On the Mahler measure of polynomials in many variables

by
A. Schinzel (Warszawa)

To Professor J. W. S. Cassels on his 75th birthday

For $F \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{s}, z_{s}^{-1}\right]$ the Mahler measure $M(F)$ is given by the formula

$$
M(F)=\exp \int_{[0,1)^{s}} \ldots \int \log \left|F\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{s}}\right)\right| d \theta_{1} \ldots d \theta_{s}
$$

while

$$
\|F\|=\left(\int_{[0,1)^{s}} \ldots \int\left|F\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{s}}\right)\right|^{2} d \theta_{1} \ldots d \theta_{s}\right)^{1 / 2}
$$

Let $F=\sum_{i=1}^{l} a_{i} \prod_{\sigma=1}^{s} z_{\sigma}^{\alpha_{i \sigma}}$, where $a_{i} \in \mathbb{C}^{*}$ and $\boldsymbol{\alpha}_{i}=\left\langle\alpha_{i 1}, \ldots, \alpha_{i s}\right\rangle \in \mathbb{Z}^{s}$ are distinct. We call two terms of F

$$
a_{j} \prod_{\sigma=1}^{s} z_{\sigma}^{\alpha_{j \sigma}} \quad \text { and } \quad a_{k} \prod_{\sigma=1}^{s} z_{\sigma}^{\alpha_{k \sigma}} \quad(j \neq k)
$$

opposite extreme if there exists a vector $\boldsymbol{r} \in \mathbb{R}^{s}$ such that

$$
\boldsymbol{r} \boldsymbol{\alpha}_{j}<\boldsymbol{r} \boldsymbol{\alpha}_{i}<\boldsymbol{r} \boldsymbol{\alpha}_{k} \quad \text { for all } i \neq j, k
$$

Moreover, we put

$$
J F=F \prod_{\sigma=1}^{s} z_{\sigma}^{-\min _{1 \leq i \leq l} \alpha_{i \sigma}}
$$

and for $F \in \mathbb{C}[\boldsymbol{z}]$ we denote by ∂F the maximal degree of F with respect to $z_{\sigma}(1 \leq \sigma \leq s)$. We note that

$$
\|F\|^{2}=\sum_{i=1}^{l}\left|a_{i}\right|^{2}
$$

We shall show

Theorem. If $F \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{s}, z_{s}^{-1}\right]$ and a_{1}, a_{2} are the coefficients of opposite extreme terms of F then

$$
\begin{equation*}
M(F)^{2}+\left|a_{1} a_{2}\right|^{2} M(F)^{-2} \leq\|F\|^{2} \tag{1}
\end{equation*}
$$

Equality occurs if and only if $F\left(z_{1}, \ldots, z_{s}\right) \bar{F}\left(z_{1}^{-1}, \ldots, z_{s}^{-1}\right)$ has just three non-zero coefficients.

For $s=1$ the first part of the theorem was proved by Vicente Gonçalvez [1], the second part by the writer [5]. The proof of the first part of Lemma 1 below is Ostrowski's proof [4] of Vicente Gonçalvez's theorem, rediscovered by Mignotte [3].

Lemma 1. The Theorem holds for $s=1$ and if c is the coefficient of $z^{m}(m \neq 0, \pm \partial J F)$ in $F(z) \bar{F}\left(z^{-1}\right)$ then $M(F)^{2}+\left|a_{1} a_{2}\right|^{2} M(F)^{-2}+\sqrt{\left(M(F)^{2}+\left|a_{1} a_{2}\right|^{2} M(F)^{-2}\right)^{2}+2|c|^{2}} \leq 2\|F\|^{2}$.

Proof. Replacing if necessary F by $J F$ or $J F\left(z^{-1}\right)$ which changes neither $\|F\|$ nor $M(F)$ nor the set $\left\{F(z) \bar{F}\left(z^{-1}\right), \bar{F}(z) F\left(z^{-1}\right)\right\}$ we may assume that $F \in \mathbb{C}[z], F(0) \neq 0$ and a_{1} is the leading coefficient of $F, a_{2}=F(0)$.

Let

$$
\begin{gathered}
a_{1}^{-1} F(z)=\prod_{i=1}^{n}\left(z-\alpha_{i}\right)=G(z) H(z) \\
G(z)=\prod_{\substack{i=1 \\
\left|\alpha_{i}\right| \geq 1}}^{n}\left(z-\alpha_{i}\right), \quad H(z)=\prod_{\substack{i=1 \\
\left|\alpha_{i}\right|<1}}^{n}\left(z-\alpha_{i}\right)
\end{gathered}
$$

and compute

$$
\begin{align*}
\left|a_{1}\right|^{-2} F(z) \bar{F}\left(z^{-1}\right) & =G(z) H(z) \bar{G}\left(z^{-1}\right) \bar{H}\left(z^{-1}\right) \tag{2}\\
& =\left(G(z) \bar{H}\left(z^{-1}\right)\right)\left(\bar{G}\left(z^{-1}\right) H(z)\right)
\end{align*}
$$

The constant term on the left is $\left\|a_{1}^{-1} F\right\|^{2}$, on the right $\|E\|^{2}$, where

$$
E=z^{\partial H} G(z) \bar{H}\left(z^{-1}\right)=\prod_{\substack{i=1 \\\left|\alpha_{i}\right| \geq 1}}^{n}\left(z-\alpha_{i}\right) \prod_{\substack{i=1 \\\left|\alpha_{i}\right|<1}}^{n}\left(1-\bar{\alpha}_{i} z\right)
$$

Let us put

$$
\begin{equation*}
E=\sum_{i=0}^{n} e_{i} z^{i} \tag{3}
\end{equation*}
$$

We have

$$
\begin{equation*}
e_{0}=\prod_{\substack{i=1 \\\left|\alpha_{i}\right|<1}}^{n}\left(-\alpha_{i}\right), \quad e_{n}=\prod_{\substack{i=1 \\\left|\alpha_{i}\right| \geq 1}}^{n}\left(-\bar{\alpha}_{i}\right) \tag{4}
\end{equation*}
$$

Hence

$$
\left\|a_{1}^{-1} F\right\|^{2} \geq \prod_{\substack{i=1 \\\left|\alpha_{i}\right|<1}}^{n}\left|\alpha_{i}\right|^{2}+\prod_{\substack{i=1 \\\left|\alpha_{i}\right| \geq 1}}^{n}\left|\alpha_{i}\right|^{2}
$$

which gives (1) since by Jensen's formula

$$
\begin{equation*}
M(F)=\left|a_{1}\right| \prod_{\substack{i=1 \\\left|\alpha_{i}\right| \geq 1}}^{n}\left|\alpha_{i}\right| \tag{5}
\end{equation*}
$$

Equality in (1) is attained if and only if E has just two non-zero coefficients. If this condition is satisfied then $F(z) \bar{F}\left(z^{-1}\right)=\left|a_{1}\right|^{2} E(z) \bar{E}\left(z^{-1}\right)$ has just three non-zero coefficients.

Conversely, if the latter condition holds we have

$$
\begin{aligned}
z^{n} F(z) \bar{F}\left(z^{-1}\right)= & a_{1} \bar{F}(0) z^{2 n}+\|F\|^{2} z^{n}+\bar{a}_{1} F(0) \\
= & a_{1} \bar{F}(0)\left(z^{n}+\frac{\|F\|^{2}+\sqrt{\|F\|^{4}-4\left|a_{1} F(0)\right|^{2}}}{2 a_{1} \bar{F}(0)}\right) \\
& \times\left(z^{n}+\frac{\|F\|^{2}-\sqrt{\|F\|^{4}-4\left|a_{1} F(0)\right|^{2}}}{2 a_{1} \bar{F}(0)}\right)
\end{aligned}
$$

All zeros of the first, respectively second, bracketed factor are in absolute value greater, respectively less than 1 , hence E equals the first factor multiplied by a constant and thus has just two non-zero coefficients.

Assume that $F(z) \bar{F}\left(z^{-1}\right)$ has a term $c z^{m}$, where $m \neq 0, \pm n$ and $c \neq 0$. Replacing if necessary $c z^{m}$ by $\bar{c} z^{-m}$ we may assume $m>0$. By (2) and (3) we obtain

$$
e_{m} \bar{e}_{0}+\ldots+e_{n} \bar{e}_{n-m}=\left|a_{1}\right|^{-2} c
$$

Now, by the Schwarz inequality

$$
\begin{aligned}
\left(\left|e_{m}\right|^{2}+\left|e_{m+1}\right|^{2}\right. & \left.+\ldots+\left|e_{n-1}\right|^{2}+\left|e_{n-m}\right|^{2}\right) \\
& \times\left(\left|e_{0}\right|^{2}+\left|e_{1}\right|^{2}+\ldots+\left|e_{n-m-1}\right|^{2}+\left|e_{n}\right|^{2}\right) \geq\left|a_{1}\right|^{-4}|c|^{2}
\end{aligned}
$$

However, the first factor does not exceed $2\left(\|E\|^{2}-\left|e_{0}\right|^{2}-\left|e_{n}\right|^{2}\right)$, and the second factor does not exceed $\|E\|^{2}$. Thus we obtain

$$
\left|a_{1}\right|^{4}\|E\|^{4}-\left(\left|a_{1} e_{0}\right|^{2}+\left|a_{1} e_{n}\right|^{2}\right)\left|a_{1}\right|^{2}\|E\|^{2}-\frac{1}{2}|c|^{2} \geq 0
$$

and

$$
2\|F\|^{2}=2\left|a_{1}\right|^{2}\|E\|^{2} \geq\left|a_{1} e_{0}\right|^{2}+\left|a_{1} e_{n}\right|^{2}+\sqrt{\left(\left|a_{1} e_{0}\right|^{2}+\left|a_{1} e_{n}\right|^{2}\right)^{2}+2|c|^{2}}
$$

which completes the proof, since by (4) and (5),

$$
\left|a_{1} e_{0}\right|=\frac{\left|a_{1} F(0)\right|}{M(F)}, \quad\left|a_{1} e_{n}\right|=M(F)
$$

Lemma 2. For every $F \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{s}, z_{s}^{-1}\right]$ we have

$$
M(F)=\lim _{q(\boldsymbol{r}) \rightarrow \infty} M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right), \quad\|F\|=\lim _{q(\boldsymbol{r}) \rightarrow \infty}\left\|F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right\|
$$

where
$q(\boldsymbol{r})=\min \left\{h(\boldsymbol{a}): \boldsymbol{a} \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\}\right.$ and $\left.\boldsymbol{a} r=0\right\}, \quad h(\boldsymbol{a})$ is the height of \boldsymbol{a}.
Proof. The first equality is a result of Lawton [2], the second is trivial.
Proof of the Theorem. Let

$$
\begin{align*}
F & =\sum_{\boldsymbol{j} \in \mathbb{Z}^{s}} a(\boldsymbol{j}) \prod_{\sigma=1}^{s} z_{\sigma}^{j_{\sigma}}, \quad a_{\nu}=a\left(\boldsymbol{j}_{\nu}\right) \neq 0(\nu=1,2), \quad \boldsymbol{j}_{1} \neq \boldsymbol{j}_{2} \tag{6}\\
J & =\left\{\boldsymbol{j} \in \mathbb{Z}^{s}: a(\boldsymbol{j}) \neq 0\right\}
\end{align*}
$$

Since a_{1}, a_{2} are the coefficients of opposite extreme terms of F there exists a vector $\boldsymbol{r}_{0} \in \mathbb{R}^{s}$ such that

$$
\boldsymbol{r}_{0} \boldsymbol{j}_{1}<\boldsymbol{r}_{0} \boldsymbol{j}<\boldsymbol{r}_{0} \boldsymbol{j}_{2} \quad \text { for all } \boldsymbol{j} \in J \backslash\left\{\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right\}
$$

and thus

$$
-m_{1}:=\max _{\boldsymbol{j} \in J \backslash\left\{\boldsymbol{j}_{1}\right\}} \frac{\boldsymbol{r}_{0}\left(\boldsymbol{j}_{1}-\boldsymbol{j}\right)}{h\left(\boldsymbol{j}_{1}-\boldsymbol{j}\right)}<0<\min _{\boldsymbol{j} \in J \backslash\left\{\boldsymbol{j}_{2}\right\}} \frac{\boldsymbol{r}_{0}\left(\boldsymbol{j}_{2}-\boldsymbol{j}\right)}{h\left(\boldsymbol{j}_{2}-\boldsymbol{j}\right)}=: m_{2}
$$

Hence for every vector $r \in \mathbb{R}^{s}$ such that

$$
\begin{equation*}
h\left(\boldsymbol{r}-\boldsymbol{r}_{0}\right)<\frac{\min \left\{m_{1}, m_{2}\right\}}{s} \tag{7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\boldsymbol{r} \boldsymbol{j}_{1}<\boldsymbol{r} \boldsymbol{j}<\boldsymbol{r} \boldsymbol{j}_{2} \quad \text { for all } \boldsymbol{j} \in J \backslash\left\{\boldsymbol{j}_{1}, \boldsymbol{j}_{2}\right\} \tag{8}
\end{equation*}
$$

Now (7) is satisfied by s linearly independent vectors $\boldsymbol{r} \in \mathbb{Q}^{s}$. Since (8) is homogeneous with respect to \boldsymbol{r} it is satisfied by s linearly independent vectors $\boldsymbol{r} \in \mathbb{Z}^{s}$. Hence for every $Q \in \mathbb{R}$ there exists an $\boldsymbol{r} \in \mathbb{Z}^{s}$ satisfying (8) with $q(\boldsymbol{r})>Q$. However, (6) and (8) imply that a_{1} and a_{2} are the coefficients of opposite extreme terms of $F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)$, hence by Lemma 1,

$$
M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{2}+\left|a_{1} a_{2}\right|^{2} M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{-2} \leq\left\|F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right\|^{2}
$$

Passing to the limit as $q(\boldsymbol{r}) \rightarrow \infty$ we obtain, by Lemma 2,

$$
M(F)^{2}+\left|a_{1} a_{2}\right|^{2} M(F)^{-2} \leq\|F\|^{2}
$$

If $q(\boldsymbol{r})>2 \partial J F$ the system (i.e. the set with multiplicities) of all nonzero coefficients of $F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right) \bar{F}\left(z^{-r_{1}}, \ldots, z^{-r_{s}}\right)$ coincides with the system of all non-zero coefficients of $F\left(z_{1}, \ldots, z_{s}\right) \bar{F}\left(z_{1}^{-1}, \ldots, z_{s}^{-1}\right)$. Hence if $F\left(z_{1}, \ldots, z_{s}\right) \bar{F}\left(z_{1}^{-1}, \ldots, z_{s}^{-1}\right)$ has just three non-zero coefficients the same is true for $F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right) \bar{F}\left(z^{-r_{1}}, \ldots, z^{-r_{s}}\right)$ and, by Lemma 1, (8) implies $M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{2}+\left|a_{1} a_{2}\right|^{2} M\left(F\left(z^{-r_{1}}, \ldots, z^{-r_{s}}\right)\right)^{-2}=\left\|F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right\|^{2}$.

Passing to the limit as $q(\boldsymbol{r}) \rightarrow \infty$ we obtain, by Lemma 2, (1) with the equality sign.

If $F\left(z_{1}, \ldots, z_{s}\right) \bar{F}\left(z_{1}^{-1}, \ldots, z_{s}^{-1}\right)$ has at least four non-zero coefficients c_{i} $(1 \leq i \leq 4)$ and $q(\boldsymbol{r})>2 \partial J F$, then there is an $m \neq 0, \pm \partial J F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)$ and an $i \leq 4$ such that z^{m} occurs in $F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right) \bar{F}\left(z^{-r_{1}}, \ldots, z^{-r_{s}}\right)$ with the coefficient c_{i}. Therefore, by Lemma 1, (8) implies

$$
\begin{aligned}
& M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{2}+\left|a_{1} a_{2}\right|^{2} M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{-2} \\
& \quad+\sqrt{\left(M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{2}+\left|a_{1} a_{2}\right|^{2} M\left(F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right)^{-2}\right)^{2}+\min _{1 \leq i \leq 4}\left|c_{i}\right|^{2}} \\
& \leq 2\left\|F\left(z^{r_{1}}, \ldots, z^{r_{s}}\right)\right\|^{2}
\end{aligned}
$$

and passing to the limit as $q(\boldsymbol{r}) \rightarrow \infty$ we obtain, by Lemma 2, (1) with the strict inequality sign.

References

[1] J. V. Gonçalvez, L'inégalité de W. Specht, Univ. Lisboa Rev. Fac. Ci. (2) A 1 (1956), 167-171.
[2] W. Lawton, A problem of Boyd concerning geometric means of polynomials, J. Number Theory 16 (1983), 356-362.
[3] M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28 (1974), 1153-1157.
[4] A. Ostrowski, On an inequality of J. Vicente Gonçalvez, Univ. Lisboa Rev. Fac. Ci. (2) A 8 (1960), 115-119.
[5] A. Schinzel, Selected Topics on Polynomials, Univ. of Michigan, Ann Arbor, 1982.
Institute of Mathematics
Polish Academy of Sciences
P.O. Box 137

00-950 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

