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1. Introduction. Let us first recall Lehmer’s conjecture [Le] on lower
bounds for the height of an algebraic number which was stated in 1933. Let
K be an algebraic number field of degree D over Q. For any valuation v
we define D, = [K, : Q,], where K,,Q, are the completions of K,Q with
respect to v. For archimedean v we normalise the valuation by |z|, = |z|P+/P
where || is the ordinary complex absolute value. When v is non-archimedean
we take |p|, = p~Pv/D where p is the unique rational prime such that
|pls < 1. The height of an algebraic number o € K is defined by

H(a) = [ [ max(1, |z[,).

Because of our normalisation H(«)) does not depend on the choice of the
field K in which « is contained. We can now state Lehmer’s conjecture.

CONJECTURE 1.1. There exists a number ¢ > 1 such that for any alge-
braic number «, not a root of unity and of degree D we have
H(a)? >c.
Presumably ¢ = 1.1762808. .., which is the larger real root of x'° + x° —
27 —xb -2 -t — 23+ 1.

The best unconditional result so far follows from work of Dobrowolski,
Cantor & Straus and Louboutin [Lo], stating that there exists v > 0 such
that

loglog D 5
log D ) ’

It came as a great surprise when S. Zhang [Zh] showed in 1992 that there
does exist a number ¢; > 1 such that

H)H(l —a) >

H(a)P > 1+7<

[103]
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for all @ € Q such that a # 0,1,% + %\/j3 This was proved by using
Arakelov intersection theory on P!. It was almost immediately realised by
one of us (see [Za]) that an elementary proof could be given which at the
same time yields the best possible ¢1, namely /7 where n = (1 +v/5)/2,
the golden ratio. The minimum is attained when « is minus a fifth root of
unity. In [Za] there is also a generalisation of the following sort. For any
K-rational point P = (Py: Py : ... : P,) in n-dimensional projective space
P™ we define the height by

H(P) = Hmax(|P0|vv RS |Pn|v)

In particular, the height of an algebraic number « is nothing but the pro-
jective height of (1 : o) € P}(K). Then it is shown in [Za] that for any
(vo : 1 : x9) € P2Q) such that xg + x1 + 29 = 0, xem122 # 0 and
(g : @1 @) # (1: wtl 1 WFL) (WP = 1), we have

H(zo,x1,22) > ¢

where ¢y is the larger real root of 2% — 2% — 1. The minimum is attained
when the z; are the roots of z3 + = — 1.

Inspired by [Za], H. P. Schlickewei and E. Wirsing [SW] showed the
following result. Consider the line L : \x + puy + vz = 0 in P? with Auv # 0.

Suppose that A + o + v = 0. Then, for any two points P;, P, € L(Q) with
non-zero coordinates and such that (1:1:1), P, P, are distinct, we have

H(P))H(Py) > exp(1/2400) = 1.00041 . ..

This result was applied by Schlickewei [Schl] to estimating numbers of solu-
tions of three term S-unit equations in a strikingly successful way. Although
very useful, the derivation of the Schlickewei—-Wirsing result did not look
optimal. It is the goal of this paper to remedy this situation and also give a
generalisation which encompasses the previous results. We finish the intro-
duction by giving a description of our general setup and main result.

Consider a hypersurface S of multidegree dy,...,d, on P™ x ... x P"r
given by a polynomial F' with coefficients in Z. Denote the coordinates of P™
by x; = (%0, i1, ., Tin,;). The degree of F' in the variable z;; is denoted
by dij. We define d; = —d; + 3, dij.

Choose a subset I of {i : n; = 1} and let E be the set {(¢,0) : i € I},
to which we refer as exceptional index pairs. For any polynomial with co-
efficients in Z we denote by ||P|| the sum of the absolute values of the
coefficients. We define
OF

81‘”'

y Cp = Inax Ci;.
(1,9)¢E

The advantage of having the exceptional set E is that the value of cp may

Cij:’
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be smaller than the one we would get by taking the maximum over all pairs
(7,7). In the first example in [Za] this enables us to get the optimal lower
bound for the product H(«a)H (1 — «). By 0 we denote the maximum of the

numbers max;er(d; + d;1)/2 and max;gr d;/(n; + 1).

THEOREM 1.2. For each point (X1,...,%,) € P"(Q) x ... x P (Q) such
that F(z;;) =0, x;; # 0 for all i,j and F(x;l) # 0 we have

H(x))™™ H(x,)" 1 > p,
where o is the unique real root larger than 1 of x=2 + c§1$_6 =1.

During the preparation of this paper W. M. Schmidt informed us that
in [Schm] he had already proved a theorem very similar to ours in the case
where one works in (P!)". The logarithm of the lower bound given in [Schm)]
is 1/(247+27 H), where f is the total degree of F' and H the maximum of all
coefficients. Although the basic starting point in this paper and [Schm)] is
the same, we nevertheless found that the principle of our approach and the
better values of the constants have some interest.

2. Applications. Before proving the theorem we describe a few con-
sequences. First of all consider r algebraic numbers aq, ..., o, whose sum
is a rational integer N. We like to interpret the r-tuple as a point (1 :
ar)x...x(1:a,) € (P)". For the set I of our theorem we choose {1,...,r}.
Letting F' be the homogeneous version of x1 +...4x,. — N one easily checks
that ¢; = 1 for all 7. Note that the coefficient NV in F' does not appear in
the ¢; because of our choice of I. So we get cp = 1. Moreover, n; = 1 and
d; = 1 for all 4. Hence 6 = 1. Thus we find

COROLLARY 2.1. Let vy, ..., € Q* and N € Z be such that aq + ...+
ar=Nand a;' +...+ a7 # N. Then

H(ay)...H(oy) > /0
where n is the golden ratio.

Note that when r > 4 the lower bound is actually attained for the r-tuple
—(5,14+C5,1,(r—a,. .., ::g’ where (j denotes a primitive kth root of unity.
When we take for the a; the conjugates of an algebraic number « of degree
D we get the following consequence.

COROLLARY 2.2. Let o € Q* be such that trace(a) is integral and trace(c)
# trace(a™t). Then H(a)P > /1.

However, this result is already contained in a result of C. Smyth [Sm]
which states that H(a)? > @ for every non-reciprocal o € Q*. Here 6 is the
real root of 2% —z — 1.
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We now consider r algebraic numbers a; whose sum is 1 and give a lower
bound for H(1,a1,...,a;,). The polynomial F' can be written as x1 + ...+
x, — xo and we have cp = 1, d; = 1. Furthermore, § = r/(r + 1).

COROLLARY 2.3. For any aq,...,q, € Q* such that a1 + ... +a, =1
and oyt + ...+ a7t # 1 we have

H(l,a1,...,0,) > 0

where o is the real root larger than 1 of 1 = x=2"=2 + o7,

As pointed out in the introduction, this result is optimal when r» = 2. For
r > 2 this is not true any more. When r = 3 for example we find the lower
bound 1.14613. .. (which improves the bound exp(1/402) = 1.00249. .. from
[SW]). However, the lowest height we could find was H = 1.15096. .. when
the o; are the zeros of 3 — 22 + 1. On the other hand, the asymptotic
behaviour of ¢ as a function of r looks optimal. It is not hard to show
that o"t! — 7 as r — oo while on the other hand the zeros ay,...,a, of
™ — x — 1 satisfy H(ag,...,q,)" ™t — 2 asr — oo.

We now consider the Schlickewei—Wirsing result. Suppose we have a line
L: M+ py+vz =0 in P? with A\uv # 0. Let P, Py, P; € L(Q) be
three distinct points with non-zero coordinates. Letting P; = (x; : y; : 2;)
(1=1,2,3) we get the relation

1 Y1 *A
A:=|x5 Yy 2zo|=0.
T3 Ys 23

We want a lower bound of H(Py)H(P;)H(Ps). Our polynomial F' is now
the determinant form A. First we point out that

A= oyt oyt ozt #0.

Suppose A = 0. Then there exist «, 3,7, not all zero, such that aa:i_l +

ﬂy;l +vz;1 =0 for i =1,2,3. Hence ay,;z; + Bz;z; +yr;y; =0 (i = 1,2, 3).
The conic C': ayz+ Bzx+~yxy = 0 is reducible if and only if aB~ = 0. So, if
v = 0 for example, we get ax; + By; = 0 for i = 1,2, 3. But this contradicts
v # 0. So C'is an irreducible conic. But then P, P, P3 lie both on C and L,
which is impossible since |C'N L| < 2. We conclude that A # 0. We can now
apply our theorem withr =3, ny =ngs=ng =2, dy =dy=ds =1, cp =2
and I = ().

COROLLARY 2.4. Consider the line L : Ax+py-+vz = 0 in P? with \uv #

0. Let Py, Py, Py € L(Q) be three distinct points with non-zero coordinates.
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Then
H(P)H(P)H(P3) > o,

where o is the real root larger than 1 of 1 = 07 % + (1/2)0™2.

The numerical value of o is 1.09427 ..., which compares favourably with
the value 1.00041... from [SW] or 1.019... from [Schm]. Moreover, this
result was applied successfully to equations of the form = + y = 1 with z,y
unknowns in a finitely generated multiplicative group and to multiplicity
estimates for binary recurrences in [BS].

3. Proof of Theorem 1.2. The proof is based on the following observa-
tion, which is a direct generalisation of [Za]. Let X be a closed subvariety of
P x...xP" defined over Q. We denote the coordinates by x = (x1,...,x;)
with x; = (0, .., %in, ). Denote by X (C); the intersection of X (C) with
the polydisc {x : |z;;| < 1 Vi,j}. We also give ourselves a collection of
multihomogeneous polynomials G (x) € Z[x| of multidegrees (dg1, ..., dk).

LEMMA 3.1. Let vy, > 0 for all k and set

(1) wi=> wnd, A=— max {Zuklog\Gk(xﬂ}.
k k

XEX(C)l

Then for any point x = (X1,...,%,) € X(Q) with [[, Gk(x) # 0 we have
(2) [TH)" = e
i=1

Proof. Suppose that x € X(K) with Gi(x) # 0 for all k. Here K is
an algebraic number field of degree D, say. For any valuation v of K we let
D, = [K, : Q,]. Then the inequality

T D .
=\ if
;wi log(m]ax |zij]v) > Zk:yk log |G (x)]y + { OD ;f Z}‘(zz
holds for all places v of K, because by the homogeneity condition (1) we
may assume that max; |z;;|, = 1 for all i and the inequality follows from
the definition of A if v is infinite and is straightforward if v is finite. The
lemma follows by summing over all v and using the product formula. =

The following lemma saves us a considerable amount of effort in the
determination of A for the sake of the previous lemma.

LEMMA 3.2. With notations as above, the function ¥ := ) vy log |Gk (x)|
assumes a mazimum in x € X (C)y and it is attained at a point all of whose
coordinates have absolute value 1 with at most one exception.

Proof. Since the vy are positive, ¥ is bounded from above in X (C);.
For € > 0 sufficiently small the set x € X(C); such that ¥(x) > log(e) is
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compact and not empty. Hence it is clear that ¥, being continuous, assumes
a maximum.

Now suppose that ¥ assumes a maximum at a point P where at least
two coordinates have absolute value < 1. Call these coordinates &,n and
denote the values of these coordinates at P by &g, ng. Substitute in F' = 0
the values of all coordinates of P except &, 7. The equation F' = 0 reduces to
the equation of a curve f(£,n) = 0 containing the point &g, n9. By choosing
a branch of f = 0 at the point &p,79 we find locally analytic functions
&(t),n(t) such that £(0) = &,n(0) = no and f(£(t),n(t)) = 0 identically
in a neighbourhood of ¢ = 0. When f was identically zero anyway, we can
choose £(t), n(t) arbitrarily. Choose a disk D in the complex ¢-plane around
0 such that [£(¢)], |n(t)] < 1 for all ¢ € D. Specialise the arguments in ¥
to the values of the point P except for £ and 1 where we substitute ()
and 7)(t). In this way we obtain a function (t) in ¢ € D which assumes a
maximum at ¢ = 0. Notice that ¢ (¢) is harmonic in the real and imaginary
part of £. A harmonic function assuming a maximum in the interior of its
domain is necessarily constant. Hence 1 (t) is constant. But in that case we
can continue £(t) and 7(t) analytically until either one of them hits the unit
circle. At that new point the value of ¥ is again (0), i.e. maximal. We
continue this procedure for other coordinates, if necessary, until we have
found an optimal point all of whose coordinates have absolute value one
with at most one exception. m

LEMMA 3.3. Let o, B,y > 0. Let m be the unique minimum of the function

e + vlog
U+ v

1
uiog uU—+v

m

under the constraints u,v > 0, au+ v = 1. Then e~™ 1is the unique real

root larger than 1 of v la=* + =P = 1.
Proof. Putz =v/(u+v)and 1 — 2 =u/(u+ v). Then
1-=z T
U= ——""——~, V= ———
Bz + a(l —x) Br+ a(l —x)
and x € [0,1]. We must minimize
1—2z)log(v(1—2)) +zlogz
oy - (L= )oE(r (1~ )
Br+ a(l —x)
on [0, 1]. Differentiate with respect to z,
—Blog(v(1 —x)) + alogx
ey = ~Ple800 =)+ alogr
(Bz 4+ (1 — z))
This vanishes if (y(1 — x))? = 2. Since z is strictly increasing and 1 — x

strictly decreasing there is a unique solution z € ]0,1[. Choose ¢ > 0 such
that zp = ¢ %. Then (1 — ) = 0~® and thus we see that o satisfies
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1 — 0% = y71p7@. It remains to verify that f(zg) = —logp, which is
straightforward. m

Proof of Theorem 1.2. We apply Lemma 3.1 to the hypersurface X
given by the multihomogeneous polynomial F(x) € Z[x] with multidegrees
dy,...,d,. For the G}, we take the coordinates z;; and the function

- - ds;
F(x) = F(xij1> 1_[3%'J

where d;; is the degree of F' in z;;. Let u,v;; > 0. Let @(x) be the function

plog|F(x)[+32; ; vijlog|zij| on X(C). Let d; = —d; + 3 dij be the degree

of F in x; and suppose

w; = pud; + Z Vij, A= — xg(%?é)l @(X)
J

Then Lemma 3.1 states that (2) holds for all x € X (Q) with x;; # 0 and
F(z;') #0.

Let us take w; = n; + 1 for all 4. Although there are many other choices
for the weights w;, this choice gives us the particularly simple shape of our
main theorem. It remains to choose p,v;; in such a way that A becomes
positive and as large as possible. We choose

d; .
Vij = —ni+1p ifegl
and
d; — d; d; +d; e
1/7;70:1—27’1,&, I/i71:1—%/j ifiel.

Let us determine maxye¢ x(c), ¢(x). By Lemma 3.2 this maximum is attained
at a point all of whose coordinates, with possibly one exception, lie on the
unit circle. Suppose that |z;,;,| < 1 and that |z;;| = 1 for all (4, j) # (o, jo)-
Suppose first that (ig, jo) € E. Then
o —1 dij
[Faiy)] = [F)] - | [T
1,J

= |F (a7, Tig)| - [@igjo|Ho70

20Jo’
= |F(z;} %) — F(Tij)]| - |iy; dig o
10J07 7% 1] 10J0
< Cz‘ojo’xi_o}o — Tigjo| max(]xiojorl, lar:iojo])diojo*1 ) ’wiojo‘diojo

= Ciojo(l - ’xioj0|2)‘
Put |z;,5,|% = & We see that the maximum of & is

grél[%’}i][:u log(ciojo (1 - 6)) + (Viojo/Q) log 5]
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This maximum is attained at & = v;j,/(vi,5, + 21) and its value is

2MiCivjo ., Viojo Viojo
wlog + .
Vigjo T 210 2 Vigjo 24t
Since we have v;j, > 1 — dp, this maximum is bounded above by
21 1—46u 1—46p
M log c —+ lo .
(M) K gF(l—éu)—i—Zu 2 g(l—(S,u)—i—2u
We now determine the maximum when (ig, jo) € E. In particular, jo = 0.
So suppose we have |z;,0| < 1 and |z;;| = 1 for all other 7,j. Writing

down the dependence on z;, ¢, z;,,1 explicitly and putting z = z;, 0/, 1,
we find
xl] x10’07 x'LOvl’ x'LJ xlOvo )y %y mz]
=|F(1,2,7;;) — F(1,1/2Z,7;5)|

Cig.1]2 — 1/Z| max(|2|, 2| 1) %02~

1

IN

= Ciga|1 = [2[?] - [2| 7o,
Put & = |2]? = |z4,.0|%. We see that the maximum of @ is
Efél[gﬁ][ﬂlog(cz‘o,l(l — &) — (dig,11/2) log €] + (vig,0/2) log [€]],
which equals
2Ci 00V v
1 ~ 20J0 71 —
K Ogl/—{—Q/,L + 2 Ogl/—|—2,u

where v = v;, o — d;, .1/4/2. Note that by our choice of v, o,
v=1- (gl;o + dio,l)u/2 >1-—dp.

Hence our maximum is again bounded by (M). Now use Lemma 3.3 with
a =96,0 = 2,7 = cp to minimize (M) by letting p vary. The assertion of
our theorem follows immediately. m
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