# Pascal's triangle (mod 9) 

by<br>James G. Huard (Buffalo, N.Y.),<br>Blair K. Spearman (Kelowna, B.C.) and Kenneth S. Williams (Ottawa, Ont.)

1. Introduction. Let $n$ denote a nonnegative integer. The $n$th row of Pascal's triangle consists of the $n+1$ binomial coefficients

$$
\binom{n}{0} \quad\binom{n}{1} \quad\binom{n}{2} \ldots\binom{n}{n} .
$$

We denote by $N_{n}(t, m)$ the number of binomial coefficients in the $n$th row of Pascal's triangle which are congruent to $t$ modulo $m$, where $t$ and $m$ are integers with $m \geq 2$. Explicit formulae for $N_{n}(t, m)$ for certain values of $t$ and $m$ have been given by a number of authors, for example $m=2$ (Glaisher [3]), $m=3$ (Hexel and Sachs [5]), $m=4$ (Davis and Webb [2], Granville [4]), $m=5$ (Hexel and Sachs [5]), $m=8$ (Granville [4], Huard, Spearman and Williams [6]), and $m=p$ (prime) (Hexel and Sachs [5], Webb [10]).

In this paper we treat the case $m=9$. We determine explicit formulae for $N_{n}(t, 9)$ for $t=0,1,2, \ldots, 8$; see the Theorem in Section 2.

We use throughout the 3 -ary representation of $n$, namely,

$$
\begin{equation*}
n=a_{0}+a_{1} 3+a_{2} 3^{2}+\ldots+a_{l} 3^{l}=a_{0} a_{1} a_{2} \ldots a_{l}, \tag{1.1}
\end{equation*}
$$

where $l \geq 0$, each $a_{i}=0,1$ or 2 , and $a_{l}=1$ or 2 unless $n=0$ in which case $l=0$ and $a_{0}=0$. We denote by $r$ an arbitrary integer between 0 and $n$ inclusive, and we suppose that the 3 -ary representation of $r$ is (with additional zeros at the right hand end if necessary) $r=b_{0} b_{1} \ldots b_{l}$. From a theorem of Kummer [8, Lehrsatz, pp. 115-116] (proved in 1852), we can

[^0]deduce the exact power of 3 dividing $\binom{n}{r}$, namely,
\[

$$
\begin{equation*}
3^{c(n, r)} \|\binom{ n}{r}, \tag{1.2}
\end{equation*}
$$

\]

where $c(n, r)$ is the number of carries when adding the 3 -ary representations of $r$ and $n-r$ in base 3. A special case of a theorem of Lucas [9, p. 52] (proved in 1878) gives the residue of $\binom{n}{r}$ modulo 3, namely,

$$
\begin{equation*}
\binom{n}{r} \equiv\binom{a_{0}}{b_{0}}\binom{a_{1}}{b_{1}} \ldots\binom{a_{l}}{b_{l}}(\bmod 3), \tag{1.3}
\end{equation*}
$$

with the usual interpretation that $\binom{a_{i}}{b_{i}}=0$ if $b_{i}>a_{i}$. If $3 \nmid\binom{n}{r}$ (equivalently $c(n, r)=0$ ) the residue of $\binom{n}{r}$ modulo 9 follows from a theorem of Granville [4, Proposition 2, p. 326] (proved in 1992), namely, if $3 \nmid\binom{n}{r}$ and $l \geq 1$ then

$$
\begin{equation*}
\binom{n}{r} \equiv \frac{\binom{a_{0}+3 a_{1}}{b_{0}+3 b_{1}}\binom{a_{1}+3 a_{2}}{b_{1}+3 b_{2}} \ldots\binom{a_{l-1}+3 a_{l}}{b_{l-1}+3 b_{l}}}{\binom{a_{1}}{b_{1}} \ldots\binom{a_{l-1}}{b_{l-1}}}(\bmod 9) \tag{1.4}
\end{equation*}
$$

with the convention that when $l=1$ the denominator is the empty product $=$ 1. Further, if $3 \|\binom{ n}{r}$ (equivalently $c(n, r)=1$ ), then a theorem of Kazandzidis [7] gives the residue of $\binom{n}{r}$ modulo 9 , namely,

$$
\begin{equation*}
\binom{n}{r} \equiv-3 \frac{a_{0}!a_{1}!\ldots a_{l}!}{b_{0}!b_{1}!\ldots b_{l}!c_{0}!c_{1}!\ldots c_{l}!}(\bmod 9), \tag{1.5}
\end{equation*}
$$

where $c_{0} c_{1} \ldots c_{l}$ is the 3 -ary representation of $n-r$. Both (1.4) and (1.5) also follow from an extension of Lucas' theorem given by Davis and Webb [1].

We conclude this introduction by giving the following formulae of Hexel and Sachs [5]: if $n_{1}$ denotes the number of 1 's and $n_{2}$ the number of 2 's in the string $a_{0} a_{1} \ldots a_{l}$ then

$$
\begin{aligned}
& N_{n}(0,3)=n+1-2^{n_{1}} 3^{n_{2}}, \\
& N_{n}(1,3)=\frac{1}{2}\left(2^{n_{1}} 3^{n_{2}}+2^{n_{1}}\right), \\
& N_{n}(2,3)=\frac{1}{2}\left(2^{n_{1}} 3^{n_{2}}-2^{n_{1}}\right) .
\end{aligned}
$$

2. Statement of results. If $S$ is a string of 0 's, 1 's and 2 's, we denote by $n_{S}=n_{S}(\mathbf{a})$ the number of occurrences of $S$ in the string $\mathbf{a}=a_{0} a_{1} \ldots a_{l}$. Thus, for example, if $a_{0} a_{1} \ldots a_{l}=01112010012$ then $n_{11}=2, n_{12}=2$, $n_{001}=1$, and $n_{121}=0$. Making use of the results (1.2)-(1.5), we prove
the following theorem in Sections 4 and 5 . We note that for a nonnegative integer $m$,

$$
0^{m}= \begin{cases}1 & \text { if } m=0 \\ 0 & \text { if } m>0\end{cases}
$$

## Theorem.

$$
\begin{aligned}
N_{n}(0,9)= & n+1-2^{n_{1}} 3^{n_{2}}-n_{01} 2^{n_{1}} 3^{n_{2}}-n_{02} 2^{n_{1}+2} 3^{n_{2}-1} \\
& -n_{11} 2^{n_{1}-2} 3^{n_{2}}-n_{12} 2^{n_{1}} 3^{n_{2}-1}
\end{aligned}
$$

For $t=3,6$,

$$
\begin{aligned}
N_{n}(t, 9)= & n_{01} 2^{n_{1}-1}\left(3^{n_{2}}-(-1)^{t}\right)+n_{02} 2^{n_{1}+1}\left(3^{n_{2}-1}+(-1)^{t}\right) \\
& +n_{11} 2^{n_{1}-3}\left(3^{n_{2}}+(-1)^{t}\right)+n_{12} 2^{n_{1}-1}\left(3^{n_{2}-1}-(-1)^{t}\right)
\end{aligned}
$$

For $t=1,2,4,5,7,8$,

$$
\begin{aligned}
N_{n}(t, 9)= & \frac{1}{6}\left\{2^{n_{1}} 3^{n_{2}}+(-1)^{\operatorname{ind}_{2} t} 2^{n_{1}}\right. \\
& +(-1)^{\operatorname{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}+1} \operatorname{Re}(X) \\
& \left.+0^{n_{122}}(-1)^{n_{11}} 2^{n_{1}-n_{11}+1} 3^{n_{22}-n_{122}} \operatorname{Re}(Y)\right\}
\end{aligned}
$$

where $\operatorname{ind}_{2} t$ denotes the unique integer $j$ such that $t \equiv 2^{j}(\bmod 9), 0 \leq j \leq$ 5,

$$
\begin{aligned}
X= & \beta^{\operatorname{ind}_{2} t-n_{11}-n_{12}+n_{121}-n_{122}}(2-\beta)^{n_{21}-n_{121}} \\
& \times(3+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
Y= & \beta^{-\operatorname{ind}_{2} t+n_{11}}(1-\beta)^{n_{21}-n_{121}}(2+\beta)^{n_{2}-n_{21}-n_{22}}(1+2 \beta)^{n_{121}}
\end{aligned}
$$

and $\beta=\exp (2 \pi i / 3)$.
For $n=0,1, \ldots, 8$ Table 1 gives the values of the expressions involving $n, n_{1}, n_{2}, n_{01}, n_{02}, n_{11}, n_{12}, n_{21}, n_{22}, n_{121}, n_{122}$ occurring on the right hand sides of the formulae for $N_{n}(t, 9)$ given in the Theorem. Clearly $n_{121}=$ $n_{122}=0$ for $n=0,1, \ldots, 8$.

Table 1

|  |  |  |  |  |  |  |  |  |  |  | ght <br> Th | ha <br> heor |  | $\begin{aligned} & \text { sid } \\ & \text { for } \end{aligned}$ | $\mathrm{s} \text { of }$ | $\mathrm{fc}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $\begin{gathered} n \text { in } \\ \text { base } 3 \end{gathered}$ | $n_{1}$ | $n_{2}$ | $n_{01}$ | $n_{02}$ | $n_{11}$ | $n_{12}$ | $n_{21}$ | $n_{22}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 01 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 4 | 11 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | 0 | 0 |
| 5 | 21 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 6 | 02 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 4 | 0 | 0 |
| 7 | 12 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | 2 |
| 8 | 22 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 1 | 2 |

The first nine rows of Pascal's triangle $(\bmod 9)$ are

| 0 | 1 |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 |  |  |  |  |  |  |  |
| 2 | 1 | 2 | 1 |  |  |  |  |  |  |
| 3 | 1 | 3 | 3 | 1 |  |  |  |  |  |
| 4 | 1 | 4 | 6 | 4 | 1 |  |  |  |  |
| 5 | 1 | 5 | 1 | 1 | 5 | 1 |  |  |  |
| 6 | 1 | 6 | 6 | 2 | 6 | 6 | 1 |  |  |
| 7 | 1 | 7 | 3 | 8 | 8 | 3 | 7 | 1 |  |
| 8 | 1 | 8 | 1 | 2 | 7 | 2 | 1 | 8 | 1 |

From this triangle we deduce easily the values of $N_{n}(t, 9)$ for $n=0,1, \ldots, 8$ and $t=0,1, \ldots, 8$. These values are in agreement with those in Table 1 so the Theorem holds for $n=0,1, \ldots, 8$. Thus in the proof of the Theorem in Sections 4 and 5 , we may suppose that $n \geq 9$, so that $l \geq 2$.

In the next section we evaluate a sum which will be used in the determination of $N_{n}(t, 9)(3 \nmid t)$ in Section 4.
3. Evaluation of the $\operatorname{sum} S(\mathbf{c} ; \alpha)$. Let $k$ be a positive integer. Let $\mathbf{c}=c_{0} c_{1} \ldots c_{k}$ be a string of length $k+1(\geq 2)$ with each $c_{i}=0,1,2$. Let $\mathbf{d}=d_{0} d_{1} \ldots d_{k}$ be a string of length $k+1$ with each $d_{i}=0,1,2$ and $d_{i} \leq c_{i}$. As $0 \leq d_{i} \leq c_{i} \leq 2(i=0,1, \ldots, k)$ we have

$$
\binom{c_{i}}{d_{i}} \not \equiv 0(\bmod 3) \quad(i=0, \ldots, k)
$$

and by Lucas' theorem (see (1.3))

$$
\binom{c_{i-1}+3 c_{i}}{d_{i-1}+3 d_{i}} \equiv\binom{c_{i-1}}{d_{i-1}}\binom{c_{i}}{d_{i}} \not \equiv 0(\bmod 3) \quad(i=1, \ldots, k)
$$

so that

$$
\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}\binom{c_{1}+3 c_{2}}{d_{1}+3 d_{2}} \ldots\binom{c_{k-1}+3 c_{k}}{d_{k-1}+3 d_{k}}}{\binom{c_{1}}{d_{1}} \ldots\binom{c_{k-1}}{d_{k-1}}} \not \equiv 0(\bmod 3)
$$

where the denominator is understood to be the empty product $(=1)$ when $k=1$.

Thus we can define $e(\mathbf{c}, \mathbf{d})=1,2,4,5,7,8$ by

$$
\begin{equation*}
e(\mathbf{c}, \mathbf{d}) \equiv \frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}\binom{c_{1}+3 c_{2}}{d_{1}+3 d_{2}} \ldots\binom{c_{k-1}+3 c_{k}}{d_{k-1}+3 d_{k}}}{\binom{c_{1}}{d_{1}} \ldots\binom{c_{k-1}}{d_{k-1}}}(\bmod 9) \tag{3.1}
\end{equation*}
$$

We set

$$
i(\mathbf{c}, \mathbf{d})=0,1,2,3,4,5 \quad \text { according as } \quad e(\mathbf{c}, \mathbf{d})=1,2,4,8,7,5
$$

so that

$$
\begin{equation*}
i(\mathbf{c}, \mathbf{d})=\operatorname{ind}_{2}(e(\mathbf{c}, \mathbf{d})) \tag{3.2}
\end{equation*}
$$

Then, for any sixth root of unity $\alpha$, we define the sum $S(\mathbf{c} ; \alpha)$ by

$$
\begin{equation*}
S(\mathbf{c} ; \alpha)=\sum_{d_{0}=0}^{c_{0}} \ldots \sum_{d_{k}=0}^{c_{k}} \alpha^{i(\mathbf{c}, \mathbf{d})} \tag{3.3}
\end{equation*}
$$

The objective of this section is to evaluate the sum $S(\mathbf{c} ; \alpha)$ explicitly. This evaluation will be used in Section 4 to determine $N_{n}(t, 9)$ for $3 \nmid t$.

We denote by $\mathbf{c}^{\prime}$ the substring of $\mathbf{c}=c_{0} c_{1} \ldots c_{k}$ formed by removing the first term, that is, $\mathbf{c}^{\prime}=c_{1} \ldots c_{k}$. Our first lemma relates $i(\mathbf{c}, \mathbf{d})$ and $i\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)$ modulo 6 .

Lemma 1. For $k \geq 2$ we have

$$
i(\mathbf{c}, \mathbf{d}) \equiv \operatorname{ind}_{2}\left\{\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}{\binom{c_{1}}{d_{1}}}\right\}+i\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)(\bmod 6)
$$

Proof. From (3.1) we have

$$
e(\mathbf{c}, \mathbf{d}) \equiv \frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}{\binom{c_{1}}{d_{1}}} e\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)(\bmod 9)
$$

Thus

$$
\begin{aligned}
i(\mathbf{c}, \mathbf{d}) & =\operatorname{ind}_{2}(e(\mathbf{c}, \mathbf{d})) \\
& =\operatorname{ind}_{2}\left(\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}{\binom{c_{1}}{d_{1}}} e\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)\right) \\
& \equiv \operatorname{ind}_{2}\left\{\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}{\binom{c_{1}}{d_{1}}}\right\}+\operatorname{ind}_{2}\left(e\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)\right)(\bmod 6)
\end{aligned}
$$

$$
\equiv \operatorname{ind}_{2}\left\{\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}{\binom{c_{1}}{d_{1}}}\right\}+i\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)(\bmod 6)
$$

Our second lemma gives a relationship between $S(\mathbf{c} ; \alpha)$ and $S\left(\mathbf{c}^{\prime} ; \alpha\right)$ if $c_{0} c_{1} \neq 12$ and between $S(\mathbf{c} ; \alpha)$ and $S\left(\mathbf{c}^{\prime \prime} ; \alpha\right)$ if $c_{0} c_{1}=12$, where $\mathbf{c}^{\prime \prime}=\left(\mathbf{c}^{\prime}\right)^{\prime}=$ $c_{2} \ldots c_{k}$.

LEMmA 2. For $k \geq 2$, we have $S(\mathbf{c} ; \alpha)=f\left(c_{0} c_{1} ; \alpha\right) S\left(\mathbf{c}^{\prime} ; \alpha\right)$, where

$$
f\left(c_{0} c_{1} ; \alpha\right)= \begin{cases}1 & \text { if } c_{0}=0  \tag{3.4}\\ 2 & \text { if } c_{0} c_{1}=10 \\ 1+\alpha^{2} & \text { if } c_{0} c_{1}=11 \\ 2+\alpha & \text { if } c_{0} c_{1}=20 \\ 2+\alpha^{5} & \text { if } c_{0} c_{1}=21 \\ 2+\alpha^{3} & \text { if } c_{0} c_{1}=22\end{cases}
$$

For $k \geq 3$, we have $S(\mathbf{c} ; \alpha)=g\left(c_{0} c_{1} c_{2} ; \alpha\right) S\left(\mathbf{c}^{\prime \prime} ; \alpha\right)$, where

$$
g\left(c_{0} c_{1} c_{2} ; \alpha\right)= \begin{cases}2\left(1+\alpha^{3}+\alpha^{4}\right) & \text { if } c_{0} c_{1} c_{2}=120  \tag{3.5}\\ 2\left(1+\alpha+\alpha^{4}\right) & \text { if } c_{0} c_{1} c_{2}=121 \\ 2\left(1+\alpha^{4}+\alpha^{5}\right) & \text { if } c_{0} c_{1} c_{2}=122\end{cases}
$$

Proof. For $k \geq 2$ and any integer $d_{0}$ satisfying $0 \leq d_{0} \leq c_{0}$, we define

$$
\begin{equation*}
F\left(d_{0}, \mathbf{c} ; \alpha\right)=\sum_{d_{1}=0}^{c_{1}} \ldots \sum_{d_{k}=0}^{c_{k}} \alpha^{i(\mathbf{c}, \mathbf{d})} \tag{3.6}
\end{equation*}
$$

Then

$$
\sum_{d_{0}=0}^{c_{0}} F\left(d_{0}, \mathbf{c} ; \alpha\right)=\sum_{d_{0}=0}^{c_{0}} \sum_{d_{1}=0}^{c_{1}} \ldots \sum_{d_{k}=0}^{c_{k}} \alpha^{i(\mathbf{c}, \mathbf{d})}
$$

so that

$$
\begin{equation*}
S(\mathbf{c} ; \alpha)=\sum_{d_{0}=0}^{c_{0}} F\left(d_{0}, \mathbf{c} ; \alpha\right) \tag{3.7}
\end{equation*}
$$

Also for $k \geq 2$ we have, by (3.6) and Lemma 1,

$$
\begin{aligned}
F\left(d_{0}, \mathbf{c} ; \alpha\right) & =\sum_{d_{1}=0}^{c_{1}} \ldots \sum_{d_{k}=0}^{c_{k}} \alpha^{\operatorname{ind}_{2}\left\{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}} /\binom{c_{1}}{d_{1}}\right\}+i\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)} \\
& =\sum_{d_{1}=0}^{c_{1}} \alpha^{\operatorname{ind}_{2}\left\{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}} /\binom{c_{1}}{d_{1}}\right\}} \sum_{d_{2}=0}^{c_{2}} \ldots \sum_{d_{k}=0}^{c_{k}} \alpha^{i\left(\mathbf{c}^{\prime}, \mathbf{d}^{\prime}\right)}
\end{aligned}
$$

that is,

$$
\begin{equation*}
F\left(d_{0}, \mathbf{c} ; \alpha\right)=\sum_{d_{1}=0}^{c_{1}} \alpha^{\operatorname{ind}_{2}\left\{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}} /\binom{c_{1}}{d_{1}}\right\}} F\left(d_{1}, \mathbf{c}^{\prime} ; \alpha\right) . \tag{3.8}
\end{equation*}
$$

Next we define the $\left(c_{0}+1\right) \times 1$ matrix $A(\mathbf{c} ; \alpha)$ by

$$
A(\mathbf{c} ; \alpha)=\left[\begin{array}{c}
F(0, \mathbf{c} ; \alpha)  \tag{3.9}\\
\vdots \\
F\left(c_{0}, \mathbf{c} ; \alpha\right)
\end{array}\right]
$$

Then, from (3.8), we deduce that for $k \geq 2$,

$$
\begin{equation*}
A(\mathbf{c} ; \alpha)=M\left(c_{0} c_{1} ; \alpha\right) A\left(\mathbf{c}^{\prime} ; \alpha\right) \tag{3.10}
\end{equation*}
$$

where $M\left(c_{0} c_{1} ; \alpha\right)$ is the $\left(c_{0}+1\right) \times\left(c_{1}+1\right)$ matrix whose entry in the $(i, j)$ place $\left(i=0,1, \ldots, c_{0} ; j=0,1, \ldots, c_{1}\right)$ is

$$
\alpha^{\operatorname{ind}_{2}\left\{\binom{c_{0}+3 c_{1}}{i+3 j} /\binom{c_{1}}{j}\right\} .}
$$

Thus

$$
\begin{aligned}
& M(00 ; \alpha)=[1], M(01 ; \alpha)=\left[\begin{array}{ll}
1 & 1
\end{array}\right] \\
& M(10 ; \alpha)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad M(11 ; \alpha)=\left[\begin{array}{cc}
1 & \alpha^{2} \\
\alpha^{2} & 1
\end{array}\right], \\
& M(20 ; \alpha)=\left[\begin{array}{c}
1 \\
\alpha \\
1
\end{array}\right], \quad M(21 ; \alpha)=\left[\begin{array}{cc}
1 & 1 \\
\alpha^{5} & \alpha^{5} \\
1 & 1
\end{array}\right], \\
& M(02 ; \alpha)=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], \\
& M(12 ; \alpha)=\left[\begin{array}{ccc}
1 & \alpha^{2} & \alpha^{4} \\
\alpha^{4} & \alpha^{2} & 1
\end{array}\right] \\
& M(22 ; \alpha)=\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha^{3} & \alpha^{3} & \alpha^{3} \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

If $c_{0} c_{1} \neq 12$ then the $c_{1}+1$ columns of the matrix $M\left(c_{0} c_{1} ; \alpha\right)$ all have the same sum. Hence summing the rows in (3.9), and appealing to (3.7) and (3.10), we obtain

$$
S(\mathbf{c} ; \alpha)=f\left(c_{0} c_{1} ; \alpha\right) S\left(\mathbf{c}^{\prime} ; \alpha\right)
$$

where

$$
f\left(c_{0} c_{1} ; \alpha\right)= \begin{cases}1 & \text { if } c_{0} c_{1}=00 \\ 2 & \text { if } c_{0} c_{1}=10 \\ 2+\alpha & \text { if } c_{0} c_{1}=20 \\ 1 & \text { if } c_{0} c_{1}=01 \\ 1+\alpha^{2} & \text { if } c_{0} c_{1}=11 \\ 2+\alpha^{5} & \text { if } c_{0} c_{1}=21 \\ 1 & \text { if } c_{0} c_{1}=02 \\ 2+\alpha^{3} & \text { if } c_{0} c_{1}=22\end{cases}
$$

Now suppose that $c_{0} c_{1}=12$ and $k \geq 3$. By (3.10) we have

$$
\begin{equation*}
A(\mathbf{c} ; \alpha)=M\left(c_{0} c_{1} ; \alpha\right) M\left(c_{1} c_{2} ; \alpha\right) A\left(\mathbf{c}^{\prime \prime}, \alpha\right) \tag{3.11}
\end{equation*}
$$

where $\mathbf{c}^{\prime \prime}=\left(\mathbf{c}^{\prime}\right)^{\prime}=c_{2} \ldots c_{l}$. Now

$$
\begin{aligned}
M(12 ; \alpha) M(20 ; \alpha) & =\left[\begin{array}{ccc}
1 & \alpha^{2} & \alpha^{4} \\
\alpha^{4} & \alpha^{2} & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
\alpha \\
1
\end{array}\right]=\left[\begin{array}{l}
1+\alpha^{3}+\alpha^{4} \\
1+\alpha^{3}+\alpha^{4}
\end{array}\right] \\
M(12 ; \alpha) M(21 ; \alpha) & =\left[\begin{array}{ccc}
1 & \alpha^{2} & \alpha^{4} \\
\alpha^{4} & \alpha^{2} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
\alpha^{5} & \alpha^{5} \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+\alpha+\alpha^{4} & 1+\alpha+\alpha^{4} \\
1+\alpha+\alpha^{4} & 1+\alpha+\alpha^{4}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
M(12 ; \alpha) M(22 ; \alpha) & =\left[\begin{array}{ccc}
1 & \alpha^{2} & \alpha^{4} \\
\alpha^{4} & \alpha^{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
\alpha^{3} & \alpha^{3} & \alpha^{3} \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+\alpha^{4}+\alpha^{5} & 1+\alpha^{4}+\alpha^{5} & 1+\alpha^{4}+\alpha^{5} \\
1+\alpha^{4}+\alpha^{5} & 1+\alpha^{4}+\alpha^{5} & 1+\alpha^{4}+\alpha^{5}
\end{array}\right] .
\end{aligned}
$$

For each of these products, the column sums are the same. Hence summing the rows in (3.11), we obtain

$$
S(\mathbf{c} ; \alpha)=g\left(c_{0} c_{1} c_{2} ; \alpha\right) S\left(\mathbf{c}^{\prime \prime} ; \alpha\right)
$$

where

$$
g\left(c_{0} c_{1} c_{2} ; \alpha\right)= \begin{cases}2\left(1+\alpha^{3}+\alpha^{4}\right) & \text { if } c_{0} c_{1} c_{2}=120 \\ 2\left(1+\alpha+\alpha^{4}\right) & \text { if } c_{0} c_{1} c_{2}=121 \\ 2\left(1+\alpha^{4}+\alpha^{5}\right) & \text { if } c_{0} c_{1} c_{2}=122\end{cases}
$$

We are now ready to use Lemma 2 to evaluate $S(\mathbf{c} ; \alpha)$.

Proposition. Let $\mathbf{c}=c_{0} c_{1} \ldots c_{k}$ be a string of length $k+1 \geq 2$ with each $c_{i}=0,1$ or 2 . Denote by $n_{S}$ the number of occurrences of the string $S$ in $\mathbf{c}$. Let $\alpha$ be a sixth root of unity. Then

$$
\begin{align*}
S(\mathbf{c} ; \alpha)= & 2^{n_{1}-n_{11}}\left(1+\alpha^{2}\right)^{n_{11}}(2+\alpha)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}}  \tag{3.12}\\
& \times\left(2+\alpha^{5}\right)^{n_{21}-n_{121}}\left(2+\alpha^{3}\right)^{n_{22}-n_{122}} \\
& \times\left(1+\alpha^{3}+\alpha^{4}\right)^{n_{12}-n_{121}-n_{122}}\left(1+\alpha+\alpha^{4}\right)^{n_{121}} \\
& \times\left(1+\alpha^{4}+\alpha^{5}\right)^{n_{122}}
\end{align*}
$$

Proof. The proof of (3.12) is by induction on $k \geq 1$. When $k=1$ we have

$$
S(\mathbf{c} ; \alpha)=S\left(c_{0} c_{1} ; \alpha\right)=\sum_{d_{0}=0}^{c_{0}} \sum_{d_{1}=0}^{c_{1}} \alpha^{\operatorname{ind}_{2}\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}}
$$

The values of this sum for $c_{0} c_{1}=00,01, \ldots, 22$ are given in Table 2. The values of the expression on the right hand side of (3.12) when $k=1$ are given in Table 3. These two tables show that the Proposition is true for $k=1$.

Table 2

| $c_{0} c_{1}$ | $S\left(c_{0} c_{1} ; \alpha\right)$ |
| :---: | :---: |
| 00 | 1 |
| 01 | 2 |
| 02 | $2+\alpha$ |
| 10 | 2 |
| 11 | $2\left(1+\alpha^{2}\right)$ |
| 12 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 20 | $2+\alpha$ |
| 21 | $2\left(2+\alpha^{5}\right)$ |
| 22 | $(2+\alpha)\left(2+\alpha^{3}\right)$ |

Table 3

| $c_{0} c_{1}$ | $n_{1}$ | $n_{2}$ | $n_{11}$ | $n_{12}$ | $n_{21}$ | $n_{22}$ | $n_{121}$ | $n_{122}$ | Right side of $(3.12)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 01 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 02 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2+\alpha$ |
| 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 11 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)$ |
| 12 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 20 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2+\alpha$ |
| 21 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $2\left(2+\alpha^{5}\right)$ |
| 22 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | $(2+\alpha)\left(2+\alpha^{3}\right)$ |

When $k=2$ we have

$$
\left.S(\mathbf{c} ; \alpha)=S\left(c_{0} c_{1} c_{2} ; \alpha\right)=\sum_{d_{0}=0}^{c_{0}} \sum_{d_{1}=0}^{c_{1}} \sum_{d_{2}=0}^{c_{2}} \alpha^{\operatorname{ind}_{2}\left\{\frac{\binom{c_{0}+3 c_{1}}{d_{0}+3 d_{1}}\binom{c_{1}+3 c_{2}}{d_{1}+3 d_{2}}}{\left(c_{1}\right)}\right.}\right\} .
$$

Taking $c_{0} c_{1} c_{2}=000,001, \ldots, 222$, and working out the sum in each case, we obtain the values of $S\left(c_{0} c_{1} c_{2} ; \alpha\right)$ given in Table 4. The values of the expression on the right side of (3.12) when $k=2$ are given in Table 5. Thus the Proposition is true for $k=2$.

Table 4

| $c_{0} c_{1} c_{2}$ | $S\left(c_{0} c_{1} c_{2} ; \alpha\right)$ | $c_{0} c_{1} c_{2}$ | $S\left(c_{0} c_{1} c_{2} ; \alpha\right)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 000 | 1 | 112 | $2\left(1+\alpha^{2}\right)\left(1+\alpha^{3}+\alpha^{4}\right)$ |  |
| 001 | 2 | 120 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |  |
| 002 | $2+\alpha$ | 121 | $2^{2}\left(1+\alpha+\alpha^{4}\right)$ |  |
| 010 | 2 | 122 | $2(2+\alpha)\left(1+\alpha^{4}+\alpha^{5}\right)$ |  |
| 011 | $2\left(1+\alpha^{2}\right)$ | 200 | $2+\alpha$ |  |
| 012 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ | 201 | $2(2+\alpha)$ |  |
| 020 | $2+\alpha$ | 202 | $(2+\alpha)^{2}$ |  |
| 021 | $2\left(2+\alpha^{5}\right)$ | 210 | $2\left(2+\alpha^{5}\right)$ |  |
| 022 | $(2+\alpha)\left(2+\alpha^{3}\right)$ | 211 | $2\left(2+\alpha^{5}\right)\left(1+\alpha^{2}\right)$ |  |
| 100 | 2 | 212 | $2\left(2+\alpha^{5}\right)\left(1+\alpha^{3}+\alpha^{4}\right)$ |  |
| 101 | $2^{2}$ | 220 | $(2+\alpha)\left(2+\alpha^{3}\right)$ |  |
| 102 | $2(2+\alpha)$ | 221 | $2\left(2+\alpha^{3}\right)\left(2+\alpha^{5}\right)$ |  |
| 110 | $2\left(1+\alpha^{2}\right)$ | 222 | $(2+\alpha)\left(2+\alpha^{3}\right)^{2}$ |  |
|  | $2\left(1+\alpha^{2}\right)^{2}$ |  |  |  |

Table 5

| $c_{0} c_{1} c_{2}$ | $n_{1}$ | $n_{2}$ | $n_{11}$ | $n_{12}$ | $n_{21}$ | $n_{22}$ | $n_{121}$ | $n_{122}$ | Right side of $(3.12)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 001 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 002 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2+\alpha$ |
| 010 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 011 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)$ |
| 012 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 020 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2+\alpha$ |
| 021 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $2\left(2+\alpha^{5}\right)$ |
| 022 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | $(2+\alpha)\left(2+\alpha^{3}\right)$ |
| 100 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 101 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $2^{2}$ |
| 102 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2(2+\alpha)$ |

Table 5 (cont.)

| $c_{0} c_{1} c_{2}$ | $n_{1}$ | $n_{2}$ | $n_{11}$ | $n_{12}$ | $n_{21}$ | $n_{22}$ | $n_{121}$ | $n_{122}$ | Right side of $(3.12)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)$ |
| 111 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)^{2}$ |
| 112 | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 120 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 121 | 2 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | $2^{2}\left(1+\alpha+\alpha^{4}\right)$ |
| 122 | 1 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | $2(2+\alpha)\left(1+\alpha^{4}+\alpha^{5}\right)$ |
| 200 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2+\alpha$ |
| 201 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $2(2+\alpha)$ |
| 202 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | $(2+\alpha)^{2}$ |
| 210 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $2\left(2+\alpha^{5}\right)$ |
| 211 | 2 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | $2\left(1+\alpha^{2}\right)\left(2+\alpha^{5}\right)$ |
| 212 | 1 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | $2\left(2+\alpha^{5}\right)\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 220 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | $(2+\alpha)\left(2+\alpha^{3}\right)$ |
| 221 | 1 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | $2\left(2+\alpha^{3}\right)\left(2+\alpha^{5}\right)$ |
| 222 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 0 | $(2+\alpha)\left(2+\alpha^{3}\right)^{2}$ |

We now make the inductive hypothesis (IH) that the Proposition is true for all strings of lengths $2,3, \ldots, k$, where $k \geq 3$. We consider the string $\mathbf{c}=c_{0} c_{1} \ldots c_{k}$ of length $k+1$. We set

$$
\mathcal{B}=\{1,2,11,12,21,22,121,122\}
$$

and, for $B \in \mathcal{B}, n_{B}=n_{B}(\mathbf{c}), n_{B}^{\prime}=n_{B}\left(\mathbf{c}^{\prime}\right), n_{B}^{\prime \prime}=n_{B}\left(\mathbf{c}^{\prime \prime}\right)$. Recall that if $\mathbf{c}=c_{0} c_{1} \ldots c_{k}$ then $\mathbf{c}^{\prime}=c_{1} \ldots c_{k}$ and $\mathbf{c}^{\prime \prime}=\left(\mathbf{c}^{\prime}\right)^{\prime}$. The information needed for the inductive step is provided in Table 6.

Table 6

| $c_{0} c_{1}$ | $n_{B}=n_{B}^{\prime}$ | $n_{B}=n_{B}^{\prime}+1$ | $S(\mathbf{c} ; \alpha) / S\left(\mathbf{c}^{\prime} ; \alpha\right)$ |
| :---: | :---: | :---: | :---: |
| 00 | all $B$ |  | 1 |
| 01 | all $B$ |  | 1 |
| 02 | all $B$ |  | 1 |
| 10 | all $B \neq 1$ | 1 | 2 |
| 11 | all $B \neq 1,11$ | 1,11 | $1+\alpha^{2}$ |
| 20 | all $B \neq 2$ | 2 | $2+\alpha$ |
| 21 | all $B \neq 2,21$ | 2,21 | $2+\alpha^{5}$ |
| 22 | all $B \neq 2,22$ | 2,22 | $2+\alpha^{3}$ |


| $c_{0} c_{1} c_{2}$ | $n_{B}=n_{B}^{\prime \prime}$ | $n_{B}=n_{B}^{\prime \prime}+1$ | $S(\mathbf{c} ; \alpha) / S\left(\mathbf{c}^{\prime \prime} ; \alpha\right)$ |
| :---: | :---: | :---: | :---: |
| 120 | $11,21,22,121,122$ | $1,2,12$ | $2\left(1+\alpha^{3}+\alpha^{4}\right)$ |
| 121 | $11,22,122$ | $1,2,12,21,121$ | $2\left(1+\alpha+\alpha^{4}\right)$ |
| 122 | $11,21,121$ | $1,2,12,22,122$ | $2\left(1+\alpha^{4}+\alpha^{5}\right)$ |

We just do the case $c_{0} c_{1} c_{2}=120$ in detail. We have

$$
\begin{aligned}
& S(\mathbf{c} ; \alpha)=2\left(1+\alpha^{3}+\alpha^{4}\right) S\left(\mathbf{c}^{\prime \prime} ; \alpha\right) \\
& =2\left(1+\alpha^{3}+\alpha^{4}\right) 2^{n_{1}^{\prime \prime}-n_{11}^{\prime \prime}}\left(1+\alpha^{2}\right)^{n_{11}^{\prime \prime}} \\
& \times(2+\alpha)^{n_{2}^{\prime \prime}-n_{12}^{\prime \prime}-n_{21}^{\prime \prime}-n_{22}^{\prime \prime}+n_{121}^{\prime \prime}+n_{122}^{\prime \prime}} \\
& \times\left(2+\alpha^{5}\right)^{n_{21}^{\prime \prime}-n_{121}^{\prime \prime}}\left(2+\alpha^{3}\right)^{n_{22}^{\prime \prime}-n_{122}^{\prime \prime}} \\
& \times\left(1+\alpha^{3}+\alpha^{4}\right)^{n_{12}^{\prime \prime}-n_{121}^{\prime \prime}-n_{122}^{\prime \prime}}\left(1+\alpha+\alpha^{4}\right)^{n_{121}^{\prime \prime}} \\
& \times\left(1+\alpha^{4}+\alpha^{5}\right)^{n_{122}^{\prime \prime}} \\
& \text { (by Lemma 2) } \\
& =2^{n_{1}-n_{11}}\left(1+\alpha^{2}\right)^{n_{11}}(2+\alpha)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times\left(2+\alpha^{5}\right)^{n_{21}-n_{121}}\left(2+\alpha^{3}\right)^{n_{22}-n_{122}} \\
& \times\left(1+\alpha^{3}+\alpha^{4}\right)^{n_{12}-n_{121}-n_{122}}\left(1+\alpha+\alpha^{4}\right)^{n_{121}}\left(1+\alpha^{4}+\alpha^{5}\right)^{n_{122}},
\end{aligned}
$$

from Table 6. This completes the inductive step and the Proposition follows by the principle of mathematical induction.
4. Evaluation of $N_{n}(t, 9)(3 \nmid t)$. Let $n$ be an integer with $n \geq 9$. Let $a_{0} a_{1} \ldots a_{l}$ be the 3 -ary representation of $n$ so that $l \geq 2$. In this section $n_{1}, n_{2}, n_{11}, \ldots$ refer to the string $a_{0} a_{1} \ldots a_{l}$. Set $\omega=e^{\frac{2 \pi i / 6}{}}$ and $\beta=\omega^{2}=$ $e^{2 \pi i / 3}$. We note that $\omega=-\beta^{2}$. For $t=1,2,4,5,7,8$ we have

$$
\begin{align*}
& N_{n}(t, 9)=\sum_{\substack{r=0 \\
\left(\begin{array}{c}
n \\
r
\end{array}\right) \equiv t(\bmod 9)}}^{n} 1=\sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array} \equiv t(\bmod 9)\right.}}^{n} 1 \\
& 3 \nmid\binom{n}{r} \\
& =\sum_{\substack{r=0 \\
\operatorname{ind}_{2}\left(\begin{array}{c}
n \\
r\\
)=\text { ind }_{2} t(\bmod 6) \\
3 \nmid(n)
\end{array}\right.}}^{n} 1=\frac{1}{6} \sum_{\substack{r=0 \\
3 \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right)}}^{n} \sum_{s=0}^{5} \omega^{s\left(\operatorname{ind}_{2}\binom{n}{r}-\operatorname{ind}_{2} t\right)} \\
& =\frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} \sum_{\substack{r=0 \\
3 \nmid\left(\begin{array}{l}
n \\
r
\end{array}\right)}}^{n} \omega^{s \operatorname{ind}_{2}\binom{n}{r}} \\
& =\frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} \quad \sum_{b_{0}=0}^{2} \cdots \sum_{b_{l}=0}^{2} \quad \omega^{s i(\mathbf{a}, \mathbf{b})} \\
& b_{0}+b_{1} 3+\ldots+b_{3} 3^{l} \leq a_{0}+a_{1} 3+\ldots+a_{l} 3^{l} \\
& 3 \nmid\binom{a_{0} 0}{b_{0}}\binom{a_{1}}{b_{1}} \ldots\binom{a_{l} a_{l}}{b_{l}}
\end{align*}
$$

(by (1.3), (1.4), (3.1), (3.2))

$$
\begin{align*}
= & \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} \sum_{b_{0}=0}^{a_{0}} \cdots \sum_{b_{l}=0}^{a_{l}} \omega^{s i(\mathbf{a}, \mathbf{b})} \\
= & \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} S\left(\mathbf{a} ; \omega^{s}\right)  \tag{3.3}\\
= & \frac{1}{6} \sum_{s=0}^{5} \omega^{-s \operatorname{ind}_{2} t} 2^{n_{1}-n_{11}}\left(1+\omega^{2 s}\right)^{n_{11}}\left(2+\omega^{s}\right)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times\left(2+\omega^{5 s}\right)^{n_{21}-n_{121}}\left(2+\omega^{3 s}\right)^{n_{22}-n_{122}}\left(1+\omega^{3 s}+\omega^{4 s}\right)^{n_{12}-n_{121}-n_{122}} \\
& \times\left(1+\omega^{s}+\omega^{4 s}\right)^{n_{121}}\left(1+\omega^{4 s}+\omega^{5 s}\right)^{n_{122}},
\end{align*}
$$

by the Proposition. The term in the sum with $s=0$ is

$$
\begin{aligned}
& 2^{n_{1}-n_{11}} 2^{n_{11}} \\
& \times 3^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} 3^{n_{21}-n_{121}} 3^{n_{22}-n_{122}} 3^{n_{12}-n_{121}-n_{122}} 3^{n_{121}} 3^{n_{122}} \\
&= 2^{n_{1}} 3^{n_{2}}
\end{aligned}
$$

The term with $s=1$ is

$$
\begin{aligned}
\omega^{-\operatorname{ind}_{2} t} & 2^{n_{1}-n_{11}}\left(1+\omega^{2}\right)^{n_{11}}(2+\omega)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times\left(2+\omega^{5}\right)^{n_{21}-n_{121}}\left(2+\omega^{3}\right)^{n_{22}-n_{122}} \\
& \times\left(1+\omega^{3}+\omega^{4}\right)^{n_{12}-n_{121}-n_{122}}\left(1+\omega+\omega^{4}\right)^{n_{121}}\left(1+\omega^{4}+\omega^{5}\right)^{n_{122}} \\
= & (-1)^{\mathrm{ind}_{2} t} \beta^{\mathrm{ind}_{2} t} 2^{n_{1}-n_{11}}(1+\beta)^{n_{11}}\left(2-\beta^{2}\right)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times(2-\beta)^{n_{21}-n_{121}} 1^{n_{22}-n_{122}} \beta^{2 n_{12}-2 n_{121}-2 n_{122}} 1^{n_{121}}\left(1-\beta+\beta^{2}\right)^{n_{122}} \\
= & (-1)^{\operatorname{ind}_{2} t} \beta^{\mathrm{ind}_{2} t} 2^{n_{1}-n_{11}}\left(-\beta^{2}\right)^{n_{11}}(3+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times(2-\beta)^{n_{21}-n_{121}} \beta^{2 n_{12}-2 n_{121}-2 n_{122}}(-2 \beta)^{n_{122}} \\
= & (-1)^{\operatorname{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}} \beta^{\operatorname{ind}_{2} t+2 n_{11}+2 n_{12}-2 n_{121}-n_{122}} \\
& \times(3+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}}(2-\beta)^{n_{21}-n_{121}} \\
= & (-1)^{\operatorname{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}} X .
\end{aligned}
$$

The term with $s=2$ is

$$
\begin{aligned}
& \omega^{-2} \text { ind }_{2} t 2^{n_{1}-n_{11}}\left(1+\omega^{4}\right)^{n_{11}}\left(2+\omega^{2}\right)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \quad \times\left(2+\omega^{4}\right)^{n_{21}-n_{121}} 3^{n_{22}-n_{122}} \\
& \quad \times\left(2+\omega^{2}\right)^{n_{12}-n_{121}-n_{122}}\left(1+2 \omega^{2}\right)^{n_{121}}\left(1+\omega^{2}+\omega^{4}\right)^{n_{122}} \\
& =\beta^{- \text {ind }_{2} t} 2^{n_{1}-n_{11}}\left(1+\beta^{2}\right)^{n_{11}}(2+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \quad \times\left(2+\beta^{2}\right)^{n_{12}-n_{121}} 3^{n_{22}-n_{122}} \\
& \quad \times(2+\beta)^{n_{12}-n_{121}-n_{122}}(1+2 \beta)^{n_{121}}\left(1+\beta+\beta^{2}\right)^{n_{122}}
\end{aligned}
$$

$$
\begin{aligned}
= & \beta^{-\operatorname{ind}_{2} t} 2^{n_{1}-n_{11}} 3^{n_{22}-n_{122}}(-\beta)^{n_{11}}(2+\beta)^{n_{2}-n_{12}-n_{21}-n_{22}+n_{121}+n_{122}} \\
& \times(1-\beta)^{n_{21}-n_{121}}(2+\beta)^{n_{12}-n_{121}-n_{122}}(1+2 \beta)^{n_{121}} 0^{n_{122}} \\
= & 0^{n_{122}}(-1)^{n_{11}} \beta^{-\operatorname{ind}_{2} t+n_{11}} 2^{n_{1}-n_{11}} 3^{n_{22}-n_{122}} \\
& \times(2+\beta)^{n_{2}-n_{21}-n_{22}}(1-\beta)^{n_{21}-n_{121}}(1+2 \beta)^{n_{121}} \\
= & 0^{n_{122}}(-1)^{n_{11}} 2^{n_{1}-n_{11}} 3^{n_{22}-n_{122}} Y .
\end{aligned}
$$

The term with $s=3$ is

$$
(-1)^{\mathrm{ind}_{2} t} 2^{n_{1}-n_{11}} 2^{n_{11}}=(-1)^{\mathrm{ind}_{2} t} 2^{n_{1}}
$$

The term with $s=4$ is the complex conjugate of the term with $s=2$, and the term with $s=5$ is the complex conjugate of the term with $s=1$. Hence

$$
\begin{aligned}
N_{n}(t, 9)= & \frac{1}{6}\left\{2^{n_{1}} 3^{n_{2}}+(-1)^{\mathrm{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}} X\right. \\
& +0^{n_{122}}(-1)^{n_{11}} 2^{n_{1}-n_{11}} 3^{n_{22}-n_{122}} Y \\
& +(-1)^{\mathrm{ind}_{2} t} 2^{n_{1}} \\
& +0^{n_{122}}(-1)^{n_{11}} 2^{n_{1}-n_{11}} 3^{n_{22}-n_{122}} \bar{Y} \\
& \left.+(-1)^{\mathrm{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}} \bar{X}\right\} \\
= & \frac{1}{6}\left\{2^{n_{1}} 3^{n_{2}}+(-1)^{\mathrm{ind}_{2} t} 2^{n_{1}}\right. \\
& +(-1)^{\mathrm{ind}_{2} t+n_{11}+n_{122}} 2^{n_{1}-n_{11}+n_{122}+1} \operatorname{Re}(X) \\
& \left.+0^{n_{122}}(-1)^{n_{11}} 2^{n_{1}-n_{11}+1} 3^{n_{22}-n_{122}} \operatorname{Re}(Y)\right\}
\end{aligned}
$$

as asserted.
5. Evaluation of $N_{n}(t, 9)(3 \mid t)$. Let $n$ be an integer with $n \geq 9$. We recall that the 3-ary representations of $n, r$ and $n-r(0 \leq r \leq n)$ are

$$
\begin{aligned}
n & =a_{0}+a_{1} 3+\ldots+a_{l} 3^{l}, & & \text { each } a_{i}=0,1,2, \\
r & =b_{0}+b_{1} 3+\ldots+b_{l} 3^{l}, & & \text { each } b_{i}=0,1,2, \\
n-r & =c_{0}+c_{1} 3+\ldots+c_{l} 3^{l}, & & \text { each } c_{i}=0,1,2 .
\end{aligned}
$$

As $n \geq 9$ we have $l \geq 2$. We first consider $t=3$ and $t=6$. By Kummer's theorem (see (1.2)), we have

$$
3 \|\binom{ n}{r} \Leftrightarrow \text { there is a single carry when adding } r \text { and } n-r \text { in base } 3 \text {. }
$$

If this carry occurs in the $j$ th place $(0 \leq j \leq l-1)$ then

$$
\begin{aligned}
b_{j}+c_{j} & =a_{j}+3 \\
b_{j+1}+c_{j+1} & =a_{j+1}-1 \\
b_{i}+c_{i} & =a_{i} \quad(i \neq j, j+1)
\end{aligned}
$$

Clearly

$$
a_{j} \neq 2, \quad a_{j+1} \neq 0, \quad a_{j}<b_{j} \leq 2, \quad 0 \leq b_{j+1}<a_{j+1}
$$

Moreover, by Kazandzidis' theorem (see (1.5)), we have

$$
\binom{n}{r} \equiv-3 \prod_{i=0}^{l} \frac{a_{i}!}{b_{i}!c_{i}!}(\bmod 9)
$$

that is,

$$
\binom{n}{r} \equiv-3 \frac{a_{j}!}{b_{j}!\left(a_{j}+3-b_{j}\right)!} \cdot \frac{a_{j+1}!}{b_{j+1}!\left(a_{j+1}-1-b_{j+1}\right)!} \prod_{\substack{i=0 \\ i \neq j, j+1}}^{l}\binom{a_{i}}{b_{i}}(\bmod 9)
$$

Set

$$
f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)=\frac{b_{j}!\left(a_{j}+3-b_{j}\right)!}{a_{j}!} \cdot \frac{b_{j+1}!\left(a_{j+1}-1-b_{j+1}\right)!}{a_{j+1}!}
$$

so that

$$
\binom{n}{r} \equiv t(\bmod 9) \Leftrightarrow \prod_{\substack{i=0 \\ i \neq j, j+1}}^{l}\binom{a_{i}}{b_{i}} \equiv-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)(\bmod 3)
$$

Hence we have

$$
\begin{aligned}
N_{n}(t, 9)= & \sum_{\substack{r=0 \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 9)}}^{n} 1=\sum_{\substack{r=0 \\
3 \|\left(\begin{array}{l}
n \\
r
\end{array}\right) \\
\left(\begin{array}{l}
n \\
r
\end{array}\right) \equiv t(\bmod 9)}}^{n} 1 \\
= & \sum_{\substack{r=0 \\
c(n, r)=1 \\
n \\
r}}^{n} \equiv t(\bmod 9)
\end{aligned} \quad(\text { as } t=3,6)
$$

Now

$$
\begin{align*}
& \sum_{b_{0}=0}^{a_{0}} \cdots \sum_{b_{j-1}=0}^{a_{j-1}} \sum_{b_{j+1}=0}^{a_{j+1}} \cdots \sum_{b_{l}=0}^{a_{l}} 1 \\
& \prod_{\substack{i=0 \\
i \neq j, j+1}}^{l}\binom{a_{i}}{b_{i}} \equiv-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)(\bmod 3) \\
& =\quad \sum_{s_{0}=0}^{2} \ldots \sum_{s_{l}=0}^{2}  \tag{1}\\
& \begin{array}{c}
s_{0}+s_{1} 3+\ldots+s_{l} 3^{l} \leq a_{0}+a_{1} 3+\ldots+a_{j-1} 3^{j-1}+a_{j+2} 3^{j+2}+\ldots+a_{l} 3^{l} \\
=n-a_{j} 3^{j}-a_{j+1} 3^{j+1}
\end{array} \\
& \binom{a_{0}}{s_{0}} \ldots\binom{a_{j-1}}{s_{j-1}}\binom{0}{s_{j}}\binom{0}{s_{j+1}}\binom{a_{j+2}}{s_{j+2}} \ldots\binom{a_{l}}{s_{l}} \equiv-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)(\bmod 3) \\
& =\sum_{\left({ }_{s=0}^{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\right) \equiv-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)(\bmod 3)}^{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}} \\
& =N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right) \text {. }
\end{align*}
$$

## Hence

$$
\begin{align*}
& N_{n}(t, 9)  \tag{5.1}\\
= & \sum_{j=0}^{l-1} \sum_{b_{j}=a_{j}+1}^{2} \sum_{b_{j+1}=0}^{a_{j+1}-1} N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right) .
\end{align*}
$$

We recall from the introduction that for $k=1$ and 2 ,

$$
N_{n}(k, 3)=\frac{1}{2} 2^{n_{1}(n)}\left(3^{n_{2}(n)}-(-1)^{k}\right) .
$$

In order to use this formula in (5.1) we consider four cases according as $a_{j} a_{j+1}=01,02,11$ or 12 .

Case (i): $a_{j} a_{j+1}=01$ (so $b_{j}=1$ or $2, b_{j+1}=0$ ). Here

$$
\begin{aligned}
& n_{1}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{1}-1 \\
& n_{2}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{2} \\
& f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)=2
\end{aligned}
$$

so that

$$
N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right)=\frac{1}{2} 2^{n_{1}-1}\left(3^{n_{2}}-(-1)^{t / 3}\right) .
$$

Case (ii): $a_{j} a_{j+1}=02$ (so $b_{j}=1$ or $2, b_{j+1}=0$ or 1 ). Here

$$
\begin{aligned}
& n_{1}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{1} \\
& n_{2}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{2}-1 \\
& f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)=1
\end{aligned}
$$

so that

$$
\begin{aligned}
& N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right) \\
& \quad=\frac{1}{2} 2^{n_{1}}\left(3^{n_{2}-1}-(-1)^{3-t / 3}\right)=\frac{1}{2} 2^{n_{1}}\left(3^{n_{2}-1}+(-1)^{t / 3}\right)
\end{aligned}
$$

Case (iii): $a_{j} a_{j+1}=11$ (so $b_{j}=2, b_{j+1}=0$ ). Here

$$
\begin{aligned}
& n_{1}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{1}-2, \\
& n_{2}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{2}, \\
& f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)=4,
\end{aligned}
$$

so that

$$
\begin{aligned}
& N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right) \\
& \quad=\frac{1}{2} 2^{n_{1}-2}\left(3^{n_{2}}-(-1)^{3-t / 3}\right)=\frac{1}{2} 2^{n_{1}-2}\left(3^{n_{2}}+(-1)^{t / 3}\right)
\end{aligned}
$$

Case (iv): $a_{j} a_{j+1}=12$ (so $b_{j}=2, b_{j+1}=0$ or 1 ). Here

$$
\begin{aligned}
& n_{1}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{1}-1 \\
& n_{2}\left(n-a_{j} 3^{j}-a_{j+1} 3^{j+1}\right)=n_{2}-1 \\
& f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right)=2
\end{aligned}
$$

so that
$N_{n-a_{j} 3^{j}-a_{j+1} 3^{j+1}}\left(-\frac{t}{3} f\left(a_{j}, b_{j}, a_{j+1}, b_{j+1}\right), 3\right)=\frac{1}{2} 2^{n_{1}-1}\left(3^{n_{2}-1}-(-1)^{t / 3}\right)$.
Hence, using these evaluations in (5.1), we obtain

$$
\begin{aligned}
N_{n}(t, 9)= & \sum_{\substack{j=0 \\
a_{j} a_{j+1}=01}}^{l-1} 2 \cdot \frac{1}{2} 2^{n_{1}-1}\left(3^{n_{2}}-(-1)^{t / 3}\right) \\
& +\sum_{\substack{j=0 \\
a_{j} a_{j+1}=02}}^{l-1} 2^{2} \cdot \frac{1}{2} 2^{n_{1}}\left(3^{n_{2}-1}+(-1)^{t / 3}\right) \\
& +\sum_{\substack{j=0 \\
a_{j} a_{j+1}=11}}^{l-1} \frac{1}{2} 2^{n_{1}-2}\left(3^{n_{2}}+(-1)^{t / 3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\sum_{\substack{j=0 \\
a_{j} a_{j+1}=12}}^{l-1} 2 \cdot \frac{1}{2} 2^{n_{1}-1}\left(3^{n_{2}-1}-(-1)^{t / 3}\right) \\
& =n_{01} 2^{n_{1}-1}\left(3^{n_{2}}-(-1)^{t}\right)+n_{02} 2^{n_{1}+1}\left(3^{n_{2}-1}+(-1)^{t}\right) \\
& \quad+n_{11} 2^{n_{1}-3}\left(3^{n_{2}}+(-1)^{t}\right)+n_{12} 2^{n_{1}-1}\left(3^{n_{2}-1}-(-1)^{t}\right),
\end{aligned}
$$

which is the asserted formula.
Finally, we treat the case $t=0$. We have

$$
\begin{aligned}
& N_{n}(3,9)+N_{n}(6,9) \\
& \quad=n_{01} 2^{n_{1}} 3^{n_{2}}+n_{02} 2^{n_{1}+2} 3^{n_{2}-1}+n_{11} 2^{n_{1}-2} 3^{n_{2}}+n_{12} 2^{n_{1}} 3^{n_{2}-1}
\end{aligned}
$$

so that

$$
\begin{aligned}
N_{n}(0,9)= & N_{n}(0,3)-\left(N_{n}(3,9)+N_{n}(6,9)\right) \\
= & n+1-2^{n_{1}} 3^{n_{2}}-n_{01} 2^{n_{1}} 3^{n_{2}}-n_{02} 2^{n_{1}+2} 3^{n_{2}-1} \\
& -n_{11} 2^{n_{1}-2} 3^{n_{2}}-n_{12} 2^{n_{1}} 3^{n_{2}-1}
\end{aligned}
$$

6. Concluding comments. We remark that our formulae for $N_{n}(t, 9)$ when $3 \nmid t$ are consistent with the following result of Webb [10, Theorem 3].

If $p$ is a prime and $p \nmid t$ then $N_{n}\left(t, p^{2}\right)$ depends only on $t$ and the number of occurrences of each block of nonzero digits in the base $p$ expansion of $n$ and not on where they occur nor on the number of zeros in the expansion.

The formulae for $N_{n}\left(t, p^{2}\right)(p \nmid t)$ for $p=2$ and $p=3$ suggest that perhaps only blocks of length at most $p$ are needed.

When $p$ is a prime and $p \| t$ we have shown (in a paper submitted for publication) that $N_{n}\left(t, p^{2}\right)$ depends only on $t, n_{1}, \ldots, n_{p-1}$ and $n_{i j}(i=$ $0,1, \ldots, p-2 ; j=1, \ldots, p-1)$. Our formulae for $N_{n}(3,9)$ and $N_{n}(6,9)$, as well as that of Davis and Webb [2] for $N_{n}(2,4)$, are in conformity with this result. Compare this result with Webb's comment [10, sentence preceding first example on p. 278].

## References

[1] K. S. Davis and W. A. Webb, Lucas' theorem for prime powers, European J. Combin. 11 (1990), 229-233.
[2] —, —, Pascal's triangle modulo 4, Fibonacci Quart. 29 (1991), 79-83.
[3] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Math. 30 (1899), 150-156.
[4] A. Granville, Zaphod Beeblebrox's brain and the fifty-ninth row of Pascal's triangle, Amer. Math. Monthly 99 (1992), 318-331.
[5] E. Hexel and H. Sachs, Counting residues modulo a prime in Pascal's triangle, Indian J. Math. 20 (1978), 91-105.
[6] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal's triangle (mod 8), submitted for publication.
[7] G. S. Kazandzidis, Congruences on the binomial coefficients, Bull. Soc. Math. Grèce (NS) 9 (1968), 1-12.
[8] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[9] E. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6 (1877-8), 49-54.
[10] W. A. Webb, The number of binomial coefficients in residue classes modulo $p$ and $p^{2}$, Colloq. Math. 60/61 (1990), 275-280.

Department of Mathematics
Department of Mathematics and Statistics
Okanagan University College
Canisius College
Buffalo, New York 14208
U.S.A.

Kelowna, British Columbia V1V 1V7
Canada
E-mail: huard@canisius.edu
E-mail: bkspearm@okanagan.bc.ca
Department of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada
E-mail: williams@math.carleton.ca


[^0]:    1991 Mathematics Subject Classification: Primary 11A07.
    Key words and phrases: binomial coefficients.
    Research of the third author was supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

