
ACTA ARITHMETICA
LXXIX.1 (1997)

On the Mahler measure of polynomials in many variables

by

A. Schinzel (Warszawa)

To Professor J. W. S. Cassels on his 75th birthday

For F ∈ C[z1, z
−1
1 , . . . , zs, z

−1
s ] the Mahler measure M(F ) is given by

the formula

M(F ) = exp
\
. . .

\
[0,1)s

log |F (e2πiθ1 , . . . , e2πiθs)| dθ1 . . . dθs,

while

‖F‖ =
(\
. . .

\
[0,1)s

|F (e2πiθ1 , . . . , e2πiθs)|2 dθ1 . . . dθs

)1/2
.

Let F =
∑l
i=1 ai

∏s
σ=1 z

αiσ
σ , where ai ∈ C∗ and αi = 〈αi1, . . . , αis〉 ∈ Zs

are distinct. We call two terms of F

aj

s∏
σ=1

zαjσσ and ak

s∏
σ=1

zαkσσ (j 6= k)

opposite extreme if there exists a vector r ∈ Rs such that

rαj < rαi < rαk for all i 6= j, k.

Moreover, we put

JF = F

s∏
σ=1

z
−min1≤i≤l αiσ
σ

and for F ∈ C[z] we denote by ∂F the maximal degree of F with respect to
zσ (1 ≤ σ ≤ s). We note that

‖F‖2 =
l∑

i=1

|ai|2.

We shall show

[77]
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Theorem. If F ∈ C[z1, z
−1
1 , . . . , zs, z

−1
s ] and a1, a2 are the coefficients

of opposite extreme terms of F then

(1) M(F )2 + |a1a2|2M(F )−2 ≤ ‖F‖2.
Equality occurs if and only if F (z1, . . . , zs)F (z−1

1 , . . . , z−1
s ) has just three

non-zero coefficients.

For s = 1 the first part of the theorem was proved by Vicente Gonçalvez
[1], the second part by the writer [5]. The proof of the first part of Lemma 1
below is Ostrowski’s proof [4] of Vicente Gonçalvez’s theorem, rediscovered
by Mignotte [3].

Lemma 1. The Theorem holds for s = 1 and if c is the coefficient of
zm (m 6= 0,±∂JF ) in F (z)F (z−1) then

M(F )2 + |a1a2|2M(F )−2 +
√

(M(F )2 + |a1a2|2M(F )−2)2 + 2|c|2 ≤ 2‖F‖2.
P r o o f. Replacing if necessary F by JF or JF (z−1) which changes nei-

ther ‖F‖ nor M(F ) nor the set {F (z)F (z−1), F (z)F (z−1)} we may assume
that F ∈ C[z], F (0) 6= 0 and a1 is the leading coefficient of F, a2 = F (0).

Let

a−1
1 F (z) =

n∏

i=1

(z − αi) = G(z)H(z),

G(z) =
n∏

i=1
|αi|≥1

(z − αi), H(z) =
n∏

i=1
|αi|<1

(z − αi)

and compute

|a1|−2F (z)F (z−1) = G(z)H(z)G(z−1)H(z−1)(2)

= (G(z)H(z−1))(G(z−1)H(z)).

The constant term on the left is ‖a−1
1 F‖2, on the right ‖E‖2, where

E = z∂HG(z)H(z−1) =
n∏

i=1
|αi|≥1

(z − αi)
n∏

i=1
|αi|<1

(1− αiz).

Let us put

(3) E =
n∑

i=0

eiz
i.

We have

(4) e0 =
n∏

i=1
|αi|<1

(−αi), en =
n∏

i=1
|αi|≥1

(−αi).
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Hence

‖a−1
1 F‖2 ≥

n∏

i=1
|αi|<1

|αi|2 +
n∏

i=1
|αi|≥1

|αi|2,

which gives (1) since by Jensen’s formula

(5) M(F ) = |a1|
n∏

i=1
|αi|≥1

|αi|.

Equality in (1) is attained if and only if E has just two non-zero coefficients.
If this condition is satisfied then F (z)F (z−1) = |a1|2E(z)E(z−1) has just
three non-zero coefficients.

Conversely, if the latter condition holds we have

znF (z)F (z−1) = a1F (0)z2n + ‖F‖2zn + a1F (0)

= a1F (0)
(
zn +

‖F‖2 +
√
‖F‖4 − 4|a1F (0)|2
2a1F (0)

)

×
(
zn +

‖F‖2 −
√
‖F‖4 − 4|a1F (0)|2
2a1F (0)

)
.

All zeros of the first, respectively second, bracketed factor are in absolute
value greater, respectively less than 1, hence E equals the first factor mul-
tiplied by a constant and thus has just two non-zero coefficients.

Assume that F (z)F (z−1) has a term czm, where m 6= 0,±n and c 6= 0.
Replacing if necessary czm by cz−m we may assume m > 0. By (2) and (3)
we obtain

eme0 + . . .+ enen−m = |a1|−2c.

Now, by the Schwarz inequality

(|em|2 + |em+1|2 + . . .+ |en−1|2 + |en−m|2)

×(|e0|2 + |e1|2 + . . .+ |en−m−1|2 + |en|2) ≥ |a1|−4|c|2.
However, the first factor does not exceed 2(‖E‖2 − |e0|2 − |en|2), and the
second factor does not exceed ‖E‖2. Thus we obtain

|a1|4‖E‖4 − (|a1e0|2 + |a1en|2)|a1|2‖E‖2 − 1
2
|c|2 ≥ 0

and

2‖F‖2 = 2|a1|2‖E‖2 ≥ |a1e0|2 + |a1en|2 +
√

(|a1e0|2 + |a1en|2)2 + 2|c|2,
which completes the proof, since by (4) and (5),

|a1e0| = |a1F (0)|
M(F )

, |a1en| = M(F ).
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Lemma 2. For every F ∈ C[z1, z
−1
1 , . . . , zs, z

−1
s ] we have

M(F ) = lim
q(r)→∞

M(F (zr1 , . . . , zrs)), ‖F‖ = lim
q(r)→∞

‖F (zr1 , . . . , zrs)‖,

where

q(r) = min{h(a) : a ∈ Zs\{0} and ar = 0}, h(a) is the height of a.

P r o o f. The first equality is a result of Lawton [2], the second is trivial.

P r o o f o f t h e T h e o r e m. Let

(6)
F =

∑

j∈Zs
a(j)

s∏
σ=1

zjσσ , aν = a(jν) 6= 0 (ν = 1, 2), j1 6= j2;

J = {j ∈ Zs : a(j) 6= 0}.
Since a1, a2 are the coefficients of opposite extreme terms of F there exists
a vector r0 ∈ Rs such that

r0j1 < r0j < r0j2 for all j ∈ J\{j1, j2}
and thus

−m1 := max
j∈J\{j1}

r0(j1 − j)
h(j1 − j) < 0 < min

j∈J\{j2}
r0(j2 − j)
h(j2 − j) =: m2.

Hence for every vector r ∈ Rs such that

(7) h(r − r0) <
min{m1,m2}

s
we have

(8) rj1 < rj < rj2 for all j ∈ J\{j1, j2}.
Now (7) is satisfied by s linearly independent vectors r ∈ Qs. Since (8)
is homogeneous with respect to r it is satisfied by s linearly independent
vectors r ∈ Zs. Hence for every Q ∈ R there exists an r ∈ Zs satisfying (8)
with q(r) > Q. However, (6) and (8) imply that a1 and a2 are the coefficients
of opposite extreme terms of F (zr1 , . . . , zrs), hence by Lemma 1,

M(F (zr1 , . . . , zrs))2 + |a1a2|2M(F (zr1 , . . . , zrs))−2 ≤ ‖F (zr1 , . . . , zrs)‖2.
Passing to the limit as q(r)→∞ we obtain, by Lemma 2,

M(F )2 + |a1a2|2M(F )−2 ≤ ‖F‖2.
If q(r) > 2∂JF the system (i.e. the set with multiplicities) of all non-
zero coefficients of F (zr1 , . . . , zrs)F (z−r1 , . . . , z−rs) coincides with the sys-
tem of all non-zero coefficients of F (z1, . . . , zs)F (z−1

1 , . . . , z−1
s ). Hence if

F (z1, . . . , zs)F (z−1
1 , . . . , z−1

s ) has just three non-zero coefficients the same
is true for F (zr1 , . . . , zrs)F (z−r1 , . . . , z−rs) and, by Lemma 1, (8) implies

M(F (zr1 , . . . , zrs))2 + |a1a2|2M(F (z−r1 , . . . , z−rs))−2 = ‖F (zr1 , . . . , zrs)‖2.
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Passing to the limit as q(r) → ∞ we obtain, by Lemma 2, (1) with the
equality sign.

If F (z1, . . . , zs)F (z−1
1 , . . . , z−1

s ) has at least four non-zero coefficients ci
(1 ≤ i ≤ 4) and q (r) > 2∂JF , then there is an m 6= 0,±∂JF (zr1 , . . . , zrs)
and an i ≤ 4 such that zm occurs in F (zr1 , . . . , zrs)F (z−r1 , . . . , z−rs) with
the coefficient ci. Therefore, by Lemma 1, (8) implies

M(F (zr1 , . . . , zrs))2 + |a1a2|2M(F (zr1 , . . . , zrs))−2

+
√

(M(F (zr1 , . . . , zrs))2 + |a1a2|2M(F (zr1 , . . . , zrs))−2)2 + min
1≤i≤4

|ci|2

≤ 2‖F (zr1 , . . . , zrs)‖2
and passing to the limit as q(r)→∞ we obtain, by Lemma 2, (1) with the
strict inequality sign.
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