $x^{4}-2 x^{3}+4 x^{2}-3 x+1$ which has roots $\frac{1}{2}(1+\sqrt{5}) \zeta_{5}, \frac{1}{2}(1-\sqrt{5}) \zeta_{5}^{2}, \frac{1}{2}(1-\sqrt{5}) \zeta_{5}^{3}, \frac{1}{2}(1+\sqrt{5}) \zeta_{5}^{4}$, where $\zeta_{5}=\exp (2 \pi i / 5)$.
3. There are other cases where the relation $\alpha_{1}^{2}=\alpha_{2} \alpha_{3}$ holds between conjugate roots where the polynomial has no real roots, but the reduction occurs. Take for example $x^{6}+x^{3}+1$, which gives the primitive ninth roots of unity. We have $\zeta_{9}^{2}=\zeta_{9}^{4} \zeta_{9}^{7}$.

However, in the case of the primitive fifteenth roots of unity the polynomial is $x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1$ and there is the relation $\zeta_{15}^{2}=\zeta_{15}^{4} \zeta_{15}^{13}$.

There is even no need for a circle to contain what might be thought of as a "set" of roots which occupy positions corresponding to some set of primitive roots. Consider the twelfth degree polynomial $x^{12}-6 x^{11}+23 x^{10}-73 x^{9}+$ $191 x^{8}-405 x^{7}+766 x^{6}-1164 x^{5}+1368 x^{4}-1539 x^{3}+1863 x^{2}-1701 x+729$, having as roots the conjugates of $\frac{1}{2}(1+\sqrt{13}) \zeta_{13}$. Six of the roots are on the circle $|z|=\frac{1}{2}(1+\sqrt{13})$ and six on $|z|=\frac{1}{2}(\sqrt{13}-1)$. For $\alpha_{1}=\frac{1}{2}(1+$ $\sqrt{13}) \zeta_{13}, \alpha_{2}=\frac{1}{2}(1+\sqrt{13}) \zeta_{13}^{3}, \alpha_{3}=\frac{1}{2}(1+\sqrt{13}) \zeta_{13}^{12}$, we have $\alpha_{1}^{2}=\alpha_{2} \alpha_{3}$.

I would like to acknowledge the referee for the simplification which is incorporated into the final steps in the proof of the Theorem.

References

[1] D. W. Boyd, Irreducible polynomials with many roots of maximal modulus, Acta Arith. 68 (1994), 85-88.
[2] C. J. Smyth, Conjugate algebraic numbers on conics, ibid. 40 (1982), 333-346.
[3] C. J. Smyth, Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory 23 (1986), 243-254.

Department of Mathematics
University of British Columbia
Vancouver, Canada V6T 1Z2
E-mail: ferguson@math.ubc.ca

Received on 16.8.1995
and in revised form on 26.1.1996

