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1. Introduction. In 1893 the distinguished mathematician William
Burnside (1852–1927) gave the first explicit uniformization of an algebraic
equation of genus greater than unity [1]. This was the hyperelliptic equation

(1.1) y2 = x(x4 − 1),

which has genus 2. This he accomplished by taking

(1.2) x =
℘(ω/2)− ℘(ω)
℘(ω′/2)− ℘(ω)

,

where ℘ is the Weierstrass elliptic function with primitive periods 2ω and
2ω′. Further, he displayed y as a complicated quotient, whose numerator
and denominator contained respectively five and four factors, each factor
involving a value of ℘ or its derivative ℘′.

Burnside’s work was based to some extent on results stated, but not
proved in Klein and Fricke’s treatise [2]. The object of the present paper is
to examine his work closely, proving all results stated by him, and stating
them in a form more readily appreciated, using theta functions in place of
the Weierstrass function ℘.

Theorem. The equation (1.1) can be uniformized by taking

(1.3) x = −ϑ3(τ/2)/ϑ4(τ/2)

and

(1.4) y = iϑ
1/2
3 (τ/2)ϑ2

2(τ/2)ϑ−5/2
4 (τ/2).

These are elliptic modular functions belonging to a subgroup Γ of index 2
in the principal congruence group Γ (4) of level 4.

It may be noted that we could simplify these results by omitting the
factor i in (1.4) and replacing x by −x. Further (with this simplification),
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Jacobi’s functions k and k′ can be used to replace the theta functions, giving

(1.5) x = {k′(τ/2)}−1/2, y = k(τ/2){k′(τ/2)}−5/4.

We shall make extensive use of results in Tannery and Molk’s treatise
[4], and so shall conform to the notation of that work by writing ω1 and ω3

in place of ω and ω′, so that τ = ω3/ω1 and Im τ > 0.
By (1.2) and Table XVI (p. 251) of [4], we have

(1.6) x =
℘(ω1/2)− e1

℘(ω3/2)− e1
=

√
e1 − e2√

e2 − e3 −
√
e1 − e2

.

Formula (4) of Table XXXVI (p. 257) then gives

(1.7) x =
ϑ2

2 − ϑ2
3

ϑ2
4

.

Here, as usual,

(1.8) ϑ3 = ϑ3(τ) =
∞∑

n=−∞
eπin

2τ ,

with ϑ2 and ϑ4 defined similarly. This simplifies, by Theorem 7.1.8 of [3], to
give (1.3), and (1.1) then leads to (1.4), since ϑ4

3 = ϑ4
2 + ϑ4

4.

2. The functions fij. We now prepare to investigate the groups to
which x and y belong. Write

(2.1) T =
[
a b
c d

]

for any matrix belonging to the modular group Γ (1) = SL(2,Z), and put,
in particular,

(2.2) I =
[

1 0
0 1

]
, U =

[
1 1
0 1

]
, V =

[
0 −1
1 0

]
, W =

[
1 0
1 1

]
.

Then W = UV U and we write

(2.3) Tτ =
aτ + b

cτ + d
.

We also write

(2.4) J =
[

1 0
0 2

]
,

so that

(2.5) Jτ = τ/2 and JTJ−1 =
[
a b/2
2c d

]
.

The stroke operator | is, as usual, defined by

(2.6) f(τ) | T = f(Tτ), f(τ) | J = f(τ/2).
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Write also, for any positive integer n,

(2.7) Γ (n) = {T ∈ Γ (1) : T ≡ I (mod n)},
the principal homogeneous congruence subgroup of level n. The only values
of n that we shall need are n = 2, 4 and 8.

Let s be any real number and write

(2.8) % = exp(πis/4).

The only values of s that will arise are s = 1/2 and s = 2. Put

(2.9) fij(τ) = {ϑi(τ)/ϑj(τ)}s,
where i and j are different integers in the interval [2, 4].

The results stated in the following lemma can be found in [4], or by use
of Theorem 7.1.2 of [3].

Lemma.
f23 | U = %f24, f34 | U = f43, f24 | U = %f23,

f23 | U2 = %2f23, f34 | U2 = f34, f24 | U2 = %2f24,

f23 | V = f43, f34 | V = f32, f24 | V = f42,

f23 |W = f32, f34 |W = %f24, f24 |W = %f34,

f23 |W 2 = f23, f34 |W 2 = %2f34, f24 |W 2 = %2f24.

Since Γ (2) is generated by U2 and W 2, it follows that fij is a modular
function belonging to Γ (2) with a certain multiplier system. However, we
are more interested in Γ (4).

3. The action of the group Γ (4). The group Γ (4) is of rank 5 and is
generated by the following matrices (see p. 355 of [2]):

v1 =
[

1 4
0 1

]
, v2 =

[
1 0
−4 1

]
, v3 =

[−3 4
−4 5

]
,(3.1)

v4 =
[−7 16
−4 9

]
, v5 =

[−11 36
−4 13

]
,(3.2)

which are expressible as follows:

v1 = U4, v2 = W−4, v3 = WU4W−1,(3.3)

v4 = U2W−4U−2, v5 = U3W−4U−3.(3.4)

Note that

(3.5) v2 ≡ v4 (mod 8), v3 ≡ v5 (mod 8),

and

(3.6) v2
n ≡ I (mod 8) (n = 1, . . . , 5).



56 R. A. Rankin

Since the independent variable of the theta functions in (1.3) and (1.4)
is τ/2 and not τ , we need to evaluate the following matrices (see (2.5)):

V1 = Jv1J
−1 = U2, V2 = Jv2J

−1 = W−8,(3.7)

V3 = Jv3J
−1 = W 2U2W−2, V4 = Jv4J

−1 = UW−8U−1,(3.8)

and, surprisingly,

(3.9) V5 = Jv5J
−1 = UW 2U2W−2U−1.

T h e c a s e s = 1/2. In this case we have %8 = −1, and write

(3.10) g(τ) = f34(τ/2) = {ϑ3(τ/2)/ϑ4(τ/2)}1/2,
so that g = f34 | J and we have

(3.11) g | v1 = f34 | Jv1 = f34 | V1J = f34U
2J = g,

and we find, similarly, that

(3.12) g | v2 = −g, g | v3 = g, g | v4 = −g,
and

g | v5 = f34 | Jv5 = f34 | V5J = f34 | UW 2U2W−2U−1J(3.13)

= f43 |W 2U2W−2U−1J = %2f43 | U2W−2U−1J

= %2f43 |W−2U−1J = f43 | U−1J = f34 | J = g.

In particular, for T ∈ Γ (4),

(3.14) x | T = −g2 | T = −g2 = x,

so that x is a modular function for the group Γ (4) with multiplier system 1.

T h e c a s e s = 2. Take

(3.15) h = ϑ2
2(τ/2)/ϑ2

4(τ/2) = f24(τ) | J,
so that % = i. We find that

h | v1 = f24 | Jv1 = f24 | V1J = f24 | U2J = −h,(3.16)

h | v2 = f24 | Jv2 = f24 |W−8J = f24 | J = h,(3.17)

h | v3 = f24 | Jv3 = f24 |W 2U2W−2J = −h,(3.18)

h | v4 = f24 | Jv4 = f24 | UW−8U−1J = h,(3.19)

h | v5 = f24 | Jv5 = f24 | UW 2U2W−2U−1J(3.20)

= %f23 |W 2U2W−2U−1J = %f23 | U2W−2J

= %3f23 |W−2U−1J = %3f23 | U−1J = %2f24 | J = −h.
It follows that

(3.21) gh | vn = −gh (n = 1, . . . , 5).



Burnside’s uniformization 57

Accordingly, y = igh is a modular function belonging to Γ (4) with a
multiplier system χ such that

(3.22) χ(vn) = −1 (n = 1, . . . , 5).

Define

(3.23) Γ = {T ∈ Γ (4) : χ(T ) = 1}.
Hence Γ is a subgroup of Γ (4) of index 2. It has index 96 in Γ (1) and
contains Γ (8) as a subgroup of index 4.

Now any element T of Γ is a product of elements of the form

(3.24) vivj , v−1
i vj , viv

−1
j , v−1

i v−1
j .

Modulo 8 each of these is congruent to vivj , and by (3.5) and (3.6) each is
therefore congruent modulo 8 to one of

(3.25) I, v1v2 = A, v2v3 = B, v1v3 = C,

where

(3.26) A ≡
[

1 4
4 1

]
, B ≡

[
5 4
0 5

]
, C ≡

[
5 0
4 5

]

modulo 8; note that vivj ≡ vjvi (mod 8). These four elements I,A,B,C,
constitute the four-group F modulo 8, and it is easily seen that

(3.27) Γ = Γ (8)F and Γ (4) = Γ ∪ ΓU4.

Accordingly, both x and y are modular functions (with multiplier sys-
tem 1) belonging to the group Γ , which consists of all matrices T ∈ Γ (1)
that satisfy

(3.28) T ≡ I, A, B or C (mod 8),

as stated on p. 652 of [2].
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[4] J. Tannery et L. Molk, Eléments de la Théorie des Fonctions, Tome 1, Paris, 1897.

Department of Mathematics
University of Glasgow
Glasgow G12 8QT, Scotland
E-mail: rar@maths.gla.ac.uk

Received on 14.3.1996 (2945)


