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On a problem of Győry and Schinzel
concerning polynomials

by

L. Hajdu (Debrecen)

1. Introduction. In 1965, Posner and Rumsey [2] considered polynomi-
als that divide infinitely many trinomials. They made an attempt to deter-
mine all such polynomials but they could only partially solve this problem.
Further, they made a conjecture on polynomials which divide infinitely many
k-nomials. To formulate their conjecture we need to introduce the concept
of standard k-nomials. We remark that this concept in the form below is
due to Győry and Schinzel [1].

A polynomial P (x) with coefficients in a field of characteristic 0 which
is of the form

P (x) = xm1 +
k−1∑

i=2

cix
mi + ck with m1 > . . . > mk−1 > 0,

is called a standard k-nomial .
Posner and Rumsey [2] conjectured that if a polynomial with rational

coefficients divides infinitely many standard k-nomials overQ, then it divides
a non-zero polynomial of degree less than k in xr for some integer r ≥ 1.

For k = 2 the conjecture is clearly true. In their joint paper [1] Győry and
Schinzel proved the conjecture (in a stronger sense) for k = 3, and disproved
it for every k ≥ 4. For k = 3 they proved that if a polynomial P (x) with
rational coefficients divides more than a certain (explicitly given) number
of trinomials over Q, then P (x) divides a linear or quadratic polynomial in
xr for some integer r ≥ 1. Very recently their explicit constant has been
improved by H. P. Schlickewei and C. Viola (see their paper in this issue).
For k = 3, the above conjecture has been proved in [1] in a qualitative form
for polynomials over any field of characteristic 0 as well.
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Győry and Schinzel [1] disproved the conjecture for k ≥ 4 by means of
counterexamples. They showed that for every k ≥ 2 there exists a polynomial
P ∈ Q[x] that divides infinitely many standard quadrinomials over Q, but
does not divide any non-zero polynomial of degree less than k in xr for any
integer r ≥ 1. The quadrinomials constructed have the constant term zero.
For polynomials with the constant term non-zero the relevant problem is
harder. In [1] it is proved that for k ≥ 2 there is a P ∈ Q[x] that divides
infinitely many standard quintinomials over Q with the constant term non-
zero, but does not divide any non-zero polynomial of degree less than k
in xr over Q for any integer r ≥ 1. In these results the polynomials P (x)
are all trinomials. This fact led the authors of [1] to propose the following
problem.

Let K be a field of characteristic 0. Is it true that a polynomial P ∈ K[x]
with P (0) 6= 0 divides infinitely many standard k-nomials with the constant
term non-zero if and only if either P divides a non-zero polynomial of degree
less than k in xr for any integer r ≥ 1, or P divides a standard

[
k+1

2

]
-nomial?

The purpose of this paper is to considerably extend the set of counterex-
ample polynomials and to give a negative answer to this problem in case
k ≥ 6. Further, we propose a new problem, in which the remaining cases of
k = 4 and 5 are also included.

Theorem. Let K be a field of characteristic 0. For every positive number
C and for every integer k ≥ 6 there exists a standard (k−2)-nomial P (x) ∈
K[x] with P (0) 6= 0 and degP > C, which divides over K infinitely many
standard k-nomials with the constant term non-zero, but P (x) divides over
K neither any non-zero polynomial of degree less than degP in xr for any
integer r ≥ 1, nor any standard (k − 3)-nomial.

R e m a r k 1. For k ≥ 6, our Theorem gives a negative answer to the
problem of Győry and Schinzel, since in this case we have

[
k + 1

2

]
≤ k − 3.

R e m a r k 2. Following the method of the proof, one can see that the
polynomials P (x) in our Theorem can be effectively determined.

R e m a r k 3. We deduce as a trivial consequence of the Theorem that
for every integer n ≥ 4 there exists a standard n-nomial q(x) not dividing
any standard r-nomial with r < n. (For n ≤ 3 the statement is obvious.)

For the values k = 4 and k = 5 the problem of Győry and Schinzel
remains open. We guess that the real difficulties lie in the case when the
polynomial P , which divides infinitely many standard k-nomials, has more
than k − 2 non-zero coefficients. We propose the following.
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Problem. Let K be a field of characteristic 0, and k ≥ 4 be an integer.
Is it true that if the polynomial P (x) ∈ K[x] with non-zero constant term
divides infinitely many standard k-nomials with the constant term non-zero
then either P divides a non-zero polynomial of degree less than k in xr for
some integer r ≥ 1, or P divides a standard l-nomial q(x) such that l ≤ k−2
and q(x) divides infinitely many standard k-nomials?

For k = 2 and k = 3 the assertion formulated in the problem is true.

2. Proof. To prove our Theorem we need some lemmas.

Lemma 1. Every polynomial of the form

P (x) = xn+ar−4x
r−4+ar−5x

r−5+. . .+a1x+a0, ai ∈ Q, i = 0, . . . , r−4,

with a0 6= 0, r ≥ 4, n ≥ r − 3 divides infinitely many standard r-nomials
over Q with non-zero constant term.

P r o o f. The statement is obvious, since for every non-zero a ∈ Q the
polynomial (x+a)P (x) is clearly a standard r-nomial with non-zero constant
term.

Lemma 2. Let

P (x) = xp+ap−1x
p−1+ap−2x

p−2+. . .+a1x+a0, ai ∈ Q, i = 0, . . . , p−1,

where p is a prime. If P is irreducible over Q and has two roots in C with
different absolute values, then P does not divide any non-zero polynomial of
degree less than degP in xr over Q for any integer r ≥ 1.

P r o o f. This is a simple consequnce of the proof of Theorems 3A and
3B in [1]. However, for convenience of the reader we repeat here the main
steps of the proof.

Suppose that the polynomial P satisfies the conditions of Lemma 2, and
for some polynomial s(x) in Q[x] with t = deg s < degP and for some
integer r ≥ 1, P (x) divides s(xr) over Q. Since P (x) is irreducible, we may
assume that s(x) is also irreducible over Q. Denote by α1, . . . , αp the roots
of P (x) and by β1, . . . , βt the roots of s(x) in C. Hence x−α1 divides xr−βj
for some j (1 ≤ j ≤ t) over the field of algebraic numbers. Thus we have

(1) αr1 = βj ,

whence βj ∈ Q(α1). But the field Q(α1) is of degree p over Q, where p is
a prime. This implies that βj is either a rational number, or is of degree p.
However, the latter case cannot hold, because βj , being a root of s(x), is of
degree less than p. This implies that βj ∈ Q and t = 1. Consequently, from
(1) it follows that

αri = αr1 for i = 1, . . . , p.
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But this is a contradiction, because P (x) has two roots with different abso-
lute values, and Lemma 2 follows.

The following lemma can be regarded as a generalization of a modified
version of Lemma 2 in [2].

Lemma 3. Let l be a natural number. Suppose that a polynomial P (x)
has rational coefficients with P (0) 6= 0, and ϑ1, . . . , ϑl are roots of P (x) in
C with the property

|ϑi+1|
|ϑi| <

1
l!

for i = 1, . . . , l − 1.

Then P (x) does not divide any standard l-nomial over Q.

P r o o f. Suppose, to the contrary, that P (x) divides a standard l-nomial

xn1 + an2x
n2 + . . .+ anl−1x

nl−1 + anl , ani ∈ Q, i = 2, . . . , l, anl 6= 0,

over Q. In this case the determinant

D =

∣∣∣∣∣∣∣

ϑn1
1 ϑn2

1 . . . ϑ
nl−1
1 1

ϑn1
2 ϑn2

2 . . . ϑ
nl−1
2 1

. . . . . . . . . . . . . . . . . . . . . . . .
ϑn1
l ϑn2

l . . . ϑ
nl−1
l 1

∣∣∣∣∣∣∣

must vanish. Expanding D we get a sum consisting of l! summands of the
form

±ϑn1
i1
ϑn2
i2
. . . ϑ

nl−1
il−1

,

where

(2) ij 6= ik if j 6= k, and {i1, . . . , il−1} ⊂ {1, . . . , l}.
We will prove that every summand can be written in the form

(3) ±ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1

l∏

i,j=1
i<j

(
ϑj
ϑi

)kij
,

where the exponents kij are non-negative integers. We note that in the case
when kij = 0 for 1 ≤ i < j ≤ l, we obtain just the summand

(4) ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1 .

It suffices to deal with the case when {i1, . . . , il−1} = {1, . . . , l − 1} in (2),
because the summand

±ϑn1
i1
. . . ϑ

nj−1
ij−1

ϑ
nj
l ϑ

nj+1
ij+1

. . . ϑ
nl−1
il−1
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can be written as

±ϑn1
i1
. . . ϑ

nj−1
ij−1

ϑ
nj
ij
ϑ
nj+1
ij+1

. . . ϑ
nl−1
il−1

(
ϑl
ϑij

)nj
,

and nj > 0. Observe that if a summand

(5) ±ϑn1
i1
ϑn2
i2
. . . ϑ

nl−1
il−1

,

where (i1, . . . , il−1) is a permutation of (1, . . . , l − 1) with ij > ik and nj <
nk, can be written in the form (3), then the summand S obtained from (5)
by exchanging the exponents of ϑij and ϑik can also be written in the form
(3). Indeed, for this summand S we have

S = ±ϑn1
i1
ϑn2
i2
. . . ϑ

nl−1
il−1

(
ϑij
ϑik

)nk−nj
,

and as the summand (5) can be written in the form (3), by nk − nj > 0 the
same holds for the summand S. However, every summand can be obtained
(up to sign) from the summand (4) with such changes of the exponents of
the roots. Namely, let T be an arbitrary summand having the form

T = ±ϑni11 ϑ
ni2
2 . . . ϑ

nil−1
l−1 ,

where (i1, . . . , il−1) is a permutation of (1, . . . , l− 1). We give a sequence of
summands, with the property that every summand of the sequence is clearly
obtained from the previous one by the above type changes of the exponents
of two roots. We start with the summand (4). By changing the exponents
of adjacent roots only, from (4) we can get the summand

ϑ
ni1
1 ϑn1

2 ϑn2
3 . . . ϑ

ni1−2

i1−1 ϑ
ni1−1

i1
ϑ
ni1+1

i1+1 . . . ϑ
nl−1
l−1 ,

where the exponent of ϑ1 is the same as in the summand T . Moreover, for
2 ≤ i < j ≤ l − 1 the exponent of ϑi is less than the exponent of ϑj .
(The summand (4) also has this property, for 1 ≤ i < j ≤ l − 1.) Now we
continue with the exponent ni2 of ϑ2 in T . By changing again the exponents
of adjacent roots only, we can get the summand

ϑ
ni1
1 ϑ

ni2
2 ϑn1

3 . . . ϑ
ni1−3

i1−1 ϑ
ni1−2

i1
ϑ
ni1
i1+1 . . . ϑ

ni2−2

i2−1 ϑ
ni2−1

i2
ϑ
ni2+1

i2+1 . . . ϑ
nl−1
l−1 ,

where the exponents of ϑ1 and ϑ2 are the same as in the summand T .
Moreover, for 3 ≤ i < j ≤ l− 1 the exponent of ϑi is less than the exponent
of ϑj . (Here we assumed that i1 < i2, but the opposite case is similar.) Now
we continue with ni3 , and so on. Obviously, the last element of the sequence
is the arbitrarily chosen summand T (up to sign), thus every summand can
be transformed into the form (3). Now we can cancel out (4) from each
summand of the expansion of the determinant D to obtain

D = ϑn1
1 ϑn2

2 . . . ϑ
nl−1
l−1 (S1 + S2 + . . .+ Sl!),
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where for t = 1, . . . , l!, St is of the form

±
l∏

i,j=1
i<j

(
ϑj
ϑi

)kij
.

Here the exponents kij are non-negative integers, which are not all zero,
except say S1, for which S1 = 1 holds. However, by the assumption made
on the quotients |ϑi+1|/|ϑi|, i = 1, . . . , l− 1, we have |S1 + . . .+ Sl!| > 1/l!.
Hence D 6= 0, which is a contradiction, and Lemma 3 follows.

Lemma 4. Let l and t be integers with l ≥ 2 and t ≥ 3. Let ε0 ∈ [0, 2],
εi ∈ [0, 1], i = 1, . . . , l be rational numbers. Then for every natural number
n with

n > N =
(2l2 + l + 1) log t

log (tl + 1)− log tl

and for every integer r with 0 ≤ r ≤ l the polynomial

P (x) = xn −
l∑

j=0

tjn
∏l
i=0, i 6=j(x− ti)∏l
i=0, i 6=j(tj − ti)

+ εlx
l + . . .+ ε1x+ ε0

has a (real) root in the open interval (tr − 1, tr + 1), and P (0) 6= 0.

P r o o f. Let l, t, εi be fixed for i = 0, . . . , l. First we prove that if n >
N1 = 4l2 + 4l + 2 then for 0 ≤ r < l,

(6) P (tr − 1)P (tr + 1) < 0.

To do this, we show that in this case the sign of P (tr ± 1) is “ruled” by the
term

m(x) = tln
∏l−1
i=0(x− ti)∏l−1
i=0(tl − ti)

,

that is,

(7) sgn(P (tr ± 1)) = sgn(m(tr ± 1)).

For the absolute value of m(tr ± 1) we have

|m(tr ± 1)| > tln−l
2
.

On the other hand, by a simple computation we get

|P (tr ± 1)−m(tr ± 1)| < tln−n/2+l2+2l+1,

which proves (7). Since m(tr + 1)m(tr − 1) < 0 is trivial, (6) is proved for
these values of r.

Now we turn to the case r = l. Clearly we have

P (tl + 1) > (tl + 1)n − (l + 1)tln+l2 ,
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but the right hand side of this inequality is positive if

n > N2 =
(l2 + l) log t

log (tl + 1)− log tl
.

Further, we have

P (tl − 1) < tl
2+l+1(tl − 1)

n − tln−l2 ,
with negative right hand side if

n > N3 =
(2l2 + l + 1) log t

log tl − log (tl − 1)
.

This proves that if n > max{N1, N2, N3}, then the polynomial P (x) has
the desired properties (P (0) 6= 0 follows from (6) with r = 0). However,
N > max{N1, N2, N3}, and Lemma 4 follows.

Lemma 5. Let K be a field of characteristic 0, let P (x) = adx
d + . . . +

a1x+a0 be a polynomial with rational coefficients and let n be an integer. If
P (x) does not divide any standard n-nomial with rational coefficients over
Q, then P (x) does not divide over K any standard n-nomial with coefficients
in K. Moreover , if s is an integer with the property that P (x) does not divide
any non-zero polynomial of degree less than s in xr for any integer r ≥ 1
with rational coefficients over Q, then P (x) does not divide over K any
non-zero polynomial of degree less than s in xr for any integer r ≥ 1 with
coefficients in K.

P r o o f. We only prove here the first part of the statement, the second
part can be proved in a similar way.

We can suppose that d ≥ n, otherwise Lemma 5 is trivial. In the rest of
the proof of Lemma 5, by a non-trivial coefficient of a polynomial we will
mean a coefficient of a non-constant term of this polynomial. Suppose that
for some fixed integer n the polynomial P (x) does not divide any standard
n-nomial over Q. This means that for any integer m and for any non-zero
polynomial T (x) ∈ Q[x] of degree at most m, the polynomial P (x)T (x) has
at least n non-zero non-trivial coefficients. This property can be formulated
in the following way. (Without loss of generality we may suppose that m ≥
d.) Consider the m+ 1 coefficients of the polynomial T (x) as variables. The
fact that P does not divide any standard n-nomial over Q means that among
the non-trivial coefficients of P (x)T (x) there are at most m+d−n which are
0. In other words, fixing any m+ d− n non-trivial coefficients of P (x)T (x),
and setting them equal to 0, the resulting homogeneous linear system of
equations (the variables are the coefficients of T ) is not solvable over Q. But
this implies that this system of equations is not solvable over K, and (the
first part of) Lemma 5 follows.
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Now we are in a position to prove our Theorem.

P r o o f o f t h e T h e o r e m. By Lemma 5 we can suppose that K = Q.
Let k be an integer with k ≥ 6 and let L = k − 4. Let t be an integer with

(8) t > 2(L+ 1)! + 1.

Let n be a prime with

n > max
{
C,

(2L2 + L+ 1) log t
log (tL + 1)− log tL

}
,

where C is an arbitrary positive number. Denote by Q(x) the polynomial

xn −
L∑

j=0

tjn
∏L
i=0, i 6=j(x− ti)∏L
i=0, i 6=j(tj − ti)

.

From Eisenstein’s theorem it follows that there exist rational numbers
ε0, ε1, . . . , εL with ε0 ∈ [0, 2], εi ∈ [0, 1], i = 1, . . . , L such that the polyno-
mial P (x) = Q(x) + εLx

L + . . .+ ε1x+ ε0 is irreducible over Q. Indeed, the
rational numbers εi, i = 0, . . . , L can be chosen in such a way that the above
defined polynomial P (x) has integer coefficients, and that the coefficients of
P (x), except its leading coefficient, are even, but its constant term will not
be divisible by four. Now it follows from Eisenstein’s theorem that the poly-
nomial P (x) so obtained is irreducible over Q. (At this point we remark that
the coefficients of the polynomial Q are in fact integers. This could be easily
proved; however, it is not needed in the proof of our Theorem, and we omit
the details.) By Lemma 4 for every integer r with 0 ≤ r ≤ L, P (x) has a
root ϑr in the interval (tr − 1, tr + 1), and condition (8) implies that for the
quotients of these roots we have

|ϑr+1|
|ϑr| <

1
(L+ 1)!

, r = 0, . . . , L− 1.

Hence, by Lemma 3, P (x) does not divide any (k−3)-nomial overQ. Further,
Lemma 2 implies that P (x) does not divide any polynomial of degree less
than n in xr for any integer r ≥ 1. On the other hand, by Lemma 3,
P (x) is clearly a standard (k− 2)-nomial with non-zero constant term, and
from Lemma 1 it follows that P (x) divides infinitely many standard k-
nomials with non-zero constant term over Q. The proof of the Theorem is
now complete.
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