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In their article [S-T], Roel J. Stroeker and Jaap Top considered elliptic
curves over Q defined by the equation

Ep : y2 = (x+ p)(x2 + p2),

where p ∈ P is a prime number. They determined the Selmer groups cor-
responding to certain 2-isogenies and the sign of the functional equation of
these curves. Moreover, they gave a method for computing the Mordell–Weil
group Ep(Q) in some cases.

The aim of this note is to generalize their method to curves over Q
defined by the equation

Ez : y2 = (x+ z)(x2 + z2)

with arbitrary z ∈ Q∗. Whereas the methods are analogous to those of
R. J. Stroeker and J. Top, the results obtained here are quite different. We
shall develop an algorithm for computing the Selmer groups corresponding to
2-isogenies of these curves. This algorithm is based on four theorems, which
constitute the main results of Section 2 and describe the Selmer groups
of these curves. We also generalize the procedure for finding generators of
the Mordell–Weil groups of these curves. This procedure terminates if the
Tate–Shafarevich groups are trivial, which is certainly not so in general.
Stroeker and Top were able to prove that the Tate–Shafarevich group is
nontrivial in a special case of a prime k = p ≡ 9 mod 16 and

( 1+
√−1
p

)
= 1

(see [S-T]), but I could not generalize their method.

I wish to thank Professor H. G. Zimmer for suggesting this topic to me
and for his advice, especially for his hint on the structure of the torsion
groups.

1. On the curves Ez : y2 = (x+ z)(x2 + z2). We start with an elliptic
curve
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Ez : y2 = (x+ z)(x2 + z2)

with z ∈ Q. If z = 0, then the given curve E0 is singular, so we shall assume
that z ∈ Q∗.

The transformation x = x′ − z, y = y′ yields another model, isomorphic
to Ez over Q:

E′z : y′2 = x′3 − 2zx′2 + 2z2x′.

The discriminant of this curve is ∆z = −28z6 6= 0, z ∈ Q∗.
For z1 6= z2, both from Q∗, Ez1 and Ez2 are isomorphic over Q(

√
z2/z1).

That means that these curves are twists of each other. Therefore, I can
confine myself to considering a smaller class of elliptic curves, namely those
Ez with squarefree z.

It is therefore sufficient to consider elliptic curves of the form

(1) Ek : y2 = x3 − 2kx2 + 2k2x

with k = ±p1 . . . pκ, where pi ∈ P are distinct primes and κ ∈ N0. For κ = 0,
we have k = ±1.

The curves Ek have the discriminant ∆k = −28k6 and the Tate value
ck,4 = −32k2.

For k = ±p1 . . . pκ, we conclude that (see [Ta])

Ek has
{

good reduction (mod l) for l ∈ P, l 6∈ {2, p1, . . . , pκ},
additive reduction (mod l) for l ∈ {2, p1, . . . , pκ}.

All curves Ek contain the point P = (0, 0) in Ek(Q) as a torsion point
of order 2. Ek(Q) has no other points of order 2, because otherwise the
equation x2 − 2kx + 2k2 = 0 would have a solution in Q. Furthermore,
Ek(Q) has no point of order 4, a fact which follows from the duplication
formula applied to P = (0, 0).

For the exact determination of the torsion group of Ek/Q, we use the
reduction theorem in [Fo, II, §2, p. 44], for the number field Q:

Theorem 1.1. Let E be an elliptic curve defined over Q by a p-minimal
Weierstrass equation for a given prime p ∈ P. Then the order of the torsion
group of E/Q satisfies the following divisibility relation:

1. If E has good reduction mod p, then

|Etor(Q)|
∣∣ |Ẽ(Z/pZ)| · p2t.

2. If E has additive reduction mod p, then

|Etor(Q)|
∣∣ |E(Qp)/E0(Qp)| · p2+2t.

Here

t =
{

0 for p > 2,
1 for p = 2,
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Ẽ is the reduction of E mod p and E0(Qp) = {P ∈ E(Qp) : P̃ ∈ Ẽ(Z/pZ)
is nonsingular}.

We use this general theorem, because we neither know the number of
prime factors of k nor the primes dividing k. As these are the primes where k
has additive reduction, we have to apply the divisibility relation for additive
reduction modulo p. By this theorem, applied to the primes 3 and 5, we
conclude that the torsion group of Ek/Q is

Ek,tors(Q) ∼= Z/2Z.
Therefore, the Mordell–Weil group of the curve Ek is

Ek(Q) ∼= Z/2Z× Zr,
with r = rk(Ek(Q)) the rank of Ek over Q.

The global L-series of Ek/Q is

L(s,Ek|Q) =
∏

l∈P\{2,p1,...,pκ}

1
1 + (Al − (l + 1))l−s + l1−2s ,

where Al = ]Ẽk(Z/lZ) denotes the number of points on the reduced elliptic
curve Ẽk of Ek (mod l).

The conductor of these curves is given in the following proposition.

Proposition 1.1. For k = ±2αp1 . . . pκ with α ∈ {0, 1} and pi ∈ P\{2},
i = 1, . . . , κ, κ ∈ N0, the conductor of Ek/Q is

Nk = 27p2
1 . . . p

2
κ.

Specifically , for κ = 0 and hence k = ±2α, one has Nk = 27.

With [MF IV] one has the following theorem:

Theorem 1.2. Let k = vp1 . . . pκ with v ∈ {±1,±2} and p1, . . . , pκ ∈
P\{2}, κ > 0 and put

w = ±v according as p1 . . . pκ ≡ ±1 (mod 4).

For n ∈ Z, define the character

χ = χp1...pκ(n) :=
(

n

p1 . . . pκ

)

by the Jacobi symbol with χ(n) = 0 if gcd(n, p1 . . . pκ) > 1. Then

L(s,Ek|Q) = Lχ(s,Ew|Q),

where Lχ(s,Ew|Q) is the L-series of Ew/Q twisted by χ.

For k = ±1,±2, Ek has conductor Nk = 27. Ogg [Og] determined all
elliptic curves over Q with 2-power conductor. Honda and Miyawaki [H-M]
gave a complete table of all modular forms of weight 2 for Γ0(N) with N
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a power of 2. From these results, it follows that the 4 curves E1, E−1, E2,
E−2 are modular.

The above relation between the L-series of the curves Ek implies the
following fact proved by induction on the number of different prime factors
in k on the basis of Proposition 17 in [Ko], p. 127.

Proposition 1.2. All curves Ek are modular.

The global L-series of Ek (for every integer k) is known to satisfy the
functional equation (cf. [B-S])

(√
Nk

2π

)s
Γ (s)L(s,Ek|Q) = εk

(√
Nk

2π

)2−s
Γ (2− s)L(2− s,Ek|Q),

where Γ is the usual Gamma function and εk ∈ {±1}.
Table 1 from [MF IV] lists elliptic curves over Q with conductor 128 = 27.

The curves E±1 and E±2 are isomorphic to the following curves in [MF IV]:

E−1
∼= 128A, E1

∼= 128C,

E−2
∼= 128F, E2

∼= 128G.

Then with [B-S], one establishes the following theorem:

Theorem 1.3. For k = vp1 . . . pκ with v ∈ {±1,±2} and pi ∈ P\{2}, the
sign of the functional equation of Ek is:

p1 . . . pκ (mod 8) εp1...pκ ε−p1...pκ ε2p1...pκ ε−2p1...pκ

1 −1 1 1 1
3 1 −1 1 1
5 1 −1 −1 −1
7 −1 1 −1 −1

The conjecture of Birch and Swinnerton-Dyer implies that εk is related
to the rank r of Ek over Q by εk = (−1)r. Hence, by this conjecture, one
can find the parity of the rank of Ek.

2. Selmer groups corresponding to 2-isogenies

2.1. Basic facts. A procedure for finding the rank of an elliptic curve
over Q with a torsion point of order 2 was developed by Tate (see [Si-Ta]
or [S-T]). It is based on the classical Selmer– and Tate–Shafarevich groups.
I shall apply this procedure to the curves Ek.

For the elliptic curve over Q
(2) Ek : y2 = x3 − 2kx2 + 2k2x,

with k = ±p1 . . . pκ as above and its 2-isogenous curve

(3) E′k : Y 2 = X3 + 4kX2 − 4k2X.
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I denote by ψ the corresponding 2-isogeny and by ψ′ its dual isogeny:

ψ : Ek → E′k, (x, y) 7→
(
y2

x2 ,
y(2k2 − x2)

x2

)
,

and

ψ′ : E′k → Ek, (X,Y ) 7→
(
Y 2

4X2 ,
Y (−4k2 −X2)

8X2

)
.

The Selmer groups corresponding to the 2-isogenies ψ′ and ψ of these curves
are

Sk[ψ′] = {1 ·Q∗2, 2 ·Q∗2}

∪
{
d ·Q∗2 : d | 2k2, n2 = dm4 − 2km2e2 +

2k2

d
e4 has solutions

n,m 6= 0, e 6= 0 in R and (mutually prime) solutions in Zp

for all p ∈ P
}

and

Sk[ψ] = {±1 ·Q∗2}

∪
{
d ·Q∗2 : d | −4k2, n2 = dm4 + 4km2e2 − 4k2

d
e4 has solutions

n,m 6= 0, e 6= 0 in R and (mutually prime) solutions in Zp

for all p ∈ P
}
.

One has a map δ : Ek(Q)→ Sk[ψ′] with

O 7→ 1 ·Q∗2, (0, 0) 7→ 2k2 ·Q∗2 = 2 ·Q∗2,
(x, y) 7→ x ·Q∗2 for (x, y) 6∈ {O, (0, 0)}

with

Ker δ = ψ′E′k(Q).

In an analogous way one can treat the isogenous curve E′k. The cokernels
of the following left hand side injections are called the Tate–Shafarevich
groups Xk[ψ′] of Ek resp. Xk[ψ] of E′k:

0→ Ek(Q)/ψ′E′k(Q)→ Sk[ψ′]→Xk[ψ′]→ 0,

0→ E′k(Q)/ψEk(Q)→ Sk[ψ]→Xk[ψ]→ 0.

For the rank of the elliptic curves one obtains the formula
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rk(E′k(Q)) = rk(Ek(Q))(4)

= dimF2(Sk[ψ′])− dimF2(Xk[ψ′])

+ dimF2(Sk[ψ])− dimF2(Xk[ψ])− 2.

For the primes p not dividing the discriminants ∆′k = 213k6 of E′k resp.
∆k = −28k6 of Ek, the corresponding equations

n2 = dm4 − 2km2e2 +
2k2

d
e4

resp.

n2 = dm4 + 4km2e2 − 4k2

d
e4

define curves of genus 1 over Fp. By the Hasse theorem, which estimates the
number of points of elliptic curves over finite fields, these curves have a Fp-
rational point for p > 3. For p = 3, one sees by straightforward calculation
that these curves have a F3-rational point. By Hensel’s lemma (see e.g. [We]),
these points can be lifted to solutions of the above equations in Zp.

For computing the Selmer groups, it suffices therefore to consider the
primes 2, p1, . . . , pκ and ∞.

For d < 0, the equation corresponding to the group Sk[ψ′] has no solution
in R. It follows that d · Q∗2 is not in Sk[ψ′] for negative d. For d > 0, the
equation corresponding to Sk[ψ′] is solvable in R, and the same is true in
this case for the equations corresponding to Sk[ψ].

Hence it remains to look for solutions in Zp for the primes p = 2,
p1, . . . , pκ only.

Obviously, {1 · Q∗2, 2 · Q∗2} resp. {±1 · Q∗2} always lie in Sk[ψ′] resp.
Sk[ψ]. From this observation it follows that

(5) {1 ·Q∗2, 2 ·Q∗2} ⊂ Sk[ψ′] ⊂ {1 ·Q∗2, 2 ·Q∗2}
∪ {pi1 . . . pil ·Q∗2, 2pi1 . . . pil ·Q∗2 :

1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ}
and

(6) {±1 ·Q∗2} ⊂ Sk[ψ] ⊂ {±1 ·Q∗2,±2 ·Q∗2}
∪ {±pi1 . . . pil ·Q∗2,±2pi1 . . . pil ·Q∗2 :

1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ}.
In order to decide for a number d ∈ Q∗, whether or not d ·Q∗2 is in Sk[ψ′]
resp. Sk[ψ], I shall first assume that d is a squarefree integer and then I shall
test the numbers da2 with a ∈ Z\{0} such that da2 | 2k2 resp. da2 | −4k2.

In determining the Selmer groups, I need some special Legendre symbols.
In this subsection, p is always a prime different from 2. I shall consider the
three cases p ≡ 1 (mod 8), p ≡ 5 (mod 8) and p ≡ 7 (mod 8).
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If p ≡ 1 (mod 8), then the elements (1 ± √−1), (−1 ± √−1), (1 ± √2)
and (−1±√2) define residue classes mod p. We have the following relations:

(7)
(

1 +
√−1
p

)
=
(

1−√−1
p

)
=
(−1 +

√−1
p

)
=
(−1−√−1

p

)

and

(8)
(

1 +
√

2
p

)
=
(

1−√2
p

)
=
(−1 +

√
2

p

)
=
(−1−√2

p

)
.

Let w ∈ Z denote a primitive root modulo p. Since p ≡ 1 (mod 8), the
relation

w(p−1)/8 ≡ 4
√−1 (mod p),

defines some 4th root 4
√−1 mod p. From the identity

[
√

2(1 +
√−1)]2 = 2(2

√−1) = 4
√−1

we now derive the equation√
2(1 +

√−1) = ±2 4
√−1.

Hence we have(
1 +
√−1
p

)(
1 +
√

2
p

)
=
(

1 +
√

2(1 +
√−1) +

√−1
p

)

=
(

(1± 4
√−1)2

p

)
= 1,

and conclude that (
1 +
√−1
p

)
=
(

1 +
√

2
p

)
.

For computing these Legendre symbols, it thus suffices to determine the
value of one of them, e.g. of

( 1+
√−1
p

)
. We remark that because of the rela-

tions (7) and (8) it does not matter which root of −1 or 2 mod p is used to
compute the symbols.

The remaining cases p ≡ 5 (mod 8) and p ≡ 7 (mod 8) lead to different
results:

For p ≡ 5 (mod 8), the values 1 ± √−1 and −1 ± √−1 define residue
classes modp. We obtain the relations(

1 +
√−1
p

)
= −

(
1−√−1

p

)
,

(−1 +
√−1
p

)
= −

(−1−√−1
p

)
.

Therefore, one of the symbols in each equality attains the value 1. Hence for
determining the Selmer groups, it does not matter which sign of the roots
±√−1 mod p is chosen so that, by a suitable choice of the sign, one can
always ensure that

( 1+
√−1
p

)
= 1, say.
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For p ≡ 7 (mod 8) one derives similar results. Here the values 1 ± √2
and −1±√2 define residue classes modp, and we obtain the relations(

1 +
√

2
p

)
= −

(
1−√2
p

)
,

(−1 +
√

2
p

)
= −

(−1−√2
p

)
.

As in the case p ≡ 5 (mod 8), I can take one of ±√2 mod p to ensure that(
1+
√

2
p

)
= 1, say.

2.2. Determination of the Selmer groups. For determining the Selmer
groups for general k, I distinguish the two cases k = ±2p1 . . . pκ and k =
±p1 . . . pκ for distinct primes p1, . . . , pκ ∈ P\{2} and κ ∈ N0. Here κ = 0
means that k = ±2 or ±1, respectively.

For the sake of simplicity, I introduce the following notation. For fixed
pi1 , . . . , pil with 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ we put

˜p1 . . . pκ :=
p1 . . . pκ
pi1 . . . pil

.

Here we have ˜p1 . . . pκ = 1 if pi1 . . . pil = p1 . . . pκ or if κ = 0.
The main theorems are the following:

Theorem 2.1. For k = ±2p1 . . . pκ with primes p1, . . . , pκ ∈ P\{2},
Sk[ψ′] = {1 ·Q∗2, 2 ·Q∗2}
∪
{
pi1 . . . pil ·Q∗2, 2pi1 . . . pil ·Q∗2 : 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ,

∀i ∈ {i1, . . . , il} : pi ≡ 1, 5 (mod 8)

∧
[
∀i ∈ {i1, . . . , il} : pi ≡ 1 (mod 8)⇒

( ˜p1 . . . pκ(1 +
√−1)

pi

)
= 1
]

∧
[
∀j 6∈ {i1, . . . , il} :

(
pi1 . . . pil

pj

)
= 1 ∨

(
2pi1 . . . pil

pj

)
= 1
]}
.

Its F2-dimension satisfies dimF2Sk[ψ′] ≤ κ+ 1.

Theorem 2.2. For k = ±2p1 . . . pκ with primes p1, . . . , pκ ∈ P\{2},
Sk[ψ] = {±1 ·Q∗2}
∪
{
±pi1 . . . pil ·Q∗2 : 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ,

∀i ∈ {i1, . . . , il} : pi ≡ 1, 7 (mod 8)

∧
[
∀i ∈ {i1, . . . , il} : pi ≡ 1 (mod 8)⇒

( ˜p1 . . . pκ(1 +
√−1)

pi

)
= 1
]

∧
[
∀j 6∈ {i1, . . . , il} :

(
pi1 . . . pil

pj

)
= 1 ∨

(−pi1 . . . pil
pj

)
= 1
]}
.

Its F2-dimension satisfies dimF2Sk[ψ] ≤ κ+ 1.
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Theorem 2.3. For k = ±p1 . . . pκ with primes p1, . . . , pκ ∈ P\{2},
Sk[ψ′] = {1 ·Q∗2, 2 ·Q∗2}
∪
{
pi1 . . . pil ·Q∗2, 2pi1 . . . pil ·Q∗2 : 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ,

∀i ∈ {i1, . . . , il} : pi ≡ 1, 5 (mod 8)

∧
[
∀i ∈ {i1, . . . , il} : pi ≡ 1 (mod 8)⇒

( ˜p1 . . . pκ(1 +
√−1)

pi

)
= 1
]

∧
[
∀j 6∈ {i1, . . . , il} :

(
pi1 . . . pil

pj

)
= 1 ∨

(
2pi1 . . . pil

pj

)
= 1
]

∧ [pi1 . . . pil ≡ 5 (mod 8)⇒ k ≡ 3, 7 (mod 8)]
}
.

Its F2-dimension satisfies dimF2Sk[ψ′] ≤ κ+ 1.

Theorem 2.4. For k = ±p1 . . . pκ with primes p1, . . . , pκ ∈ P\{2},
Sk[ψ] = {±1 ·Q∗2}
∪
{
±pi1 . . . pil ·Q∗2 : 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ,

∀i ∈ {i1, . . . , il} : pi ≡ 1, 7 (mod 8)

∧
[
∀i ∈ {i1, . . . , il} : pi ≡ 1 (mod 8)⇒

( ˜p1 . . . pκ(1 +
√−1)

pi

)
= 1
]

∧
[
∀j 6∈ {i1, . . . , il} :

(
pi1 . . . pil

pj

)
= 1 ∨

(−pi1 . . . pil
pj

)
= 1
]}

∪
{
±2pi1 . . . pil ·Q∗2 : 0 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ,

∀i ∈ {i1, . . . , il} : pi ≡ 1, 7 (mod 8)

∧
[
∀i ∈ {i1, . . . , il} : pi ≡ 1 (mod 8)⇒

( ˜p1 . . . pκ(1 +
√−1)

pi

)
= 1
]

∧
[
∀j 6∈ {i1, . . . , il} :

(
2pi1 . . . pil

pj

)
= 1 ∨

(−2pi1 . . . pil
pj

)
= 1
]

∧ k ≡ 1, 5 (mod 8)
}
.

Its F2-dimension satisfies dimF2Sk[ψ] ≤ κ + 2. Here l = 0 means that
±2pi1 . . . pil ·Q∗2 is ±2 ·Q∗2 and that {i1, . . . , il} is the empty set.
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I shall only prove Theorem 2.1. The other theorems are proven by similar
arguments (see [Sc]).

P r o o f o f T h e o r e m 2.1. Our task is to decide, for a given d =
pi1 . . . pil , whether or not d ·Q∗2 resp. 2d ·Q∗2 is in the corresponding Selmer
group. To this end I must consider all rational numbers whose squarefree
part is equal to d resp. 2d. Of course, the numbers we have to consider
must be integers and must divide 2k2 or −4k2. In this situation we need an
appropriate notation:

For fixed pi1 , . . . , pil with 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ, I introduce
the power products

pα1
1 . . . pακκ and pβ1

1 . . . pβκκ

with

αj =
{

0 or 2 if j 6∈ {i1, . . . , il},
0 if j ∈ {i1, . . . , il},

and

βj =
{

2− αj if j 6∈ {i1, . . . , il},
0 if j ∈ {i1, . . . , il}.

The numbers pα1
1 . . . pακκ and pβ1

1 . . . pβκκ are squares, because αj , βj ∈ {0, 2}
for all j. They also satisfy

(pα1/2
1 . . . pακ/2κ ) · (pβ1/2

1 . . . pβκ/2κ ) = ˜p1 . . . pκ.

I will consider the Selmer groups for even numbers k of the form k =
2vp1 . . . pκ with p1, . . . , pκ ∈ P\{2} and v ∈ {±1}. The equation of the
elliptic curve Ek is then

Ek : y2 = x3 − 4vp1 . . . pκx
2 + 8p2

1 . . . p
2
κx.

For the Selmer group, I have the inclusion (5).
Ad Sk[ψ′]: Choose d = pi1 . . . pil for 1 ≤ l ≤ κ, 1 ≤ i1 < . . . < il ≤ κ.

Then, since d and 4d divide 8p2
1 . . . p

2
κ, the equations

n2 = pi1 . . . pilp
α1
1 . . . pακκ m4 − 4vp1 . . . pκm

2e2(9)

+ 8pi1 . . . pilp
β1
1 . . . pβκκ e4

= pi1 . . . pil [p
α1
1 . . . pακκ m4 − 4v ˜p1 . . . pκm

2e2 + 8pβ1
1 . . . pβκκ e4]

= pi1 . . . pil [(p
α1/2
1 . . . pακ/2κ m2 − 2vpβ1/2

1 . . . pβκ/2κ e2)2

+ 4pβ1
1 . . . pβκκ e4]

and

n2 = 4pi1 . . . pilp
α1
1 . . . pακκ m4 − 4vp1 . . . pκm

2e2(10)

+ 2pi1 . . . pilp
β1
1 . . . pβκκ e4
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have to be solved for m,n, e in Z2 and Zq for all q in {p1, . . . , pκ} and for
any α1, . . . , ακ as above. The equation (10) leads to a contradiction in Z2:
From 2 |n, it follows that 4 |n2. As the solutions m,n, e must be relatively
prime integers and as 2 - pi1 . . . pilp

β1
1 . . . pβκκ e4, the equation (10) implies the

contradiction

0 ≡ n2 ≡ 2 (mod 4).

Therefore, (10) has no solution in Z2.
Now I have to solve (9) in Z2 and in Zq with q ∈ {p1, . . . , pκ}. Here I

distinguish the two cases q ∈ {pi1 , . . . , pil} and q 6∈ {pi1 , . . . , pil}.
In Zpi for i ∈ {i1, . . . , il}: By Hensel’s lemma, the last equation in (9) is

soluble in Zpi if and only if the following conditions are satisfied:

1.
(−1
pi

)
= 1⇔ pi ≡ 1, 5 (mod 8) and

2.
(−2v ˜p1 . . . pκ(−1 +

√−1)
pi

)
= 1.

For pi ≡ 5 (mod 8) the Legendre symbol
(−1+

√−1
pi

)
takes both values

±1, depending on the choice of the root
√−1, so the last condition can

always be satisfied by a suitable choice of
√−1 for pi ≡ 5 (mod 8).

For pi ≡ 1 (mod 8), the equation
(−2v
pi

)
= 1 holds, and hence condition

2 is equivalent to

2a. pi ≡ 1 (mod 8)⇒
( ˜p1 . . . pκ(1 +

√−1)
pi

)
= 1.

In Zpj for j 6∈ {i1, . . . , il}: Again by Hensel’s lemma, the first equation in
(9) is soluble in Zpj if one of the following conditions is fulfilled, depending
on the choice of the αj :(

pi1 . . . pil
pj

)
= 1 ∨

(
2pi1 . . . pil

pj

)
= 1.

R e m a r k. To prove that d ∈ Sk[ψ′], one needs only one choice of
α1, . . . , ακ, so that the accompanying equation (9) has a solution in Zq
for q ∈ {2, p1, . . . , pκ}. But the existence of solutions in Z2 and Zpi for
i ∈ {i1, . . . , il} is independent of α1, . . . , ακ, so we can choose the αj in an
appropriate way that the above conditions are fulfilled, without changing
the other results.

In Z2, the first equation in (9) has a solution if and only if n2 ≡ 1
(mod 8). It follows from the above conditions for solutions in Zpi that
pi1 . . . pil ≡ 1, 5 (mod 8).

If pi1 . . . pil ≡ 1 (mod 8), then m = 1, e = 2 gives n2 ≡ 1 (mod 8), so
that there is a solution in Z2.
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If pi1 . . . pil ≡ 5 (mod 8), then m = 1, e = 1 gives n2 ≡ 1 (mod 8), so
that there is a solution in Z2.

On combining the above results we have proved Theorem 2.1.

Altogether, one derives from the rank equation (4) the coarse estimates:

Proposition 2.1. For even k, one has rk(Ek(Q)) ≤ 2κ. If k is odd , one
has rk(Ek(Q)) ≤ 2κ+ 1.

R e m a r k. The Selmer groups Sk[ψ′] and Sk[ψ] can become arbitrar-
ily large, a fact which can be shown in the following way. If we take k =
±2p1 . . . pκ with primes pi ≡ 5 (mod 8), then the three conditions in The-
orem 2.1 are satisfied for all products pi1 . . . pil . Hence the corresponding
Selmer group is

Sk[ψ′] ∼= (Z/2Z)κ+1.

If we have k = ±2p1 . . . pκ with pi ≡ 7 (mod 8), then the three conditions
in Theorem 2.2 are satisfied for all pi1 . . . pil , so we get

Sk[ψ] ∼= (Z/2Z)κ+1.

One can also see that if k = ±p1 . . . pκ with pi ≡ 5 (mod 8), then

Sk[ψ′] ∼=
{

(Z/2Z)κ if k > 0,
(Z/2Z)κ+1 if k < 0.

By looking at the last theorem, if k = ±p1 . . . pκ with pi ≡ 7 (mod 8), we
get

Sk[ψ] ∼=
{

(Z/2Z)κ+1 if k ≡ 7 (mod 8),
(Z/2Z)κ+2 if k ≡ 1 (mod 8).

Based on the above theorems, I developed an algorithm for computing
the Selmer groups for arbitrary z ∈ Q∗. After prime factorization and de-
termination of the squarefree part of z, it obtains a squarefree integer k and
uses the theorems to compute the Selmer groups for Ek ∼= Ez.

From the theory of Selmer groups corresponding to 2-isogenies, one can-
not determine but only estimate the rank of elliptic curves. For an exact
determination of the rank, one has to compute points of infinite order in the
Mordell–Weil group. This can be done in an analogous way as described in
[S-T]. I generalized their results to arbitrary rational k in [Sc]. The main
idea of this method is to look further at the equations which have to be
solved for computing the Selmer groups. Those equations can be “reduced”
in such a way that solutions of the new equations normally have smaller
absolute value than those of the old equations.

If, for a given k, the rank of the curve Ek over Q is greater than 0,
then one can find points in Ek(Q) by testing all those possible equations.
These are only finitely many, and their number depends on the different
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prime factors of k. However, one has to take into account the relation of
these equations to the Tate–Shafarevich group. If an equation for d · Q∗2
in the definition of the Selmer group (see Section 2.1) is everywhere locally
soluble, but has no solution in Q, then d ·Q∗2 is in the corresponding Tate–
Shafarevich group. Hence the equations which have to be solved are also
everywhere locally soluble, but not globally in Q. If such a situation occurs,
one is often unable to see whether the equation has no global solution,
that is, that the Tate–Shafarevich group is nontrivial, or one has to search
longer for a global solution. Stroeker and Top were able to prove that the
Tate–Shafarevich group is nontrivial in a special case (see [S-T]), which I
could not generalize.

By considering these equations, one determines a certain set of points of
infinite order in Ek(Q). The generating points of Ek(Q) are then identified
in this set by estimating the heights as described in [Zi] and searching for
generators in a certain range as explained in Proposition 7.2 of [Si]. The
estimation of the heights for the curves Ek is

−1
2

log |k| − 49
12

log 2 ≤ ĥ(P )− h(P ) ≤ 1
2

log |k|+ 2 log 2

where ĥ is the Néron–Tate height and h is the Weil height on Ek.
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