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1. Introduction. For any integer n larger than one let P (n) denote the
greatest prime factor of n. In [3], Győry, Sárközy and Stewart conjectured
that if a, b and c denote distinct positive integers then

(1) P ((ab+ 1)(ac+ 1)(bc+ 1))→∞
as the maximum of a, b and c tends to infinity. We shall show that (1) holds
provided that

log a
log(c+ 1)

→∞.

This is a consequence of the following result.

Theorem 1. Let a, b and c be positive integers with a ≥ b > c. There
exists an effectively computable positive number C0 such that

(2) P ((ab+ 1)(ac+ 1)(bc+ 1)) > C0 log(log a/ log(c+ 1)).

Recently, Győry [2] has proved that (1) holds provided that at least one
of P (a), P (b), P (c), P (a/b), P (a/c) and P (b/c) is bounded. While we have
not been able to prove (1) we have been able to prove that if a, b, c and d
are positive integers with a 6= d and b 6= c then

P ((ab+ 1)(ac+ 1)(bd+ 1)(cd+ 1))→∞
as the maximum of a, b, c and d tends to infinity. Notice, by symmetry, that
there is no loss of generality in assuming that a ≥ b > c and that a > d.
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In fact, we are able to give an effective lower bound for the greatest prime
factor of (ab+ 1)(ac+ 1)(bd+ 1)(cd+ 1) in terms of a.

Theorem 2. Let a, b, c and d denote positive integers with a ≥ b > c
and a > d. There exists an effectively computable positive number C1 such
that

(3) P ((ab+ 1)(ac+ 1)(bd+ 1)(cd+ 1)) > C1 log log a.

The proofs of Theorems 1 and 2 depend upon estimates for linear forms
in the logarithms of algebraic numbers. We are able to estimate the greatest
prime factor of more general polynomials than those considered in Theo-
rems 1 and 2. To this end we make the following definition.

Definition. Let n and t be positive integers with t ≥ 2. {L,M} is said
to be a balanced pair of t-sets of a set {h1, . . . , hn} if L and M are disjoint
sets of t-element subsets of {h1, . . . , hn} and each element hi, with 1 ≤ i ≤ n,
occurs in some element of L and, further, occurs in elements of L the same
number of times it occurs in elements of M .

Thus, for example, if L = {{1, 2}, {3, 4}} and M = {{1, 3}, {2, 4}} then
{L,M} is a balanced pair of 2-sets of {1, 2, 3, 4}.

Theorem 3. Let n and t be integers with 2 ≤ t < n. Suppose that {L,M}
is a balanced pair of t-sets of {1, . . . , n}. Let a1, . . . , an denote positive inte-
gers for which

(4)
∏

{i1,...,it}∈L
(ai1 . . . ait + 1) 6=

∏

{i1,...,it}∈M
(ai1 . . . ait + 1).

Put

a+ = max{3, a1, . . . , an} and a− = min
{i1,...,it}∈L∪M

{ai1 . . . ait}.

Then

(5) P
( ∏

{i1,...,it}∈L∪M
(ai1 . . . ait + 1)

)
→∞

as a− tends to infinity. Further , there exists a positive number C2, which is
effectively computable in terms of t and the cardinality of L, such that

(6) P
( ∏

{i1,...,it}∈L∪M
(ai1 . . . ait + 1)

)
> C2 log

(
log a−

log log a+

)
.

To prove (5) we shall appeal to a theorem on S-unit equations due to
van der Poorten and Schlickewei [4, 5] and independently to Evertse [1].
This result in turn depends upon a p-adic version of Schmidt’s Subspace
Theorem due to Schlickewei [6]. As a consequence we are not able to give
an effective lower bound for the quantity on the left hand side of (5). To
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prove (6) we shall appeal to a version of Baker’s estimates for linear forms
in logarithms due to Waldschmidt [7].

Let n be an even integer with n ≥ 4. Let L = {(2i, 2i−1)|i = 1, . . . , n/2}
and M = {(1, n)} ∪ {(2i, 2i+ 1) | i = 1, . . . , n/2− 1}. Notice that {L,M} is
a balanced pair of 2-sets of {1, . . . , n} and so the following result is a direct
consequence of Theorem 3.

Corollary 1. Let n be an even integer with n ≥ 4. Let a1, . . . , an be
positive integers for which

n/2∏

i=1

(a2ia2i−1 + 1) 6=
n/2∏

i=1

(a2ia2i+1 + 1)

with the convention that an+1 = a1. Then

P
( n∏

i=1

(aiai+1 + 1)
)
→∞ as min

i
(aiai+1)→∞.

Another consequence of Theorem 3 is the following.

Corollary 2. Let a, b, c, d and e be positive integers with

(ab+ 1)(ac+ 1)(de+ 1) 6= (ad+ 1)(ae+ 1)(bc+ 1).

Then

P ((ab+ 1)(ac+ 1)(ad+ 1)(ae+ 1)(bc+ 1)(de+ 1))→∞
as min(b, c, d, e)→∞.

Finally we mention a result which comes from applying Theorem 3 with
a certain balanced pair of 3-sets of {1, . . . , 6}.

Corollary 3. Let a, b, c, d, e and f be positive integers with

(abc+ 1)(cde+ 1)(aef + 1) 6= (adf + 1)(ace+ 1)(bce+ 1).
Then

P ((abc+ 1)(ace+ 1)(adf + 1)(aef + 1)(bce+ 1)(cde+ 1))→∞
as min(a, e)→∞.

2. Preliminary lemmas. For any rational number x we may write
x = p/q with p and q coprime integers. We define the height of x to be the
maximum of |p| and |q|. Let a1, . . . , an be rational numbers with heights at
most A1, . . . , An respectively. We shall suppose that Ai ≥ 4 for i = 1, . . . , n.
Next let b1, . . . , bn be rational integers. Suppose that B and Bn are positive
real numbers with

B ≥ max
1≤j≤n−1

|bj | and Bn ≥ max(3, |bn|).
Put
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Λ = b1 log a1 + . . .+ bn log an,
where log denotes the principal branch of the logarithm.

Lemma 1. There exists an effectively computable positive number C3 such
that if Λ 6= 0 then

|Λ| > exp
(
− C3n

4n logA1 . . . logAn log
(
Bn +

B

logAn

))
.

P r o o f. This follows from Corollaire 10.1 of Waldschmidt [7]. Wald-
schmidt proved this result under the assumption that bn 6= 0. If bn = 0
then we apply the same theorem with bn replaced by bj where j is the
largest integer for which bj 6= 0. Notice that j ≥ 1 since Λ 6= 0. Since
logAn log(3 +B/(logAn)) is larger than 1

2 logB the result follows.

We shall employ Lemma 1 in the following manner. Let r be a positive
integer and let p1, . . . , pr be distinct prime numbers with pr the largest.
Let h1, . . . , hr be integers of absolute value at most H. Let α be a rational
number with height at most A (≥ 4) and let h0 be an integer of absolute
value at most H0 (≥ 2). We consider

log T = h1 log p1 + . . .+ hr log pr + h0 logα.

Lemma 2. Let U be a positive real number and suppose that

(7) 0 < |log T | < U−1.

Then there exists an effectively computable number C4 such that

pr > C4 log
(

logU
logA log(H0 +H/(logA))

)
.

P r o o f. Let C5, C6, . . . denote effectively computable positive numbers.
By Lemma 1,

(8) |log T |
> exp

(
− C5(r + 1)4(r+1) log p1 . . . log pr logA log

(
H0 +

H

logA

))
.

Observe that

(9) (r + 1)4(r+1) log p1 . . . log pr < e4(r+1) log(r+1)+r log log pr < eC6pr ,

by the prime number theorem. Therefore by (7)–(9),

C5e
C6pr logA log

(
H0 +

H

logA

)
> logU,

hence

pr > C7 log
(

logU
logA log(H0 +H/(logA))

)
.

We shall also require the following theorem on S-unit equations.
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Lemma 3. Let S = {p1, . . . , ps} be a set of prime numbers and let n
be a positive integer. There are only finitely many n-tuples (x1, . . . , xn) of
integers, all whose prime factors are from S, satisfying :

(i) gcd(x1, . . . , xn) = 1,
(ii) x1 + . . .+ xn = 0, and

(iii) xi1 + . . .+ xik 6= 0 for each proper , non-empty subset {i1, . . . , ik} of
{1, . . . , n}.

P r o o f. See van der Poorten and Schlickewei [4, 5] and Evertse [1].

3. Proof of Theorem 1. Let C8, C9, . . . denote effectively computable
positive numbers. The proof proceeds by a comparison of estimates for T1

and T2 where

(10) T1 =
b

c
· ac+ 1
ab+ 1

and

T2 =
(ac+ 1)(bc+ 1)

(ab+ 1)c2
.

Let p1, . . . , pr be the distinct prime factors of (ab + 1)(ac + 1)(bc + 1) and
suppose that pr is the largest of them.

We may assume a ≥ 16. Then

log T1 = log
(

1 +
b− c
abc+ c

)
< log

(
1 +

1
ac

)
≤ log

(
1 +

1
a

)
< a−1/2.

Further,

log T1 = h1 log p1 + . . .+ hr log pr + log(b/c),

where h1, . . . , hr are integers of absolute value at most 6 log a. Since b > c,
we find that log T1 > 0 and thus, by Lemma 2,

(11) pr > C8 log
(

log a

log b log
( 2 log a

log b

)
)
.

Observe that we may assume b ≥ 16 since otherwise our result follows
from (11). Next notice that

log T2 = log
(

1 +
ac+ bc+ 1− c2

abc2 + c2

)
< log

(
1 +

ac+ bc

abc2

)
(12)

= log
(

1 +
1
bc

+
1
ac

)
< log

(
1 +

2
b

)
<

4
b
< b−1/2.

We have

log T2 = l1 log p1 + . . .+ lr log pr − 2 log c,



98 C. L. Stewart and R. Tijdeman

where l1, . . . , lr are integers of absolute value at most 6 log a. Since log T2 > 0
it follows from Lemma 2 with U = b1/2 that

(13) pr > C9 log
(

log b

log(c+ 1) log
( 2 log a

log(c+1)

)
)
.

Our result now follows from (11) and (13) on noting that if x, y and z
are positive real numbers then

1
2 log xy ≤ max(log x, log y)

and, for z > 9, log(z/(log z)2) > 1
5 log z.

4. Proof of Theorem 2. Let C10 and C11 denote effectively computable
positive numbers. The proof depends on a comparison of estimates for T1,
T3 and T4 where T1 is given by (10),

T3 =
(ac+ 1)(bd+ 1)

(ab+ 1)cd
and T4 =

(ab+ 1)(cd+ 1)
(ac+ 1)(bd+ 1)

.

We suppose that p1, . . . , pr are the distinct prime factors of (ab+1)(ac+
1)(bd+ 1)(cd+ 1) and that pr is the largest of them.

We have (11), just as in the proof of Theorem 1. Since (11) holds we
may assume b ≥ 16. Then

(14) log T3 = log
(

1 +
ac+ bd− cd+ 1

abcd+ cd

)
< log

(
1 +

2
b

)
< b−1/2.

We have
log T3 = l1 log p1 + . . .+ lr log pr − log cd,

where l1, . . . , lr are integers of absolute value at most 6 log a. Since log T3 > 0
it follows from (14) and Lemma 2 that

(15) pr > C10 log
(

log b
log(2cd) log log a

)
.

It follows from (11) and (15) that we may assume that cd ≥ 16 since
otherwise the theorem holds. Note that

(16) log T4 = log
(

1 +
(a− d)(b− c)

abcd+ ac+ bd+ 1

)
< log

(
1 +

2
cd

)
< (cd)−1/2.

Since a > d and b > c, we find that log T4 > 0. Further,

log T4 = m1 log p1 + . . .+mr log pr,

where m1, . . . ,mr are integers of absolute value at most 6 log a. We may
apply Lemma 2 with h0 = 1, α = 1 and U = (cd)1/2 to obtain

(17) pr > C11 log
(

log 2cd
log log a

)
.

Our result now follows from (11), (15) and (17).
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5. Proof of Theorem 3. For each integer i with 1 ≤ i ≤ n let k(i) de-
note the number of subsets of L containing i. The polynomial in Z[x1, . . . , xn]
given by

∏

(i1,...,it)∈L
(xi1 . . . xit + 1)−

n∏

i=1

x
k(i)
i

can be expressed as a finite sum of terms of the form
∏

(i1,...,it)∈L′
(xi1 . . . xit + 1)

where L′ is a proper subset of L. Here the empty set is permitted and in that
case the product is 1. This may be proved by induction on the cardinality of
L. The corresponding assertion holds with M in place of L. It then follows
that

(18)
∏

(i1,...,it)∈L
(xi1 . . . xit + 1)−

∏

(i1,...,it)∈M
(xi1 . . . xit + 1)

=
∑

R

cR
∏

(i1,...,it)∈R
(xi1 . . . xit + 1),

where the sum on the right hand side of (18) is over all proper subsets R of
L and of M and where cR is an integer for each such R.

Let s be a positive integer and let S = {p1, . . . , ps} be the set of the first
s prime numbers. We choose s sufficiently large that the prime factors of cR
lie in S for all proper subsets R of L and of M . Suppose that a1, . . . , an are
positive integers for which (4) holds and for which

(19) P
( ∏

(i1,...,it)∈L∪M
(ai1 . . . ait + 1)

)
≤ ps.

Then, by (18),

(20)
∏

(i1,...,it)∈L
(ai1 . . . ait + 1)−

∏

(i1,...,it)∈M
(ai1 . . . ait + 1)

−
∑

R

cR
∏

(i1,...,it)∈R
(ai1 . . . ait + 1) = 0

is an S-unit equation. By (4) there is a subsum of the sum on the left
hand side of equality (20) which is zero and has no vanishing subsum and
which involves

∏
(i1,...,it)∈L(ai1 . . . ait + 1) and at least one term of the form

−cR
∏

(i1,...,it)∈R(ai1 . . . ait +1) with cR 6= 0, where R is a proper subset of L
or of M . Let g be the greatest common divisor of the terms in this subsum.
It follows from Lemma 3 that

(∏
(i1,...,it)∈L(ai1 . . . ait + 1)

)
/g is bounded in
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terms of ps. Plainly

g ≤ |cR|
∏

(i1,...,it)∈R
(ai1 . . . ait + 1) ≤ 2|R||cR|

∏

(i1,...,it)∈R
(ai1 . . . ait),

where |R| denotes the cardinality of R. Since

(21)
∏

(i1,...,it)∈M
(ai1 . . . ait) =

∏

(i1,...,it)∈L
(ai1 . . . ait),

we find that
( ∏

(i1,...,it)∈L
(ai1 . . . ait + 1)

)/
g ≥ min(i1,...,it)∈L∪M (ai1 . . . ait)

2|R||cR|
=

a−

2|R||cR|

and so a− is bounded in terms of ps as required.
We shall now prove (6). Let C12, C13, . . . denote positive numbers which

are effectively computable in terms of t and the cardinality of L. Let p1, . . .
. . . , pr be the distinct prime factors of

∏

(i1,...,it)∈L∪M
(ai1 . . . ait + 1)

and suppose that pr is the largest of them. We may assume without loss of
generality, by (4), that

∏

(i1,...,it)∈L
(ai1 . . . ait + 1) >

∏

(i1,...,it)∈M
(ai1 . . . ait + 1).

Put

(22) T =
( ∏

(i1,...,it)∈L
(ai1 . . . ait + 1)

)/ ∏

(i1,...,it)∈M
(ai1 . . . ait + 1).

Then

log T = l1 log p1 + . . .+ lr log pr,

where l1, . . . , lr are integers of absolute value at most C12 log a+. By (22),

(23) 0 < log T < log(1 + C13Z),

where

Z = max
R

( ∏

(i1,...,it)∈R
(ai1 . . . ait)

)/ ∏

(i1,...,it)∈M
(ai1 . . . ait)

and where the maximum is taken over all proper subsets R of L. Further,
by (21),

(24) Z = ( min
(i1,...,it)∈L

ai1 . . . ait)
−1 ≤ 1/a−.
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Therefore, provided that a− exceeds C14, which we may assume, we find
from (23) and (24) that

0 < log T < 1/(a−)1/2.

Our result now follows from Lemma 2 on taking α = h0 = 1, U = (a−)1/2

and H = C12 log a+.

6. Proof of Corollary 2. Denote a, b, c, d and e by a1, a2, a3, a4 and a5

respectively. We apply Theorem 3 with the balanced pair of sets of 2-element
subsets of {1, . . . , 5} given by {L,M} where L = {(1, 2), (1, 3), (4, 5)} and
M = {(1, 4), (1, 5), (2, 3)}. Condition (4) becomes

(ab+ 1)(ac+ 1)(de+ 1) 6= (ad+ 1)(ae+ 1)(bc+ 1)

and our result now follows since

min{ab, ac, ad, ae, bc, de} ≥ min{b, c, d, e}.

7. Proof of Corollary 3. Denote a, b, c, d, e and f by a1, a2, a3, a4, a5

and a6 respectively. We now apply Theorem 3 with the balanced pair of 3-
sets of {1, 2, 3, 4, 5, 6} given by {L,M} where L = {(1, 2, 3), (3, 4, 5), (1, 5, 6)}
and M = {(1, 4, 6), (1, 3, 5), (2, 3, 5)}. The result follows on noting that

min{abc, aef, adf, ace} ≥ a and min{cde, bce} ≥ e.
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