
ACTA ARITHMETICA
LXXVIII.3 (1997)

Fractional moments of the Riemann zeta-function

by

K. Ramachandra (Bombay and Bangalore)

To Professor Kannan Soundararajan
on his twenty-third birthday

1. Introduction. The object of this paper is to prove the following
theorem.

Theorem 1. Let k = pq−1 where p and q are integers subject to 1 ≤
p ≤ q(log(q + 1))−1/2. Let T ≥ H ≥ C0 log log(T k + 100) where C0 > 0 is a
certain large absolute constant. Then for T ≥ 10, we have

(1)
1
H

T+H\
T

|ζ(1/2 + it)|2k dt > C1(logH)k
2

where C1 > 0 is a certain absolute constant (C0 and C1 are effective).

R e m a r k 1. In place of (log(q+ 1))−1/2 we can have C2(log(q+ 1))−1/2

where C2 > 0 is any absolute constant. Then C0 and C1 depend on C2.

R e m a r k 2. The previous history of the theorem is as follows. First,
E. C. Titchmarsh considered the case H = T , and k any positive integer, of
(1) and proved that

lim sup
T→∞

((LHS)(RHS)−1) > 0.

Next I considered the case where k is half of any positive integer and proved
(1) (however with C1 depending possibly on k). Next D. R. Heath-Brown [1]
considered the case H = T and k any positive rational number and proved
(1) (however with C1 depending possibly on k). Next M. Jutila [4] considered
the case H = T and k = q−1 and proved (1) with C1 independent of k. For
all these references see also my book [6]. Two other excellent reference books
are [7] and [2].

R e m a r k 3. We use only “Euler product” in the proof of Theorem 1
and so its analogue goes through for L-functions of algebraic number fields,
Ramanujan’s zeta-function and so on.
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2. Some preliminaries to the proof

Theorem 2 (H. L. Montgomery and R. C. Vaughan [5]). Let H > 0,
N ≥ 1 be an integer , and a1, . . . , aN any N complex numbers. Then

H\
0

∣∣∣
∑

n≤N
ann

it
∣∣∣
2
dt =

∑

n≤N
(H +O(n))|an|2.

Moreover , the O-constant is absolute.

R e m a r k 1. Montgomery and Vaughan obtained an economical O-cons-
tant (see [6], p. 21, for a proof with some absolute constant).

R e m a r k 2. We use Theorem 2 with N something like N = H7/8 (H ≥
10) and for this choice there are much simpler methods of proving what we
want.

Theorem 3 (K. Ramachandra [6]). Let z = x+ iy be a complex variable
with |x| ≤ 1/4. Then:

(a) |exp((sin z)2)| ≤ 2 for all y.
(b) If |y| ≥ 2 we have

|exp((sin z)2)| ≤ 2(exp exp |y|)−1.

P r o o f. See [6], p. 38.

Theorem 4. Let q > 0 and a > 0 be real numbers and n any positive
integer. Consider the rectangle defined by

0 ≤ x ≤ (2n + 1)a, −R ≤ y ≤ R.
Let f(z) and ϕ(z) be two functions analytic inside this rectangle and let
|f(z)| and |ϕ(z)| be continuous on its boundary. Let

Ix =
R\
−R
|ϕ(z)| · |f(z)|1/q dy

and let
Q(α) = max(|ϕ(z)| · |f(z)|1/q)

taken over 0 ≤ x ≤ α, y = ±R. Then with bn = 2n + 1 we have

Ia ≤ (I0 + U)1/2(Ia + U)1/2−2−n−1
(Iabn + U)2−n−1

where U = 22(n+1)Q(abn)a.

P r o o f. See [6], p. 97. (Here we have replaced the interval (0, R) by
(−R,R) and the number q by 1/q.)

Theorem 5. Let w = u+ iv and s = σ + it be two complex variables,

K(w) = exp
((

sin
w

8A

)2)
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where A > 0 is a large constant , and let

f(s, w) = (K(w))qf0(s+ w)

where q (> 0) is any real number. Let K(w) and f0(s+ w) satisfy the con-
ditions of Theorem 4 with

ϕ(z) = K(z + a) and f(z) = f0(s+ z + a).

Then if we take R = τ we have, with bn = 2n + 1,

(2)
\

|v|≤τ
|f(s, w)|1/qu=0 dv ≤

( \
|v|≤τ

|f(s, w)|1/qu=−a dv +H−10
)1/2

×
( \
|v|≤τ

|f(s, w)|1/qu=0 dv +H−10
)1/2−2−n−1

×
( \
|v|≤τ

|f(s, w)|1/qu=abn−a dv +H−10
)2−n−1

provided U ≤ H−10.

Theorem 6. If the conditions of Theorem 5 are satisfied uniformly for
t belonging to an interval B ≤ t ≤ B + H1 with 0 ≤ H1 ≤ H, we have (2)
with

T
|v|≤τ . . . dv replaced by

T
(t)

T
|v|≤τ . . . dv dt and H−10 replaced by H−9.

Moreover , if

(3)
\

(t)

\
|v|≤τ

|f(s, w)|1/qu=0 dv dt ≥ H−9

then

(4)
\

(t)

\
|v|≤τ

|f(s, w)|1/qu=0 dv dt

≤ 2
( \

(t)

\
|v|≤τ

|f(s, w)|1/qu=−a dv dt+H−9
)2n/(2n+1)

×
( \

(t)

\
|v|≤τ

|f(s, w)|1/qu=a2n dv dt+H−9
)1/(2n+1)

.

P r o o f. Under the assumption (3) we can replace the second factor on
the RHS of (2) by

(
2
\

(t)

\
|v|≤τ

|f(s, w)|1/qu=0 dv dt
)1/2−2−n−1

.

This gives Theorem 6.
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Theorem 7. LHS of (4) is

�
B+H1−τ\
B+τ

|f0(σ + it)|1/q dt,

where the interval for t is (B,B + H1), provided 2τ ≤ H1. Also for any u
on RHS of (4) we have

\
(t)

\
|v|≤τ

. . . dv dt�
B+H1+τ\
B−τ

|f0(σ + it+ u)|1/q dt.

P r o o f. LHS of (4) equals

B+H1\
B

\
|v|≤τ

K(iv)|f0(σ + it+ iv)|1/q dv dt

=
\

(v)

K(iv)
( \

(t)

. . . dt
)
dv =

\
(v)

K(iv)
(B+H1−v\

B+v

. . . dt
)
dv

>
\

(v)

K(iv)
(B+H1−τ\

B+τ

. . . dt
)
dv =

( \
(v)

K(iv) dv
)(B+H1−τ\

B+τ

. . . dt
)

and this proves the first part of Theorem 7. The proof of the second part is
similar.

R e m a r k. Theorems 6 and 7 are stated here for the first time although
they are already implicitly contained in [6]. These are new versions of the
convexity.

Theorem 8 (D. R. Heath-Brown and M. Jutila [1], [4]). Let k (> 0) be
any real number. Then for 1/2 < σ ≤ 2, we have

∞∑
n=1

(dk(n))2n−2σ ≤ (ζ(2σ))k
2 ≤ Ak2

1 (σ − 1/2)−k
2
,

where A1 > 0 is an absolute constant. (Here dk(n) are defined as usual by
(ζ(s))k =

∑∞
n=1 dk(n)n−s, Re s ≥ 2.) Also let N ≥ 2 and 0 < k ≤ 1. Then

there exists an absolute constant A2 > 0 for which
∑

n≤N
(dk(n))2n−2σ ≥ A2(σ − 1/2)−k

2

provided

1/2 +A3(logN)−1 ≤ σ ≤ 2,

with an absolute constant A3 (> 0) which depends only on A2.
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R e m a r k. We can allow any (absolute) constant upper bound for k and
still prove the second part of the theorem.

P r o o f o f T h e o r e m 8. The first part follows from the inequal-
ity (dk(n))2 ≤ dk2(n). The second part (due essentially to D. R. Heath-
Brown [1]) can be proved as follows. For all δ > 0, (1 + δ)/2 ≤ σ < 2, we
have

∑

n≤N
(dk(n))2n−2σ ≥

∞∑
n=1

(dk(n))2|µ(n)|n−2σ
(

1−
(
n

N

)δ)

≥
∏
p

(
1 +

k2

p2σ

)
−N−δA1

(
σ − δ

2
− 1

2

)−k2

.

(Here and in the next line p is a symbol running over all primes and it should
not be confused with p in Theorem 1.) Here the product over p is[

exp
∑
p

{
log
(

1 +
k2

p2σ

)
− k2 log

(
1

1− p−2σ

)}]
(ζ(2σ))k

2
,

which exceeds A4(σ − 1/2)−k
2
. Thus

∑

n≤N
dk(n)n−2σ ≥ A4

(
σ − 1

2

)−k2{
1− A1

A4
N−δ

(
σ − 1/2

σ − (1 + δ)/2

)k2}
.

Here we set δ = σ − 1/2 and obtain for the RHS the lower bound

A4

(
σ − 1

2

)−k2{
1− A1

A4
N−δ2k

2
}
≥ A4

(
σ − 1

2

)−k2(
1− 2A1

A4
N1/2−σ

)

≥ A4

(
σ − 1

2

)−k2(
1− 2A1

A4
e−A3

)

= (A4 − 2A1e
−A3)

(
σ − 1

2

)−k2

and this proves the second part of Theorem 8.

Theorem 9. Let f(z) be analytic in |z| ≤ r. Then for any real k > 0,
we have

|f(0)|k ≤ 1
πr2

\
|z|≤r

\
|f(z)|k dx dy.

P r o o f. See [6], p. 34.

3. Proof of Theorem 1 (first step). The main object of this section
is to prove the following theorem. (From now on we assume that k = p/q
where p and q are integers subject to 1 ≤ p ≤ q(log(q + 1))−1/2.)
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Theorem 10. Let T ≥ H and H exceed a certain large positive absolute
constant. Then

(5) max
σ≥1/2+q(logH)−1

(
1
H

T+H\
T

|ζ(σ + it)|2k dt
)
≥ C2(logH)k

2

where C2 > 0 is an absolute constant (not to be confused with C2 of Re-
mark 1 below Theorem 1).

R e m a r k. If q ≥ (logH)1/100, then (logH)k
2

lies between two positive
constants and also for σ ≥ 2,

|ζ(σ + it)|−1 ≤ ζ(2) < 1 +
∞∑
n=2

(n(n− 1))−1 = 2

and so |ζ(σ+it)| ≥ 1/2. Hence |ζ(σ+it)|2k ≥ 2−4 = 1/16. Thus Theorem 10
is obvious in this case.

From now on till the end of this section we assume that 1 ≤ q ≤
(logH)1/100 and that for all σ ≥ 1/2 + q(logH)−1, we have

(6)
1
H

T+H\
T

|ζ(σ + it)|2kdt < C2(logH)k
2

where C2 (> 0) is a small constant. (Finally, we arrive at a contradiction.)
Note that assuming (6) it suffices to either get a contradiction or to prove

Theorem 10 with

1
H

T+H\
T

|ζ(σ + it)|2kdt

replaced by

1
H −H0

T+H−H0\
T+H0

|ζ(σ + it)|2kdt

(and C2 replaced by C∗2 (a small positive constant)) where H0 lies between
two (small absolute) positive constant multiples of H. Note also that the
maximum over any region is greater than or equal to the maximum taken
over a sub-region.

Lemma 1. For σ ≥ 1/2 + (q + 2)(logH)−1, T + 1 ≤ t ≤ T +H − 1, we
have

(7) |ζ(s)|2k ≤ H2.

P r o o f. Take the circle |z| ≤ (logH)−1, apply Theorem 9 to f(z) =
ζ(s+ z) and (7) follows.
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We next apply Theorems 5, 6 and 7 with

(8) f0(z) = (ζ(z))2p − (PN (z))2q

where

(9) PN (z) =
∑

n≤N
dk(n)n−z, N = H7/8.

From now on we assume σ ≥ 1/2 + (q + 2)(logH)−1.

Lemma 2. For H2 with 0 ≤ 2H2 ≤ H, the quantity

(10)
T+H−H2\
T+H2

|(ζ(σ + it))2p − (PN (σ + it))2q|q−1
dt

lies between

(11)
T+H−H2\
T+H2

|PN (σ + it)|2 dt− C2H(logH)k
2

and

(12)
T+H−H2\
T+H2

|PN (σ + it)|2 dt+ C2H(logH)k
2
.

P r o o f. For any two complex numbers z1 and z2 we show that

|z1|q
−1 − |z2|q

−1 ≤ |z1 − z2|q
−1 ≤ |z1|q

−1
+ |z2|q

−1
.

The latter inequality follows on raising both sides to the power q and using
|z1| + |z2| ≥ |z1 − z2|. The former is similar: we have to use |z1| ≤ |z2| +
|z1 − z2|.

Lemma 3. If H2 ≤ (1000)−1H, the quantity
TT+H−H2

T+H2
|PN (σ + it)|2 dt

lies between C3H(σ − 1/2)−k
2

and C4H(σ − 1/2)−k
2
, where C3 > 0 and

C4 > 0 are absolute constants (independent of C2) provided σ ≤ 2.

P r o o f. Apply Theorems 2 and 8.

Lemma 4. Let σ0 = 1/2+10q(logH)−1, a = Dq(logH)−1, s = σ0+a+it,
where D > 0 is any large absolute constant and T +H3 ≤ t ≤ T +H −H3,
where H3 is a small positive constant multiple of H. Then with τ equal to a
small positive constant multiple of H, we have\

(t)

\
|v|≤τ

|f(s, w)|1/qu=0 dv dt ≥ H−9,(13)

\
(t)

\
|v|≤τ

|f(s, w)|1/qu=0 dv dt ≥ C5H(logH)k
2
D−k

2
,(14)



262 K. Ramachandra\
(t)

\
|v|≤τ

|f(s, w)|1/qu=−a dv dt+H−9 ≤ C6H(logH)k
2

(15)

and

(16)
\

(t)

\
|v|≤τ

|f(s, w)|1/qu=a2n dv dt+H−9 ≤ C7H
1−a2n/(100q),

where a2n lies between 10 and 20. Here C5, C6 ≥ 1 and C7 ≥ 1 are positive
constants (since C2 can be fixed to be small) and D−k

2
exceeds a certain

positive absolute constant times C2 for the validity of (14).

P r o o f. This follows from Theorem 3 and assumption (6) and its conse-
quence (7). Note that qk

2
lies between two absolute positive constants. We

give some details in proving (16). We have

|f(s, w)|1/qu=a2n ≤ |K(w + a)| · |(ζ(s+ w + a))2p − (PN (s+ w + a))2q|1/qu=a2n

with N = H7/8 and

|K(w + a)| �
(

exp exp
|v|
8A

)−1

.

Also

|(ζ(s+ w + a))2p − (PN (s+ w + a))2q|u=a2n

= |((ζ(s+ w + a))p/q)2q − (PN (s+ w + a))2q|u=a2n

(where N = H7/8)

≤ |(ζ(s+ w + a))p/q − PN (s+ w + a)|u=a2n(100)2p+2q

�
( ∑

n≥N
n−10

)
(100)2p+2q � N−9(100)2p+2q = H−63/8(100)2p+2q.

Thus

|f(s, w)|1/qu=a2n �
(

exp exp
|v|
8A

)−1

H−63/(8q).

Finally
63
8q
≥ a2n

100q
since a2n ≤ 6300

8
.

These calculations prove (16).

Lemma 5. We have

C5D
−4H(logH)k

2

≤ 2(C6H(logH)k
2
)2n/(2n+1)(C7H

1−2na/(100q))1/(2n+1).

P r o o f. This follows from Theorem 6 and Lemma 4.
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Lemma 6. We have

H−2na(2n+1)−1(100q)−1 ≤ H−D(200 logH)−1 ≤ e−D/200

and 1
2 (2n + 1) ≤ 2n < 2n + 1.

P r o o f. Trivial.

Lemmas 5 and 6 end up with the contradiction

C5D
−4 ≤ 2C6C7e

−D/200

provided we fix C2 = D−100 and choose D to be large enough. Thus Theo-
rem 10 is completely proved.

4. Deduction of Theorem 1 from Theorem 10 (second and final
step). Actually our proof of Theorem 10 with a trivial modification gives

(17) max
σ≥1/2+q(logH)−1

(
1
H

T+H−H4\
T+H4

|ζ(σ + it)|2k dt
)
> C8(logH)k

2

where C8 > 0 is absolute and H4 is a small (absolute) positive constant
times H. We first prove

Theorem 11. If q ≥ (logH)1/100 then (1) is true.

P r o o f. We argue as we did after proving Lemma 1 but with f0(z) = ζ(z),
σ0 = 1/2, a = 10, n = 2. Note that (logH)k

2
lies between two absolute

positive constants. We use |ζ(σ + it)| � t1/2 uniformly for σ ≥ 1/2, t ≥ 10
and we see that we need the condition

(exp exp(C9H))−1T k ≤ H−11 (C9 > 0 is an absolute constant),

which is precisely the condition H ≥ C0 log log(T k + 100) of Theorem 1. We
need the condition H ≤ T for the bound on |ζ(σ + it)| mentioned above.

We only have to prove the following theorem.

Theorem 12. Let q ≤ (logH)1/100. Then (1) is true.

P r o o f. We use (17). We fix a to be the largest σ ≤ 2 with the property

1
H

T+H−H4\
T+H4

|ζ(σ + it)|2k dt > C8(logH)k
2

and σ0 to be 1/2. We argue as before with f0(z) = ζ(z), where n is such
that a2n lies between 10 and 20. Note that in this case\

(t)

\
|v|≤τ

|f(s, w)|1/qu=a2n dv dt+H−9
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does not exceed an absolute constant times H. We use |ζ(σ+ it)| � t1/2 for
σ ≥ 1/2 and t ≥ 10 and we see that we need the condition

(exp exp(C10H))−1T k ≤ H−11 (C10 > 0 is an absolute constant),

which is precisely the condition H ≥ C0 log log(T k + 100) of Theorem 1. We
need the condition H ≤ T for the bound on |ζ(σ + it)| mentioned above.

5. Concluding remarks. The new kernel K(w) is very useful. We note
that for |u| ≤ 200 it satisfies the relation

(18)
∞\
−∞
|K(u+ iv)| dv =

( ∞\
−∞

K(iv) dv
)(

1 +O

(
1
A

))

(for large A), which is not hard to verify. Using this we can prove the fol-
lowing theorem.

Theorem 13. Let a1, a2, . . . be any infinite sequence of complex numbers
and λ1, λ2, . . . any sequence of real numbers satisfying a1 = λ1 = 1, λn+1−λn
bounded both above and below by positive constants, and |an| bounded above
by a positive constant power of n. Suppose that

F (s) =
∞∑
n=1

anλ
−s
n

(which is certainly analytic in a half plane) can be continued in (σ ≥
1/2, T − H ≤ t ≤ T + 2H) and there satisfies the condition that M de-
fined by M = max |F (s)| satisfies log log(M + 100) = o(T ). Let k be any
positive real number which is less than an absolute (arbitrary) constant. Let
ε (> 0) be any constant. Then there exists a constant C11 = C11(ε) (> 0)
independent of k such that for all T ≥ 2H ≥ C11(ε) log log(M2k + 100), we
have

(19) min
σ≥1/2

(
1
H

T+H\
T

|F (σ + it)|2k dt
)
≥ 1− ε.

P r o o f. We argue as in the proof of Theorem 11 taking f0(z) = F (z),
σ0 = 1/2, a equal to a large constant depending on ε and n = 2. This leads
to the proof of theorem on using (18).

The application to the Riemann zeta-function is obvious. It runs as fol-
lows. (We use |ζ(σ + it)| � t1/2 for σ ≥ 1/2, t ≥ 10.)

Theorem 14. Let k be any positive number which is bounded above and
ε (> 0) any constant. Then there exists a constant C12(ε) (> 0) independent
of k such that for all H satisfying T ≥ H ≥ C12(ε) log log(T k + 100), we
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have

(20) min
σ≥1/2

(
1
H

T+H\
T

|ζ(σ + it)|2k dt
)
≥ 1− ε.

By taking H = T we recover the following special case.

Theorem 15 (A. Ivić and A. Perelli [3]). We have, for all k > 0,

(21)
1
T

2T\
T

|ζ(1/2 + it)|2k dt ≥ 1 + o(1)

uniformly in k as T →∞.

R e m a r k. The proof of Theorem 15 by Ivić and Perelli is completely
different.

Acknowledgements. The author is extremely grateful to the referee
for some comments which helped the author to correct some oversights.
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