Burnside's uniformization

by
R. A. Rankin (Glasgow)

To Ian Cassels on the occasion of his 75th birthday

1. Introduction. In 1893 the distinguished mathematician William Burnside (1852-1927) gave the first explicit uniformization of an algebraic equation of genus greater than unity [1]. This was the hyperelliptic equation

$$
\begin{equation*}
y^{2}=x\left(x^{4}-1\right), \tag{1.1}
\end{equation*}
$$

which has genus 2 . This he accomplished by taking

$$
\begin{equation*}
x=\frac{\wp(\omega / 2)-\wp(\omega)}{\wp\left(\omega^{\prime} / 2\right)-\wp(\omega)}, \tag{1.2}
\end{equation*}
$$

where \wp is the Weierstrass elliptic function with primitive periods 2ω and $2 \omega^{\prime}$. Further, he displayed y as a complicated quotient, whose numerator and denominator contained respectively five and four factors, each factor involving a value of \wp or its derivative \wp^{\prime}.

Burnside's work was based to some extent on results stated, but not proved in Klein and Fricke's treatise [2]. The object of the present paper is to examine his work closely, proving all results stated by him, and stating them in a form more readily appreciated, using theta functions in place of the Weierstrass function \wp.

Theorem. The equation (1.1) can be uniformized by taking

$$
\begin{equation*}
x=-\vartheta_{3}(\tau / 2) / \vartheta_{4}(\tau / 2) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
y=i \vartheta_{3}^{1 / 2}(\tau / 2) \vartheta_{2}^{2}(\tau / 2) \vartheta_{4}^{-5 / 2}(\tau / 2) . \tag{1.4}
\end{equation*}
$$

These are elliptic modular functions belonging to a subgroup Γ of index 2 in the principal congruence group $\Gamma(4)$ of level 4.

It may be noted that we could simplify these results by omitting the factor i in (1.4) and replacing x by $-x$. Further (with this simplification),

Jacobi's functions k and k^{\prime} can be used to replace the theta functions, giving

$$
\begin{equation*}
x=\left\{k^{\prime}(\tau / 2)\right\}^{-1 / 2}, \quad y=k(\tau / 2)\left\{k^{\prime}(\tau / 2)\right\}^{-5 / 4} . \tag{1.5}
\end{equation*}
$$

We shall make extensive use of results in Tannery and Molk's treatise [4], and so shall conform to the notation of that work by writing ω_{1} and ω_{3} in place of ω and ω^{\prime}, so that $\tau=\omega_{3} / \omega_{1}$ and $\operatorname{Im} \tau>0$.

By (1.2) and Table XVI (p. 251) of [4], we have

$$
\begin{equation*}
x=\frac{\wp\left(\omega_{1} / 2\right)-e_{1}}{\wp\left(\omega_{3} / 2\right)-e_{1}}=\frac{\sqrt{e_{1}-e_{2}}}{\sqrt{e_{2}-e_{3}}-\sqrt{e_{1}-e_{2}}} . \tag{1.6}
\end{equation*}
$$

Formula (4) of Table XXXVI (p. 257) then gives

$$
\begin{equation*}
x=\frac{\vartheta_{2}^{2}-\vartheta_{3}^{2}}{\vartheta_{4}^{2}} . \tag{1.7}
\end{equation*}
$$

Here, as usual,

$$
\begin{equation*}
\vartheta_{3}=\vartheta_{3}(\tau)=\sum_{n=-\infty}^{\infty} e^{\pi i n^{2} \tau} \tag{1.8}
\end{equation*}
$$

with ϑ_{2} and ϑ_{4} defined similarly. This simplifies, by Theorem 7.1 .8 of [3], to give (1.3), and (1.1) then leads to (1.4), since $\vartheta_{3}^{4}=\vartheta_{2}^{4}+\vartheta_{4}^{4}$.
2. The functions $f_{i j}$. We now prepare to investigate the groups to which x and y belong. Write

$$
T=\left[\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right]
$$

for any matrix belonging to the modular group $\Gamma(1)=\mathrm{SL}(2, \mathbb{Z})$, and put, in particular,

$$
I=\left[\begin{array}{ll}
1 & 0 \tag{2.2}\\
0 & 1
\end{array}\right], \quad U=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad V=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad W=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Then $W=U V U$ and we write

$$
\begin{equation*}
T \tau=\frac{a \tau+b}{c \tau+d} . \tag{2.3}
\end{equation*}
$$

We also write

$$
J=\left[\begin{array}{ll}
1 & 0 \tag{2.4}\\
0 & 2
\end{array}\right],
$$

so that

$$
J \tau=\tau / 2 \quad \text { and } \quad J T J^{-1}=\left[\begin{array}{cc}
a & b / 2 \tag{2.5}\\
2 c & d
\end{array}\right] .
$$

The stroke operator | is, as usual, defined by

$$
\begin{equation*}
f(\tau)|T=f(T \tau), \quad f(\tau)| J=f(\tau / 2) . \tag{2.6}
\end{equation*}
$$

Write also, for any positive integer n,

$$
\begin{equation*}
\Gamma(n)=\{T \in \Gamma(1): T \equiv I(\bmod n)\} \tag{2.7}
\end{equation*}
$$

the principal homogeneous congruence subgroup of level n. The only values of n that we shall need are $n=2,4$ and 8 .

Let s be any real number and write

$$
\begin{equation*}
\varrho=\exp (\pi i s / 4) . \tag{2.8}
\end{equation*}
$$

The only values of s that will arise are $s=1 / 2$ and $s=2$. Put

$$
\begin{equation*}
f_{i j}(\tau)=\left\{\vartheta_{i}(\tau) / \vartheta_{j}(\tau)\right\}^{s}, \tag{2.9}
\end{equation*}
$$

where i and j are different integers in the interval $[2,4]$.
The results stated in the following lemma can be found in [4], or by use of Theorem 7.1.2 of [3].

Lemma.

$$
\begin{array}{lll}
f_{23} \mid U=\varrho f_{24}, & f_{34} \mid U=f_{43}, & f_{24} \mid U=\varrho f_{23}, \\
f_{23} \mid U^{2}=\varrho^{2} f_{23}, & f_{34} \mid U^{2}=f_{34}, & f_{24} \mid U^{2}=\varrho^{2} f_{24}, \\
f_{23} \mid V=f_{43}, & f_{34} \mid V=f_{32}, & f_{24} \mid V=f_{42}, \\
f_{23} \mid W=f_{32}, & f_{34} \mid W=\varrho f_{24}, & f_{24} \mid W=\varrho f_{34}, \\
f_{23} \mid W^{2}=f_{23}, & f_{34} \mid W^{2}=\varrho^{2} f_{34}, & f_{24} \mid W^{2}=\varrho^{2} f_{24} .
\end{array}
$$

Since $\Gamma(2)$ is generated by U^{2} and W^{2}, it follows that $f_{i j}$ is a modular function belonging to $\Gamma(2)$ with a certain multiplier system. However, we are more interested in $\Gamma(4)$.
3. The action of the group $\Gamma(4)$. The group $\Gamma(4)$ is of rank 5 and is generated by the following matrices (see p. 355 of [2]):

$$
\begin{gather*}
v_{1}=\left[\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right], \quad v_{2}=\left[\begin{array}{cc}
1 & 0 \\
-4 & 1
\end{array}\right], \quad v_{3}=\left[\begin{array}{ll}
-3 & 4 \\
-4 & 5
\end{array}\right], \tag{3.1}\\
v_{4}=\left[\begin{array}{cc}
-7 & 16 \\
-4 & 9
\end{array}\right], \quad v_{5}=\left[\begin{array}{cc}
-11 & 36 \\
-4 & 13
\end{array}\right], \tag{3.2}
\end{gather*}
$$

which are expressible as follows:

$$
\begin{gather*}
v_{1}=U^{4}, \quad v_{2}=W^{-4}, \quad v_{3}=W U^{4} W^{-1}, \tag{3.3}\\
v_{4}=U^{2} W^{-4} U^{-2}, \quad v_{5}=U^{3} W^{-4} U^{-3} \tag{3.4}
\end{gather*}
$$

Note that

$$
\begin{equation*}
v_{2} \equiv v_{4}(\bmod 8), \quad v_{3} \equiv v_{5}(\bmod 8), \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{n}^{2} \equiv I(\bmod 8) \quad(n=1, \ldots, 5) . \tag{3.6}
\end{equation*}
$$

Since the independent variable of the theta functions in (1.3) and (1.4) is $\tau / 2$ and not τ, we need to evaluate the following matrices (see (2.5)):

$$
\begin{gather*}
V_{1}=J v_{1} J^{-1}=U^{2}, \quad V_{2}=J v_{2} J^{-1}=W^{-8} \tag{3.7}\\
V_{3}=J v_{3} J^{-1}=W^{2} U^{2} W^{-2}, \quad V_{4}=J v_{4} J^{-1}=U W^{-8} U^{-1} \tag{3.8}
\end{gather*}
$$

and, surprisingly,

$$
\begin{equation*}
V_{5}=J v_{5} J^{-1}=U W^{2} U^{2} W^{-2} U^{-1} . \tag{3.9}
\end{equation*}
$$

The case $s=1 / 2$. In this case we have $\varrho^{8}=-1$, and write

$$
\begin{equation*}
g(\tau)=f_{34}(\tau / 2)=\left\{\vartheta_{3}(\tau / 2) / \vartheta_{4}(\tau / 2)\right\}^{1 / 2}, \tag{3.10}
\end{equation*}
$$

so that $g=f_{34} \mid J$ and we have

$$
\begin{equation*}
g\left|v_{1}=f_{34}\right| J v_{1}=f_{34} \mid V_{1} J=f_{34} U^{2} J=g, \tag{3.11}
\end{equation*}
$$

and we find, similarly, that

$$
\begin{equation*}
g\left|v_{2}=-g, \quad g\right| v_{3}=g, \quad g \mid v_{4}=-g, \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
g \mid v_{5} & =f_{34}\left|J v_{5}=f_{34}\right| V_{5} J=f_{34} \mid U W^{2} U^{2} W^{-2} U^{-1} J \tag{3.13}\\
& =f_{43}\left|W^{2} U^{2} W^{-2} U^{-1} J=\bar{\varrho}^{2} f_{43}\right| U^{2} W^{-2} U^{-1} J \\
& =\bar{\varrho}^{2} f_{43}\left|W^{-2} U^{-1} J=f_{43}\right| U^{-1} J=f_{34} \mid J=g .
\end{align*}
$$

In particular, for $T \in \Gamma(4)$,

$$
\begin{equation*}
x\left|T=-g^{2}\right| T=-g^{2}=x, \tag{3.14}
\end{equation*}
$$

so that x is a modular function for the group $\Gamma(4)$ with multiplier system 1 .
The case $s=2$. Take

$$
\begin{equation*}
h=\vartheta_{2}^{2}(\tau / 2) / \vartheta_{4}^{2}(\tau / 2)=f_{24}(\tau) \mid J, \tag{3.15}
\end{equation*}
$$

so that $\varrho=i$. We find that

$$
\begin{align*}
h \mid v_{1} & =f_{24}\left|J v_{1}=f_{24}\right| V_{1} J=f_{24} \mid U^{2} J=-h, \tag{3.16}\\
h \mid v_{2} & =f_{24}\left|J v_{2}=f_{24}\right| W^{-8} J=f_{24} \mid J=h, \\
h \mid v_{3} & =f_{24}\left|J v_{3}=f_{24}\right| W^{2} U^{2} W^{-2} J=-h, \\
h \mid v_{4} & =f_{24}\left|J v_{4}=f_{24}\right| U W^{-8} U^{-1} J=h, \\
h \mid v_{5} & =f_{24}\left|J v_{5}=f_{24}\right| U W^{2} U^{2} W^{-2} U^{-1} J \\
& =\varrho f_{23}\left|W^{2} U^{2} W^{-2} U^{-1} J=\varrho f_{23}\right| U^{2} W^{-2} J \\
& =\varrho^{3} f_{23}\left|W^{-2} U^{-1} J=\varrho^{3} f_{23}\right| U^{-1} J=\varrho^{2} f_{24} \mid J=-h .
\end{align*}
$$

It follows that

$$
\begin{equation*}
g h \mid v_{n}=-g h \quad(n=1, \ldots, 5) . \tag{3.21}
\end{equation*}
$$

Accordingly, $y=i g h$ is a modular function belonging to $\Gamma(4)$ with a multiplier system χ such that

$$
\begin{equation*}
\chi\left(v_{n}\right)=-1 \quad(n=1, \ldots, 5) \tag{3.22}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Gamma=\{T \in \Gamma(4): \chi(T)=1\} \tag{3.23}
\end{equation*}
$$

Hence Γ is a subgroup of $\Gamma(4)$ of index 2 . It has index 96 in $\Gamma(1)$ and contains $\Gamma(8)$ as a subgroup of index 4 .

Now any element T of Γ is a product of elements of the form

$$
\begin{equation*}
v_{i} v_{j}, \quad v_{i}^{-1} v_{j}, \quad v_{i} v_{j}^{-1}, \quad v_{i}^{-1} v_{j}^{-1} \tag{3.24}
\end{equation*}
$$

Modulo 8 each of these is congruent to $v_{i} v_{j}$, and by (3.5) and (3.6) each is therefore congruent modulo 8 to one of

$$
\begin{equation*}
I, \quad v_{1} v_{2}=A, \quad v_{2} v_{3}=B, \quad v_{1} v_{3}=C \tag{3.25}
\end{equation*}
$$

where

$$
A \equiv\left[\begin{array}{ll}
1 & 4 \tag{3.26}\\
4 & 1
\end{array}\right], \quad B \equiv\left[\begin{array}{ll}
5 & 4 \\
0 & 5
\end{array}\right], \quad C \equiv\left[\begin{array}{ll}
5 & 0 \\
4 & 5
\end{array}\right]
$$

modulo 8 ; note that $v_{i} v_{j} \equiv v_{j} v_{i}(\bmod 8)$. These four elements I, A, B, C, constitute the four-group F modulo 8 , and it is easily seen that

$$
\begin{equation*}
\Gamma=\Gamma(8) F \quad \text { and } \quad \Gamma(4)=\Gamma \cup \Gamma U^{4} \tag{3.27}
\end{equation*}
$$

Accordingly, both x and y are modular functions (with multiplier system 1) belonging to the group Γ, which consists of all matrices $T \in \Gamma(1)$ that satisfy

$$
\begin{equation*}
T \equiv I, A, B \text { or } C(\bmod 8) \tag{3.28}
\end{equation*}
$$

as stated on p. 652 of [2].

References

[1] W. Burnside, Note on the equation $y^{2}=x\left(x^{4}-1\right)$, Proc. London Math. Soc. 24 (1893), 17-20.
[2] F. Klein und R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, Band 1, Leipzig, 1890.
[3] R. A. Rankin, Modular Forms and Functions, Cambridge University Press, 1977.
[4] J. Tannery et L. Molk, Eléments de la Théorie des Fonctions, Tome 1, Paris, 1897.

Department of Mathematics
University of Glasgow
Glasgow G12 8QT, Scotland
E-mail: rar@maths.gla.ac.uk

