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1. Introduction. Let us first recall Lehmer’s conjecture [Le] on lower
bounds for the height of an algebraic number which was stated in 1933. Let
K be an algebraic number field of degree D over Q. For any valuation v
we define Dv = [Kv : Qv], where Kv,Qv are the completions of K,Q with
respect to v. For archimedean v we normalise the valuation by |x|v = |x|Dv/D
where |·| is the ordinary complex absolute value. When v is non-archimedean
we take |p|v = p−Dv/D where p is the unique rational prime such that
|p|v < 1. The height of an algebraic number α ∈ K is defined by

H(α) =
∏
v

max(1, |x|v).

Because of our normalisation H(α) does not depend on the choice of the
field K in which α is contained. We can now state Lehmer’s conjecture.

Conjecture 1.1. There exists a number c > 1 such that for any alge-
braic number α, not a root of unity and of degree D we have

H(α)D ≥ c.
Presumably c = 1.1762808 . . . , which is the larger real root of x10 + x9 −
x7 − x6 − x5 − x4 − x3 + x+ 1.

The best unconditional result so far follows from work of Dobrowolski,
Cantor & Straus and Louboutin [Lo], stating that there exists γ > 0 such
that

H(α)D ≥ 1 + γ

(
log logD

logD

)3
.

It came as a great surprise when S. Zhang [Zh] showed in 1992 that there
does exist a number c1 > 1 such that

H(α)H(1− α) ≥ c1

[103]
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for all α ∈ Q such that α 6= 0, 1, 1
2 ± 1

2

√−3. This was proved by using
Arakelov intersection theory on P1. It was almost immediately realised by
one of us (see [Za]) that an elementary proof could be given which at the
same time yields the best possible c1, namely

√
η where η = (1 +

√
5)/2,

the golden ratio. The minimum is attained when α is minus a fifth root of
unity. In [Za] there is also a generalisation of the following sort. For any
K-rational point P = (P0 : P1 : . . . : Pn) in n-dimensional projective space
Pn we define the height by

H(P ) =
∏
v

max(|P0|v, . . . , |Pn|v).

In particular, the height of an algebraic number α is nothing but the pro-
jective height of (1 : α) ∈ P1(K). Then it is shown in [Za] that for any
(x0 : x1 : x2) ∈ P2(Q) such that x0 + x1 + x2 = 0, x0x1x2 6= 0 and
(x0 : x1 : x2) 6= (1 : ω±1 : ω∓1) (ω3 = 1), we have

H(x0, x1, x2) ≥ c2
where c2 is the larger real root of x6 − x4 − 1. The minimum is attained
when the xi are the roots of x3 + x− 1.

Inspired by [Za], H. P. Schlickewei and E. Wirsing [SW] showed the
following result. Consider the line L : λx+µy+ νz = 0 in P2 with λµν 6= 0.
Suppose that λ + µ + ν = 0. Then, for any two points P1, P2 ∈ L(Q) with
non-zero coordinates and such that (1 : 1 : 1), P1, P2 are distinct, we have

H(P1)H(P2) > exp(1/2400) = 1.00041 . . .

This result was applied by Schlickewei [Schl] to estimating numbers of solu-
tions of three term S-unit equations in a strikingly successful way. Although
very useful, the derivation of the Schlickewei–Wirsing result did not look
optimal. It is the goal of this paper to remedy this situation and also give a
generalisation which encompasses the previous results. We finish the intro-
duction by giving a description of our general setup and main result.

Consider a hypersurface S of multidegree d1, . . . , dr on Pn1 × . . . × Pnr
given by a polynomial F with coefficients in Z. Denote the coordinates of Pni
by xi = (xi0, xi1, . . . , xini). The degree of F in the variable xij is denoted
by dij . We define d̃i = −di +

∑
j dij .

Choose a subset I of {i : ni = 1} and let E be the set {(i, 0) : i ∈ I},
to which we refer as exceptional index pairs. For any polynomial with co-
efficients in Z we denote by ‖P‖ the sum of the absolute values of the
coefficients. We define

cij =
∥∥∥∥
∂F

∂xij

∥∥∥∥, cF = max
(i,j)6∈E

cij .

The advantage of having the exceptional set E is that the value of cF may
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be smaller than the one we would get by taking the maximum over all pairs
(i, j). In the first example in [Za] this enables us to get the optimal lower
bound for the product H(α)H(1−α). By δ we denote the maximum of the
numbers maxi∈I(d̃i + di,1)/2 and maxi 6∈I d̃i/(ni + 1).

Theorem 1.2. For each point (x1, . . . ,xr) ∈ Pn1(Q)× . . .×Pnr (Q) such
that F (xij) = 0, xij 6= 0 for all i, j and F (x−1

ij ) 6= 0 we have

H(x1)n1+1 . . . H(xr)nr+1 ≥ %,
where % is the unique real root larger than 1 of x−2 + c−1

F x−δ = 1.

During the preparation of this paper W. M. Schmidt informed us that
in [Schm] he had already proved a theorem very similar to ours in the case
where one works in (P1)r. The logarithm of the lower bound given in [Schm]
is 1/(24f+2rH), where f is the total degree of F and H the maximum of all
coefficients. Although the basic starting point in this paper and [Schm] is
the same, we nevertheless found that the principle of our approach and the
better values of the constants have some interest.

2. Applications. Before proving the theorem we describe a few con-
sequences. First of all consider r algebraic numbers α1, . . . , αr whose sum
is a rational integer N . We like to interpret the r-tuple as a point (1 :
α1)×. . .×(1 : αr) ∈ (P1)r. For the set I of our theorem we choose {1, . . . , r}.
Letting F be the homogeneous version of x1 + . . .+xr−N one easily checks
that ci = 1 for all i. Note that the coefficient N in F does not appear in
the ci because of our choice of I. So we get cF = 1. Moreover, ni = 1 and
di = 1 for all i. Hence δ = 1. Thus we find

Corollary 2.1. Let α1, . . . , αr ∈ Q∗ and N ∈ Z be such that α1 + . . .+
αr = N and α−1

1 + . . .+ α−1
r 6= N . Then

H(α1) . . . H(αr) ≥ √η
where η is the golden ratio.

Note that when r ≥ 4 the lower bound is actually attained for the r-tuple
−ζ5, 1 + ζ5, 1, ζr−2, . . . , ζ

r−3
r−2 where ζk denotes a primitive kth root of unity.

When we take for the αi the conjugates of an algebraic number α of degree
D we get the following consequence.

Corollary 2.2. Let α ∈ Q∗ be such that trace(α) is integral and trace(α)
6= trace(α−1). Then H(α)D ≥ √η.

However, this result is already contained in a result of C. Smyth [Sm]
which states that H(α)D ≥ θ for every non-reciprocal α ∈ Q∗. Here θ is the
real root of x3 − x− 1.
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We now consider r algebraic numbers αi whose sum is 1 and give a lower
bound for H(1, α1, . . . , αr). The polynomial F can be written as x1 + . . .+
xr − x0 and we have cF = 1, d1 = 1. Furthermore, δ = r/(r + 1).

Corollary 2.3. For any α1, . . . , αr ∈ Q∗ such that α1 + . . . + αr = 1
and α−1

1 + . . .+ α−1
r 6= 1 we have

H(1, α1, . . . , αr) ≥ %
where % is the real root larger than 1 of 1 = x−2r−2 + x−r.

As pointed out in the introduction, this result is optimal when r = 2. For
r > 2 this is not true any more. When r = 3 for example we find the lower
bound 1.14613 . . . (which improves the bound exp(1/402) = 1.00249 . . . from
[SW]). However, the lowest height we could find was H = 1.15096 . . . when
the αi are the zeros of x3 − x2 + 1. On the other hand, the asymptotic
behaviour of % as a function of r looks optimal. It is not hard to show
that %r+1 → η as r → ∞ while on the other hand the zeros α0, . . . , αr of
xr+1 − x− 1 satisfy H(α0, . . . , αr)r+1 → 2 as r →∞.

We now consider the Schlickewei–Wirsing result. Suppose we have a line
L : λx + µy + νz = 0 in P2 with λµν 6= 0. Let P1, P2, P3 ∈ L(Q) be
three distinct points with non-zero coordinates. Letting Pi = (xi : yi : zi)
(i = 1, 2, 3) we get the relation

∆ :=

∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣
= 0.

We want a lower bound of H(P1)H(P2)H(P3). Our polynomial F is now
the determinant form ∆. First we point out that

∆̃ :=

∣∣∣∣∣∣

x−1
1 y−1

1 z−1
1

x−1
2 y−1

2 z−1
2

x−1
3 y−1

3 z−1
3

∣∣∣∣∣∣
6= 0.

Suppose ∆̃ = 0. Then there exist α, β, γ, not all zero, such that αx−1
i +

βy−1
i +γz−1

i = 0 for i = 1, 2, 3. Hence αyizi+βzixi+γxiyi = 0 (i = 1, 2, 3).
The conic C : αyz+βzx+γxy = 0 is reducible if and only if αβγ = 0. So, if
γ = 0 for example, we get αxi + βyi = 0 for i = 1, 2, 3. But this contradicts
ν 6= 0. So C is an irreducible conic. But then P1, P2, P3 lie both on C and L,
which is impossible since |C ∩L| ≤ 2. We conclude that ∆̃ 6= 0. We can now
apply our theorem with r = 3, n1 = n2 = n3 = 2, d1 = d2 = d3 = 1, cF = 2
and I = ∅.

Corollary 2.4. Consider the line L : λx+µy+νz = 0 in P2 with λµν 6=
0. Let P1, P2, P3 ∈ L(Q) be three distinct points with non-zero coordinates.
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Then
H(P1)H(P2)H(P3) ≥ %,

where % is the real root larger than 1 of 1 = %−6 + (1/2)%−2.

The numerical value of % is 1.09427 . . . , which compares favourably with
the value 1.00041 . . . from [SW] or 1.019 . . . from [Schm]. Moreover, this
result was applied successfully to equations of the form x+ y = 1 with x, y
unknowns in a finitely generated multiplicative group and to multiplicity
estimates for binary recurrences in [BS].

3. Proof of Theorem 1.2. The proof is based on the following observa-
tion, which is a direct generalisation of [Za]. Let X be a closed subvariety of
Pn1×. . .×Pnr defined over Q. We denote the coordinates by x = (x1, . . . ,xr)
with xi = (xi0, . . . , xini). Denote by X(C)1 the intersection of X(C) with
the polydisc {x : |xij | ≤ 1 ∀i, j}. We also give ourselves a collection of
multihomogeneous polynomials Gk(x) ∈ Z[x] of multidegrees (dk1, . . . , dkr).

Lemma 3.1. Let νk ≥ 0 for all k and set

(1) wi =
∑

k

νkdki, λ = − max
x∈X(C)1

{∑

k

νk log |Gk(x)|
}
.

Then for any point x = (x1, . . . ,xr) ∈ X(Q) with
∏
kGk(x) 6= 0 we have

(2)
r∏

i=1

H(xi)wi ≥ eλ.

P r o o f. Suppose that x ∈ X(K) with Gk(x) 6= 0 for all k. Here K is
an algebraic number field of degree D, say. For any valuation v of K we let
Dv = [Kv : Qv]. Then the inequality

r∑

i=1

wi log(max
j
|xij |v) ≥

∑

k

νk log |Gk(x)|v +
{
Dv
D λ if v |∞,

0 if v -∞,
holds for all places v of K, because by the homogeneity condition (1) we
may assume that maxj |xij |v = 1 for all i and the inequality follows from
the definition of λ if v is infinite and is straightforward if v is finite. The
lemma follows by summing over all v and using the product formula.

The following lemma saves us a considerable amount of effort in the
determination of λ for the sake of the previous lemma.

Lemma 3.2. With notations as above, the function Ψ :=
∑
νk log |Gk(x)|

assumes a maximum in x ∈ X(C)1 and it is attained at a point all of whose
coordinates have absolute value 1 with at most one exception.

P r o o f. Since the νk are positive, Ψ is bounded from above in X(C)1.
For ε > 0 sufficiently small the set x ∈ X(C)1 such that Ψ(x) ≥ log(ε) is
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compact and not empty. Hence it is clear that Ψ , being continuous, assumes
a maximum.

Now suppose that Ψ assumes a maximum at a point P where at least
two coordinates have absolute value < 1. Call these coordinates ξ, η and
denote the values of these coordinates at P by ξ0, η0. Substitute in F = 0
the values of all coordinates of P except ξ, η. The equation F = 0 reduces to
the equation of a curve f(ξ, η) = 0 containing the point ξ0, η0. By choosing
a branch of f = 0 at the point ξ0, η0 we find locally analytic functions
ξ(t), η(t) such that ξ(0) = ξ0, η(0) = η0 and f(ξ(t), η(t)) = 0 identically
in a neighbourhood of t = 0. When f was identically zero anyway, we can
choose ξ(t), η(t) arbitrarily. Choose a disk D in the complex t-plane around
0 such that |ξ(t)|, |η(t)| ≤ 1 for all t ∈ D. Specialise the arguments in Ψ
to the values of the point P except for ξ and η where we substitute ξ(t)
and η(t). In this way we obtain a function ψ(t) in t ∈ D which assumes a
maximum at t = 0. Notice that ψ(t) is harmonic in the real and imaginary
part of t. A harmonic function assuming a maximum in the interior of its
domain is necessarily constant. Hence ψ(t) is constant. But in that case we
can continue ξ(t) and η(t) analytically until either one of them hits the unit
circle. At that new point the value of Ψ is again ψ(0), i.e. maximal. We
continue this procedure for other coordinates, if necessary, until we have
found an optimal point all of whose coordinates have absolute value one
with at most one exception.

Lemma 3.3. Let α, β, γ > 0. Let m be the unique minimum of the function

u log
γu

u+ v
+ v log

v

u+ v

under the constraints u, v ≥ 0, αu + βv = 1. Then e−m is the unique real
root larger than 1 of γ−1x−α + x−β = 1.

P r o o f. Put x = v/(u+ v) and 1− x = u/(u+ v). Then

u =
1− x

βx+ α(1− x)
, v =

x

βx+ α(1− x)

and x ∈ [0, 1]. We must minimize

f(x) =
(1− x) log(γ(1− x)) + x log x

βx+ α(1− x)

on [0, 1]. Differentiate with respect to x,

f ′(x) =
−β log(γ(1− x)) + α log x

(βx+ α(1− x))2 .

This vanishes if (γ(1 − x))β = xα. Since x is strictly increasing and 1 − x
strictly decreasing there is a unique solution x0 ∈ ]0, 1[. Choose % > 0 such
that x0 = %−β . Then γ(1 − x) = %−α and thus we see that % satisfies



Lower bounds of heights of points on hypersurfaces 109

1 − %−β = γ−1%−α. It remains to verify that f(x0) = − log %, which is
straightforward.

P r o o f o f T h e o r e m 1.2. We apply Lemma 3.1 to the hypersurface X
given by the multihomogeneous polynomial F (x) ∈ Z[x] with multidegrees
d1, . . . , dr. For the Gk we take the coordinates xij and the function

F̃ (x) = F (x−1
ij )

∏
x
dij
ij

where dij is the degree of F in xij . Let µ, νij ≥ 0. Let Φ(x) be the function
µ log |F̃ (x)|+∑i,j νij log |xij | on X(C). Let d̃i = −di+

∑
j dij be the degree

of F̃ in xi and suppose

wi = µd̃i +
∑

j

νij , λ = − max
x∈X(C)1

Φ(x).

Then Lemma 3.1 states that (2) holds for all x ∈ X(Q) with xij 6= 0 and
F (x−1

ij ) 6= 0.
Let us take wi = ni + 1 for all i. Although there are many other choices

for the weights wi, this choice gives us the particularly simple shape of our
main theorem. It remains to choose µ, νij in such a way that λ becomes
positive and as large as possible. We choose

νij = 1− d̃i
ni + 1

µ if i 6∈ I

and

νi,0 = 1− d̃i − di,1
2

µ, νi,1 = 1− d̃i + di,1
2

µ if i ∈ I.

Let us determine maxx∈X(C)1 Φ(x). By Lemma 3.2 this maximum is attained
at a point all of whose coordinates, with possibly one exception, lie on the
unit circle. Suppose that |xi0j0 | ≤ 1 and that |xij | = 1 for all (i, j) 6= (i0, j0).
Suppose first that (i0, j0) 6∈ E. Then

|F̃ (xij)| = |F (x−1
ij )| ·

∣∣∣
∏

i,j

(xij)dij
∣∣∣ = |F (x−1

i0j0
, xij)| · |xi0j0 |di0j0

= |F (x−1
i0j0

, xij)− F (xij)| · |xi0j0 |di0j0
≤ ci0j0 |x−1

i0j0
− xi0j0 |max(|xi0j0 |−1, |xi0j0 |)di0j0−1 · |xi0j0 |di0j0

= ci0j0(1− |xi0j0 |2).

Put |xi0j0 |2 = ξ. We see that the maximum of Φ is

max
ξ∈[0,1]

[µ log(ci0j0(1− ξ)) + (νi0j0/2) log ξ].
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This maximum is attained at ξ = νi0j0/(νi0j0 + 2µ) and its value is

µ log
2µci0j0
νi0j0 + 2µ

+
νi0j0

2
log

νi0j0
νi0j0 + 2µ

.

Since we have νi0j0 ≥ 1− δµ, this maximum is bounded above by

(M) µ log cF
2µ

(1− δµ) + 2µ
+

1− δµ
2

log
1− δµ

(1− δµ) + 2µ
.

We now determine the maximum when (i0, j0) ∈ E. In particular, j0 = 0.
So suppose we have |xi0,0| ≤ 1 and |xij | = 1 for all other i, j. Writing
down the dependence on xi0,0, xi0,1 explicitly and putting z = xi0,0/xi0,1,
we find

|F̃ (xij)| = |F (x−1
i0,0, x

−1
i0,1, x

−1
ij )| · |xi0,0|di0,0 = |F (1, z, x−1

ij )|
= |F (1, z, xij)− F (1, 1/z, xij)|
≤ ci0,1|z − 1/z|max(|z|, |z|−1)di0,1−1

= ci0,1|1− |z|2| · |z|−di0,1 .
Put ξ = |z|2 = |xi0,0|2. We see that the maximum of Φ is

max
ξ∈[0,1]

[µ log(ci0,1(1− ξ))− (di0,1µ/2) log |ξ|+ (νi0,0/2) log |ξ|],

which equals

µ log
2ci0j0µ
ν̃ + 2µ

+
ν̃

2
log

ν̃

ν̃ + 2µ
where ν̃ = νi0,0 − di0,1µ/2. Note that by our choice of νi0,0,

ν̃ = 1− (d̃i0 + di0,1)µ/2 ≥ 1− δµ.
Hence our maximum is again bounded by (M). Now use Lemma 3.3 with
α = δ, β = 2, γ = cF to minimize (M) by letting µ vary. The assertion of
our theorem follows immediately.
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