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1. Introduction. In analytic number theory, estimates for the number,
Js,k(P ), of solutions of the system of equations

(1.1)
s∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k)

with xi, yi ∈ [1, P ] ∩ Z are of great utility. This is perhaps best illustrated
by the seminal works of Vinogradov from the first half of this century (see,
for example, [1, 6]). Despite modern developments, such estimates remain
the primary tool in establishing the best known results concerning the zero-
free region of the Riemann zeta function, and the smallest number G̃(k) of
variables for which the asymptotic formula holds in Waring’s problem. When
s < 1

2k(k + 1) and P is large compared to s, it is widely conjectured that
Js,k(P ) ∼ s!P s. This is an immediate consequence of Newton’s formulae
on the powers of the roots of a polynomial when 1 ≤ s ≤ k, but when
s > k + 1 the latter asymptotic formula seems far beyond the grasp of
current technology. Our primary purpose in this memoir is to establish in a
rather sharp form the desired asymptotic formula in the case s = k + 1.

When s is a natural number, let Ts(P ) denote the number of s-tuples x
and y in which 1 ≤ xi, yi ≤ P (1 ≤ i ≤ s), and the xi are a permutation
of the yj , so that in particular, Ts(P ) = s!P s + Os(P s−1). In Section 2
we establish the strong form below of the asymptotic formula Jk+1,k(P ) ∼
Tk+1(P ), and in connection with this we define

(1.2) αn = min
1≤r≤n
r∈N

(r + n/r).
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Theorem 1. When k ≥ 3,

(1.3) Jk+1,k(P )− Tk+1(P )�ε,k P
αk+1+ε,

and consequently ,

(1.4) Jk+1,k(P ) = Tk+1(P ) +Ok(P
√

4k+5).

For comparison, Hua [3, Lemma 5.4] provides the upper bound Jk+1,k(P )
�k P k+1(log 2P )2k−1, and very recently Vaughan and Wooley [5, Theo-
rem 1.4] have obtained the bound (1.3) with αk+1 replaced by 1

2 (k + 5).
The upper bound (1.3) is non-trivial for k ≥ 4, and is superior to those
obtained hitherto for k ≥ 6. The methods developed here are susceptible to
further small improvements, but for larger k they are of no great significance.
However, it is possible to obtain (1.3) with the exponent αk+1 replaced by
33/8 and 23/5 when k = 4 and k = 5 respectively. We briefly outline this
refinement at the end of Section 2.

For the sake of completeness we remark that in the cases k = 2, 3, Ro-
govskaya [4] and Vaughan and Wooley [5, Theorem 1.5], respectively, have
established the estimates

J3,2(P ) =
18
π2P

3 logP +O(P 3),

and, when P is large,

P 2 logP � J4,3(P )− T4(P )� P 10/3(log 2P )35.

We note that the strength of the upper bound (1.3) is sufficient for applica-
tions to quasi-diagonal behaviour in the context of Vinogradov’s mean value
theorem (see [7, Lemmata 2.2 and 4.2] for details).

It seems worth remarking that when P is large, the existence of one non-
trivial solution, x, y, of the system (1.1) implies the existence of �x,y P 2

non-trivial solutions x′, y′ with 1 ≤ x′i, y
′
i ≤ P (1 ≤ i ≤ s). This follows by

taking
x′ = qx + r and y′ = qy + r,

with 1 ≤ q < P/max{xi, yi} and 1 ≤ r ≤ P − qmax{xi, yi}. Thus whenever
Js,k(Q) − Ts(Q) > 0 and P ≥ Q, one has Js,k(P ) − Ts(P ) �k P

2. The
current state of knowledge concerning the problem of Prouhet and Tarry
(see Theorem 411 and the note on page 339 of [2]) therefore suffices to
demonstrate that when 1 ≤ k ≤ 9 and P is large, one has Jk+1,k(P ) −
Tk+1(P ) �k P 2. Whether or not there exist non-trivial solutions of the
system (1.1) when s = k + 1 and k > 9 remains open to speculation.

Denote by Sk(P ) the number of solutions of the system

(1.5)
k∑

i=1

(xji − yji ) = 0 (j = 1, 2, . . . , k − 2 and k),
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with xi, yi ∈ [1, P ] ∩ Z (1 ≤ i ≤ k). Similarities in the underlying algebraic
structure enable us in Section 3 to adapt our methods successfully in order
to estimate Sk(P )− Tk(P ).

Theorem 2. When k ≥ 3,

(1.6) Sk(P )− Tk(P )�ε,k P
αk+ε,

and consequently ,

(1.7) Sk(P ) = Tk(P ) +Ok(P
√

4k+1).

In this situation, Hua [3, Lemma 5.2] provides the upper bound Sk(P )
�k P

k(log 2P )k(2k−1−1), and very recently Vaughan and Wooley [5, Theo-
rem 1.3] have obtained the bound (1.6) with αk replaced by 1

2 (k+3). When k
is large the superiority of (1.6) over the latter estimates is amply illuminated
by (1.7). For the sake of completeness we remark that when k = 3 and P is
large, Vaughan and Wooley [5, Theorem 1.2] have established the estimate

P 2(logP )5 � S3(P )− 6P 3 � P 2(logP )5.

Our proof of Theorem 1 in Section 2 is elementary, and forms a nat-
ural extension to that used in [5, Section 9]. We use polynomial iden-
tities to bound the number of solutions of the system (1.1) counted by
Jk+1,k(P ) − Tk+1(P ) in terms of the number of solutions of a linear sys-
tem subject to multiplicative constraints. The latter constraints lead, via
extraction of common factors, to a system amenable to linear algebra and
divisor function estimates. For smaller k one may refine the estimate (1.3)
somewhat by better exploiting certain of the auxiliary variables which arise
in our argument. We briefly sketch at the end of Section 2 how such re-
finements may be established. By a fortunate coincidence, a very similar
system also arises through the use of polynomial identities in the treatment
of the system (1.5), and thus in Section 3 we are able to establish Theorem 2
through a similar argument.

Throughout, � and � denote Vinogradov’s well-known notation. Im-
plicit constants in both the notations of Vinogradov and Landau will depend
at most on ε, k and r. For the sake of concision, we make frequent use of
vector notation. Thus, for example, we abbreviate (c1, . . . , ct) to c. Finally,
we write (a1, . . . , as) for the greatest common divisor of a1, . . . , as, and we
have been careful to ensure that any possible ambiguity can be resolved by
the context.

2. The proof of Theorem 1. Let Uk(P ) denote the number of solutions
of the system

(2.1)
k+1∑

i=1

(xji − yji ) = 0 (1 ≤ j ≤ k)
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with 1 ≤ xi, yi ≤ P (1 ≤ i ≤ k + 1), and satisfying the condition that
(x1, . . . , xk+1) is not a permutation of (y1, . . . , yk+1). In this section we es-
tablish the estimate

(2.2) Uk(P )� Pαk+1+ε,

from which the main conclusion of Theorem 1 follows immediately. Mean-
while, (1.4) follows by taking r to be the integer closest to

√
k + 1 in the

formula for αk+1, and then applying some mundane analysis.
We start by observing that the polynomial p(ξ; z), defined by

p(ξ; z) =
k+1∏

i=1

(zi − ξ)−
k+1∏

j=1

zj ,

considered as a polynomial in ξ, has coefficients which are symmetric poly-
nomials in z1, . . . , zk+1 of degree at most k. Thus for each solution x, y of
the system (2.1) counted by Uk(P ), one has p(ξ; x) = p(ξ; y). Consequently,
for each s with 1 ≤ s ≤ k + 1,

(2.3)
k+1∏

j=1

(yj − xs) = y1 . . . yk+1 − x1 . . . xk+1,

whence

(2.4)
k+1∏

i=1

(yi − xs) =
k+1∏

j=1

(yj − xt) (1 ≤ s < t ≤ k + 1).

Further, if xi = yj for any i and j, then the equation (2.3) with s = i
implies that x1 . . . xk+1 = y1 . . . yk+1. In combination with the equations
(2.1), therefore, the use of elementary properties of symmetric polynomials
leads to the conclusion that (x1, . . . , xk+1) is a permutation of (y1, . . . , yk+1),
contradicting the assumption that x, y is a solution counted by Uk(P ). We
may thus suppose that xi = yj for no i and j.

We divide the solutions x, y of (2.1) counted by Uk(P ) into two types
according to an integer parameter r with 1 < r ≤ k + 1. Let V1,r(P ) de-
note the number of such solutions in which there are fewer than r distinct
values amongst the xi, and let V2,r(P ) denote the corresponding number of
solutions in which there are at least r distinct values amongst the xi. Then

(2.5) Uk(P ) = V1,r(P ) + V2,r(P ).

Consider first the solutions counted by V1,r(P ). Fix any one of the
O(P r−1) possible choices for x, and fix also one of the O(P ) available choices
for y1. By interchanging the rôles of x and y in (2.4), we obtain

k+1∏

i=1

(xi − ys) =
k+1∏

j=1

(xj − y1) (1 ≤ s ≤ k + 1).
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Thus, since each of the integers xj − y1 is fixed, when 2 ≤ s ≤ k + 1 each
ys is determined by a non-trivial polynomial. Consequently, there are O(1)
possible choices for y2, . . . , yk+1, whence

(2.6) V1,r(P )� P r.

Next consider a solution x, y counted by V2,r(P ). By relabelling variables
we may suppose that x1, . . . , xr are distinct. Suppose temporarily that the
integers y1 and yi − xs (1 ≤ i ≤ k + 1, 1 ≤ s ≤ r) are determined. Then
plainly xs is determined for 1 ≤ s ≤ r, whence yi is determined for 1 ≤ i ≤
k + 1. Moreover, when r < s ≤ k + 1, the integers xs may be determined
from the polynomial equations (2.4) with t = 1. Then since there are O(P )
possible choices for y1, we may conclude that given yi−xs (1 ≤ i ≤ k+1, 1 ≤
s ≤ r), there are O(P ) possible choices for x, y. Substituting u0j = xj − y1

and uij = yi+1−xj (1 ≤ i ≤ k, 1 ≤ j ≤ r), we deduce from (2.4)–(2.6) that

(2.7) Uk(P )� PWr(P ) + P r,

where Wr(P ) denotes the number of solutions of the system

(2.8)
k∏

i1=0

ui11 =
k∏

i2=0

ui22 = . . . =
k∏

ir=0

uirr,

with

(2.9) u01 + ui1 = u02 + ui2 = . . . = u0r + uir (1 ≤ i ≤ k),

and

(2.10) 1 ≤ |uij | ≤ P (0 ≤ i ≤ k, 1 ≤ j ≤ r),
and with the u0j distinct for 1 ≤ j ≤ r.

We now use the equations (2.8) to eliminate common factors amongst
the uij . In order to make our description of this process precise, we record
some notational devices. Let I denote the set of indices i = (i1, . . . , ir) with
0 ≤ im ≤ k (1 ≤ m ≤ r). Define a map φ : I → [0, (k + 1)r) ∩ Z by

φ(i) =
r∑

m=1

im(k + 1)m−1.

Then φ is bijective, and we can define the successor, i + 1, of the index i by

i + 1 = φ−1(φ(i) + 1).

When h ∈ N, we define i+h inductively by i+(h+1) = (i+h)+1. Further,
when i ∈ I, we write J (i) for the set of j ∈ I such that for some h ∈ N one
has j + h = i. We now define the integers αi, with i ∈ I, as follows. We put
α0 = (u01, u02, . . . , u0r), and suppose at stage i that αj has been defined for
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j ∈ J (i). We then define αi by

αi =
(
ui11

β
(1)
i

,
ui22

β
(2)
i

, . . . ,
uirr

β
(r)
i

)
, where β

(m)
i =

∏

j∈J (i)
jm=im

αj,

and here we adopt the convention that the empty product is unity. It follows
that when 0 ≤ l ≤ k and 1 ≤ m ≤ r, one has

(2.11) ulm =
∏

j∈I
jm=l

αj.

We now consider αi, with i ∈ I, as variables, and for the sake of trans-
parency write

(2.12) α̃lm =
∏

j∈I
jm=l

αj.

Then it follows from the discussion of the preceding paragraph thatWr(P ) ≤
Xr(P ), where Xr(P ) denotes the number of solutions of the system

(2.13) α̃01 + α̃i1 = α̃02 + α̃i2 = . . . = α̃0r + α̃ir (1 ≤ i ≤ k),

with the α̃0j distinct for 1 ≤ j ≤ r, and with

(2.14) 1 ≤ |α̃ij | ≤ P (0 ≤ i ≤ k, 1 ≤ j ≤ r).
Thus by (2.7),

(2.15) Uk(P )� PXr(P ) + P r.

Having eliminated the multiplicative conditions inherent in our system,
we are left to investigate the system (2.13). When 1 ≤ p ≤ r, we write

(2.16) Ap =
∏

i∈I
il>ip (l 6=p)

αi.

It follows easily that
∣∣∣
r∏
p=1

Ap

∣∣∣ ≤
∏

i∈I
|αi| ≤ P k+1,

and thus in any solution α counted by Xr(P ), there exists a p with 1 ≤ p ≤ r
such that |Ap| ≤ P (k+1)/r. Moreover, given l with 1 ≤ l ≤ r, it follows from
(2.13) and (2.14) that for each solution α counted by Xr(P ), there exist
integers Lj with 0 < |Lj | ≤ 2P such that when 1 ≤ j ≤ r and j 6= l,

α̃0l − α̃0j = −Lj , α̃il − α̃ij = Lj (1 ≤ i ≤ k).
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By relabelling variables, therefore, we deduce that Xr(P ) � Yr(P ), where
Yr(P ) denotes the number of solutions of the system

(2.17) α̃01 − α̃0j = −Lj , α̃i1 − α̃ij = Lj (2 ≤ j ≤ r, 1 ≤ i ≤ k),

with

(2.18) 1 ≤ |Lj | ≤ 2P (2 ≤ j ≤ r),
and with the αi satisfying (2.14) and the inequality

(2.19) |A1| ≤ P (k+1)/r,

where A1 is defined by (2.16). Further, by (2.15),

(2.20) Uk(P )� PYr(P ) + P r.

We claim that when the variables L2, . . . , Lr, and αi with

(2.21) i ∈ I and il > i1 (2 ≤ l ≤ r),
are fixed, then there are O(P ε) possible choices for the αi satisfying (2.14)
and (2.17). If such is the case, then by combining (2.18)–(2.20) with standard
estimates for the divisor function, we obtain Uk(P )� P r+(k+1)/r+ε, and so
the main conclusion of Theorem 1 follows.

It remains to establish the latter proposition, which we prove inductively
as follows. For a fixed choice of the αi with i satisfying (2.21), we suppose at
step t that there are O(P tε) possible choices for those variables αi for which
i satisfies the condition that il < t for some l with 1 ≤ l ≤ r. Observe first
that (2.17) implies that

(2.22) α̃0j = α̃01 + Lj (2 ≤ j ≤ r).
We have supposed, moreover, that L2, . . . , Lr are fixed and non-zero, and
that the variables αi for which i1 = 0 and il > 0 (2 ≤ l ≤ r), are also fixed.
Then by using standard estimates for the divisor function, it follows from
(2.22) that there are O(P ε) possible choices for the αi for which i satisfies
the condition that il = 0 for some l with 1 ≤ l ≤ r. Thus our hypothesis
holds when t = 1.

Suppose next that the hypothesis is satisfied for a t ≥ 1, and consider a
fixed one of the O(P tε) possible choices for the αi for which il < t for some
l with 1 ≤ l ≤ r. It follows from (2.17) that

(2.23) α̃tj = α̃t1 − Lj (2 ≤ j ≤ r).
Once again, L2, . . . , Lr are fixed and non-zero. Moreover, if

(2.24) i1 = t and il 6= t (2 ≤ l ≤ r),
then either some il < t, or else il > t (2 ≤ l ≤ r), and thus the variables αi for
which i satisfies (2.24) may also be supposed fixed. Then by using standard
estimates for the divisor function, it follows from (2.23) that there are O(P ε)
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possible choices for the variables αi for which i satisfies the condition that
il = t for some l with 1 ≤ l ≤ r. Consequently, there are O(P (t+1)ε) possible
choices for the variables αi for which i satisfies the condition that il ≤ t for
some l with 1 ≤ l ≤ r, and so the inductive hypothesis holds with t replaced
by t+1. This completes the induction, and the proof of the main conclusion
of Theorem 1.

By better exploiting the variables αi not occurring as factors of the Ap,
it is possible to improve the upper bound (1.3) a little. Although for large k
these improvements are not of great significance, for smaller k they may be
of some interest. We sketch below one possible approach to obtaining such
refinements.

We start by making an observation concerning the solutions counted by
Xr(P ). Let I+ denote the set of indices i ∈ I such that il > 0 (1 ≤ l ≤ r),
and let I∗ denote the corresponding set of indices subject to the additional
condition that for some p with 1 ≤ p ≤ r, one has il > ip whenever l 6= p.
Thus card(I+) = kr, and card(I∗) = rψ(k), where

ψ(k) =
k−1∑

i=1

ir−1 < kr/r.

Observe that by considering changes of variables corresponding to permut-
ing the indices il, for each fixed l, it follows with little difficulty from the
argument of the proof of Theorem 1 that Wr(P )� Xr(P ), where Xr(P ) is
defined as before, but now one may impose the additional condition

∏

i∈I∗
|αi| ≤

( ∏

i∈I+

|αi|
)card(I∗)/card(I+)

.

It follows that
∣∣∣
r∏
p=1

Ap

∣∣∣ ≤
( r∏
p=1

∏

i∈I
ip=0

il>0 (l 6=p)

|αi|
)( ∏

i∈I∗
|αi|
)

≤
( r∏
p=1

∏

i∈I
ip=0

|αi|
)1−rψ(k)/kr(∏

i∈I
|αi|
)rψ(k)/kr

≤ (P r)1−rψ(k)/kr (P k+1)rψ(k)/kr .

Consequently, in any solution α counted by Xr(P ), there exists a p with
1 ≤ p ≤ r such that

|Ap| ≤ P 1+(k+1−r)ψ(k)/kr .

We may now prosecute the same argument as before, but now delivering the
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conclusion
Uk(P )� P βk+ε,

where

(2.25) βk = min
2≤r≤k+1
r∈N

(
r + 1 +

k + 1− r
kr

k−1∑

i=1

ir−1
)
.

When r = 2, the expression on the right-hand side of (2.25) yields

βk ≤ 1
2 (k + 4 + 1/k).

Thus when k = 4, and when k = 5, this refined argument with r = 2 yields
the sharpest bounds available to us, namely

U4(P )� P 33/8+ε and U5(P )� P 23/5+ε.

3. The proof of Theorem 2. Having illustrated our method in Sec-
tion 2 we can afford to be brief in our proof of Theorem 2. We start by
recording an observation from [5, Section 8]. From [5, (8.24)], together with
the equation obtained by reversing the rôles of x and y in that equation, it
follows that

(3.1) Sk(P )− Tk(P )� Rk(kP ),

where Rk(Q) denotes the number of solutions of the system

xv

k∏

i=1

(yi − xu) = xu

k∏

j=1

(yj − xv) (1 ≤ u < v ≤ k),(3.2)

yv

k∏

i=1

(xi − yu) = yu

k∏

j=1

(xj − yv) (1 ≤ u < v ≤ k),(3.3)

with 1 ≤ xi, yi ≤ Q (1 ≤ i ≤ k), and satisfying the condition that xi = yj
for no i and j.

We divide the solutions x, y of (3.2) and (3.3) counted by Rk(Q) into
two types according to an integer parameter r with 1 < r ≤ k. Let N1,r(Q)
denote the number of such solutions in which there are fewer than r distinct
values amongst the xi, and let N2,r(Q) denote the corresponding number of
solutions in which there are at least r distinct values amongst the xi. Then

(3.4) Rk(Q) = N1,r(Q) +N2,r(Q).

Consider first the solutions counted by N1,r(Q). Fix any one of the
O(Qr−1) possible choices for x, and fix also any one of the O(Q) possi-
ble choices for y1. Then since each of the integers xj − y1 (1 ≤ j ≤ k) is
fixed, when 2 ≤ u ≤ k each yu is determined by the non-trivial polynomial
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equation (3.3) with v = 1. Consequently, there are O(1) possible choices for
y2, . . . , yk, whence

(3.5) N1,r(Q)� Qr.

Next consider a solution x, y counted by N2,r(Q). By relabelling vari-
ables we may suppose that x1, . . . , xr are distinct. Suppose temporarily that
the integers xu and yi − xu (1 ≤ i ≤ k, 1 ≤ u ≤ r) are determined. Then
plainly xu and yi are determined for 1 ≤ i ≤ k and 1 ≤ u ≤ r. Moreover,
when r < u ≤ k, the integers xu may be determined from the polynomial
equations (3.2) with v = 1. Then since there are O(Qr) possible choices for
x1, . . . , xr, we may conclude that given yi − xu (1 ≤ i ≤ k, 1 ≤ u ≤ r),
there are O(Qr) possible choices for x, y. Substituting uij = yi − xj (1 ≤
i ≤ k, 1 ≤ j ≤ r), we deduce from (3.2)–(3.5) that

(3.6) Rk(Q)� Qr max
x

Mr(Q; x) +Qr,

where the maximum is taken over x1, . . . , xr with

1 ≤ xi ≤ Q (1 ≤ i ≤ r),
and with the xi distinct, and where Mr(Q; x) denotes the number of solu-
tions of the system (2.8) with

(3.7)
x1 + ui1 = x2 + ui2 = . . . = xr + uir (1 ≤ i ≤ k),

1 ≤ |uij | ≤ Q (1 ≤ i ≤ k, 1 ≤ j ≤ r),
and

(3.8) u0i = x−1
i

r∏

j=1

xj (1 ≤ i ≤ r).

We may now extract common factors between the variables uij precisely
as in Section 2. Thus, on recalling the notation of Section 2, we deduce that
there are integers αi (i ∈ I) such that when 0 ≤ l ≤ k and 1 ≤ m ≤ r,
one has (2.11). We note that in view of (3.8), the u0i are fixed. Thus, by
making use of standard estimates for the divisor function, we deduce that
there are O(Qε) possible choices for the αj for which jm = 0 for some m
with 1 ≤ m ≤ r. Treating the αi now as variables, and recalling the notation
(2.12), we conclude that Mr(Q; x) � QεKr(Q; x), where Kr(Q; x) denotes
the number of solutions of the system

(3.9) x1 + α̃i1 = x2 + α̃i2 = . . . = xr + α̃ir (1 ≤ i ≤ k),

with

(3.10) 1 ≤ |α̃ij | ≤ Q (1 ≤ i ≤ k, 1 ≤ j ≤ r),
and with the variables αi, for which im = 0 for some m with 1 ≤ m ≤ r,
fixed.
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We investigate the system (3.9) following the trail laid down in Section 2.
When 1 ≤ p ≤ r, we write Bp =

∏∗
i αi, where the product is over i ∈ I for

which il > ip (l 6= p), and il > 0 (1 ≤ l ≤ r). It follows that
∣∣∣
r∏
p=1

Bp

∣∣∣ ≤
∏

i∈I
il>0 (1≤l≤r)

|αi| ≤ Qk,

and thus in any solution α counted by Kr(Q; x), there exists a p with
1 ≤ p ≤ r such that |Bp| ≤ Qk/r. By relabelling variables, we therefore
deduce that

Kr(Q; x)� Ir(Q; x),

where Ir(Q; x) denotes the number of solutions of the system

(3.11) α̃i1 − α̃ij = Lj (2 ≤ j ≤ r, 1 ≤ i ≤ k),

with Lj = xj − x1 (2 ≤ j ≤ r), and with the αi satisfying (3.10) and the
inequality

(3.12) |B1| ≤ Qk/r.
We claim that when the variables αi, with i satisfying (2.21), are fixed,
then there are O(Qε) possible choices for the αi satisfying (3.10) and (3.11).
If such is the case, then by combining (3.12) with standard estimates for
the divisor function, we obtain Ir(Q; x)� Qk/r+ε, whence by (3.6) we have
Rk(Q)� Qr+k/r+ε. The main conclusion of Theorem 2 follows immediately.

But the claimed conclusion may be established precisely as in the argu-
ment of the final paragraphs of Section 2, noting only that the αi, for which
im = 0 for some m with 1 ≤ m ≤ r, are in this instance already fixed. This
completes the proof of the main conclusion of Theorem 2, the estimate (1.7)
following directly.
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