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1. Introduction. About 40 years ago J. W. S. Cassels [1] proved the
following theorem:

Let q(x) =
∑

1≤i≤j≤n qijxixj be a quadratic form with integer co-
efficients qij ∈ Z. Assume that q is isotropic over Q. Then there is an
0 6= a = (a1, . . . , an) ∈ Zn with q(a) = 0 such that

(0) |a| = max |ai| ≤ cnQ(n−1)/2

where cn is a constant which depends only on n and where Q =
∑
i,j |qij |.

In the addendum to [1] he showed that the exponent (n − 1)/2 is best
possible by giving an example which was found by M. Kneser. In his book
[3, 6.8] he gave a better proof and estimate, in particular one can take
cn = 3(n−1)/2.

For a generalization to totally isotropic subspaces of higher dimension
see [8].

Several years later Cassels [2] published his theorem on the representa-
tion of a polynomial f(x) in one variable as a sum of n squares: If such
a representation is possible over the rational function field k(x) then it is
already possible over the polynomial ring k[x]. He remarked that the under-
lying geometrical idea for the proof was essentially the same as in his first
paper [1]. This idea is as follows:

Given a 6= 0 with q(a) = 0, intersect the “quadric” q = 0 with a “line”
l = 0 passing through a. If l is chosen carefully then the second intersection
point of q and l may be “smaller” than the original point a. For the choice
of l one has to use the fact that Z resp. k[x] are euclidean domains.

These results have been generalized in the following directions:

[221]
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(1) In 1965 I generalized Cassels’ representation theorem (= Darstel-
lungssatz) to an arbitrary quadratic form q over k instead of the “unit form”
q = 〈1, . . . , 1〉. See [4, Ch. 1] for a proof which includes the case char k = 2.

(2) In 1975 Raghavan [6] generalized Cassels’ zero theorem (= Nullstel-
lensatz) to the ring of integers in an algebraic number field K. His estimate
for |a| is of the same shape as in (0) but the constant cn now depends on
n = dim q and the degree and the discriminant of K. Except for the precise
value of the constant cn this paper essentially finishes the number theoretic
case.

(3) In 1987 Prestel [5] stated and proved the zero theorem for a rational
function field k(x). It reads as follows: There exists 0 6= a = (a1, . . . , an)
with ai ∈ k[x] and q(a) = 0 such that

deg a ≤ n− 1
2

degQ

where deg a = maxi(deg ai), degQ = maxi,j(deg qij).
This may be considered as an additive version of (0) with cn = 1 for

all n. The strengthening of the estimate is due to the fact that the valuation
on k(x) which is induced by the degree is non-archimedean (= ultrametric).

In the same paper Prestel constructs an example of (a sequence of)
isotropic quadratic forms over R(x, y) in n = 4 variables with coefficients
qij of degree 2 such that the minimal degree of a non-trivial solution a is
unbounded. This proves that one cannot expect results about “small” zeros
for function fields in more than one variable.

The aim of the present paper is to prove the Nullstellensatz (Theorem 1)
and the Darstellungssatz (Theorem 4) in the remaining open case where K
is an algebraic function field in one variable over an arbitrary field k. The
main difficulty is to find an argument which replaces the euclidean algorithm
for k[x]. In my proofs this will be the theorem of Riemann–Roch.

I found the main breakthrough three years ago when I spent my sab-
batical in Cambridge and enjoyed the privilege of being a Visiting Fellow
Commoner of Trinity College.

I have been informed that Dorothea Diers (Münster) has obtained very
similar results in her thesis under W. Scharlau but I have not seen any
details of her work.

Notation. k is an arbitrary field, K/k is an algebraic function field in
one variable. As usual we assume that K/k is finitely generated and that k
is algebraically closed in K. Divisors of K/k are denoted by latin capitals
A,B, . . . , prime divisors by P . Ω denotes the set of all places P of K/k,
S = {P1, . . . , Ps} is an arbitrary non-empty finite subset of Ω. We write
A =

∑
P∈Ω vP (A)P . For P ∈ Ω the valuation ring of P , residue field of P
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and residue degree of P are denoted by RP , kP and fP respectively. vP :
K → Z∪∞ denotes the normalized discrete valuation of K/k corresponding
to P, π = πP is a prime element for P . It is well known that R := R(S) :=⋂
P 6∈S RP is a Dedekind ring in K with quot(R) = K. For abbreviation

we write Rσ, kσ, fσ etc. instead of RPσ , kPσ , fPσ (σ = 1, . . . , s). Finally, let
f = f(S) = max{f1, . . . , fs} and let g be the genus of K/k.

We consider quadratic forms

q = q(x) =
n∑

i,j=1
i≤j

qijxixj ∈ K[x1, . . . , xn].

Since char k = 2 is not excluded q is not supposed to be in diagonal form
nor to be non-degenerate. The only standard assumptions about q are:

q 6= 0, dim q = n ≥ 1.

In Section 2, q is an isotropic form over K. This implies n ≥ 2 since
q = q11x

2
1 with q11 6= 0 cannot be isotropic. The symmetric bilinear form

corresponding to q is given by

q(x, y) := q(x+ y)− q(x)− q(y) =
∑

i≤j
qij(xiyj + xjyi).

We look for isotropic vectors 0 6= a = (a1, . . . , an) ∈ Rn of q. The pole divisor
A of a is the smallest non-negative divisor A ≥ 0 such that (ai) +A ≥ 0 for
i = 1, . . . , n. For ai ∈ R we see that A is a linear combination of the prime
divisors P1, . . . , Ps ∈ S with coefficients from N0 : A =

∑s
σ=1 vσ(A)Pσ.

Similarly Q denotes the pole divisor of q, i.e. the smallest non-negative
divisor such that

(qij) +Q ≥ 0 (1 ≤ i ≤ j ≤ n).

S and q are called compatible if all qij ∈ R = R(S).
In Section 3 we use a slightly different notation. Here q is a form over k

such that the extended form q⊗K represents a given element t ∈ K∗ (over
K). We then work with the (n+1)-dimensional isotropic form q⊗K ⊥ 〈−t〉
over K.

2. The Nullstellensatz. With the terminology introduced in Section 1
let q be an isotropic quadratic form over K.

Definition. A vector a = (a1, . . . , an) ∈ Rn with pole divisor A is called
a minimal vector of q over R if

(i) 0 6= a ∈ Rn,
(ii) q(a) = 0,

(iii) degA ∈ N0 is minimal (under conditions (i), (ii)).
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Clearly every isotropic form q has at least one minimal vector a over
R = R(S) and then degA depends only on K/k, q and S but not on a.

The first main result of this article is the following:

Theorem 1 (Nullstellensatz). For every isotropic quadratic form

0 6= q = q(x) =
∑

1≤i≤j≤n
qijxixj ∈ R[x1, . . . , xn]

and every minimal vector 0 6= a = (a1, . . . , an) ∈ Rn of q with pole divisor
A we have

degA ≤ n(f + g − 1) +
n− 1

2
degQ.

P r o o f. 1. First we consider the case n = 2. Here we have

q(x) = q11x
2
1 + q12x1x2 + q22x

2
2.

Without loss of generality we assume q11q22 6= 0. [Otherwise (1, 0) or (0, 1)
is an isotropic vector with pole divisor 0.] Then

q(x) = q11(x1 − cx2)(x1 − c′x2)

with c, c′ ∈ K since q is isotropic. We have

q11c
2 + q12c+ q22 = 0, c+ c′ = −q12/q11, cc′ = q22/q11.

By the definition of Q we have

(qij) = Qij −Q
with non-negative divisors Qij ≥ 0 (provided qij 6= 0) (1 ≤ i ≤ j ≤ n). This
implies vP (q22) − vP (q11) = vP (Q22) − vP (Q11) for every prime divisor P .
Consider the principal divisor

(c2) = 2(c) = 2
∑

P

vP (c)P

and define γP ∈ Z by

2vP (c) = vP (Q22)− vP (Q11) + γP .

Then (cc′)2 = (q22/q11)2 implies

2vP (c′) = vP (Q22)− vP (Q11)− γP
for all P .

Let C, C ′ be the pole divisors of c, c′. We have

vP (C) + vP (C ′) = 1
2 max{vP (Q11)− vP (Q22)− γP , 0}
+ 1

2 max{vP (Q11)− vP (Q22) + γP , 0}.
We have to distinguish three cases for P :

(i) vP (Q11)− vP (Q22) + |γP | ≤ 0. Then vP (C) = vP (C ′) = 0.
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(ii) vP (Q11) − vP (Q22) − |γP | ≤ 0 < vP (Q11) − vP (Q22) + |γP |. Then
vP (c) 6= vP (c′), hence

1
2 (vP (Q22)− vP (Q11)− |γP |) = min{vP (c), vP (c′)} = vP (c+ c′)

= vP (q12)− vP (q11) = vP (Q12)− vP (Q11)

and
vP (C) + vP (C ′) = vP (Q11)− vP (Q12) > 0.

[Note that this case can only occur if q12 6= 0.]
(iii) 0 < vP (Q11)− vP (Q22)− |γP |. Then

vP (C) + vP (C ′) = 1
2 (vP (Q11)− vP (Q22)− γP )

+ 1
2 (vP (Q11)− vP (Q22) + γP )

= vP (Q11)− vP (Q22) > 0.

With an obvious notation this implies

degC + degC ′ =
∑

2

fP (vP (Q11)− vP (Q12))

+
∑

3

fP (vP (Q11)− vP (Q22))

≤
∑
2+3

fP vP (Q11) ≤ degQ11 = degQ.

Hence we may assume without loss of generality that degC ≤ 1
2 degQ.

It is now easy to find a “small” isotropic vector a = (a1, a2) ∈ R2 by
solving the linear equation a1 = ca2 with a1, a2 ∈ R \ {0}, (ai) + A ≥ 0,
A ≥ 0, degA minimal. We need (a2) + A − C ≥ 0. Then (a1) + A =
(c) + (a2) +A = (c) + C + (a2) +A− C ≥ 0.

For any divisor D let L(D) = {d ∈ K : (d) +D ≥ 0}. By the theorem of
Riemann–Roch this is a finite-dimensional k-vector space of dimension

l(D) = degD + 1− g + i(D)

where i(D) ≥ 0 is the index of speciality of D.
We want: suppA ⊂ S, l(A − C) ≥ 1. Then there is some 0 6= a2 ∈

L(A − C) with a2 ∈ R, a1 = ca2 ∈ R. It is sufficient to find A ≥ 0 with
suppA ⊂ S and deg(A − C) ≥ g. Since all multiples of f occur as degrees
of divisors which are supported by S we can find such an A with

g ≤ deg(A− C) ≤ g + f − 1.

Then degA ≤ f + g − 1 + degC ≤ f + g − 1 + 1
2 degQ.

N o t e. In the case n = 2 we have shown that

degA ≤ f + g − 1 + 1
2 degQ.
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This estimate is better than the estimate of the theorem unless f = 1 and
g = 0. Another easy estimate is obtained by taking a2 = q11 and a1 = ca2.
Then

a2
1 + q12a1 + q11q22 = 0,

vP (a1) ≥ min{vP (q11), vP (q12), vP (q22)} ≥ −vP (Q)

for all P ∈ Ω, hence

(a1) +Q ≥ 0, (a2) +Q ≥ 0, A ≤ Q, degA ≤ degQ.

This estimate is better than the above estimate if 1
2 degQ < f + g − 1.

2. From now on we assume n ≥ 3. Furthermore, we can assume that
either s = 1 or that S is the exact set of poles of q, i.e. vP (Q) > 0 for all
P ∈ S. To see this let S′ = {P ∈ S : vP (Q) > 0} ⊂ S. Then f ′ = max{fP :
P ∈ S′} ≤ f . If |S′| ≥ 1 then application of Theorem 1 for S′ instead of S
yields an isotropic vector 0 6= a = (a1, . . . , an) ∈ R(S′)n with

degA ≤ n(f ′ + g − 1) +
n− 1

2
degQ ≤ n(f + g − 1) +

n− 1
2

degQ.

If S′ = ∅, i.e. Q = 0, i.e. qij ∈ k for all i, j, then S can be replaced by any
one-point subset S′′ ⊂ S.

The proof will be by contradiction. Hence we start with the

Hypothesis. 0 6= a ∈ Rn is a minimal vector of q with

degA > n(f + g − 1) +
n− 1

2
degQ.

Let A =
∑s
σ=1 vσ(A)Pσ. Since degA > 0 we can fix a σ ∈ {1, . . . , s}

with vσ(A) > 0. Then B := A− Pσ ≥ 0 and B < A, degB = degA− fσ ≥
degA− f . By our hypothesis we have

degA > 3(f + g − 1), degA ≥ 3f + 3g − 2,

degB ≥ 2f + 3g − 2 > 2g − 2.

Therefore
dimL(B) = degB + 1− g ≥ 2f + 2g − 1 ≥ 1.

Put

V := {b = (b1, . . . , bn) ∈ Kn : (bi) +B ≥ 0 for i = 1, . . . , n}.
Then V is a k-vector space, dimV = n(degB+1−g) ≥ n > 0. For 0 6= b ∈ V
we clearly have q(b) 6= 0 since the pole divisor of b is ≤ B < A.

3. The main idea of the proof is as follows: Join the point a ∈ Rn on
the quadric q = 0 to the point b ∈ Rn off the quadric q = 0 by a line l and
intersect l with this quadric. This yields a second point of intersection

a∗ := q(b)a− q(a, b)b ∈ Rn.
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For a “good choice” of b ∈ V we can show that the pole divisor A∗ of a∗

satisfies degA∗ < degA, which contradicts the minimality of a.
Let us check that a∗ 6= 0 and q(a∗) = 0 for any 0 6= b ∈ V . Since q(b) 6= 0

and q(a) = 0 we know that a, b are linearly independent (over R), hence
a∗ 6= 0. Further,

q(a∗) = q(b)2q(a) + q(a, b)2q(b)− q(b)q(a, b)q(a, b) = 0.

4. In order to compute vσ(a∗j ) for σ ∈ {1, . . . , s} choose i(σ) ∈ {1, . . . , n}
such that

vσ(aj) ≥ vσ(ai(σ)) = −vσ(A), j = 1, . . . , n.

Put

c(σ) := b− bi(σ)

ai(σ)
a ∈ Kn.

Then

a∗ = q

(
bi(σ)

ai(σ)
a+ c(σ)

)
a− q(a, c(σ))

(
bi(σ)

ai(σ)
a+ c(σ)

)

=
bi(σ)

ai(σ)
q(a, c(σ))a+ q(c(σ))a− bi(σ)

ai(σ)
q(a, c(σ))a− q(a, c(σ))cσ

= q(c(σ))a− q(a, c(σ))c(σ).

Hence
vσ(a∗h) ≥ min

i,j
vσ(qij) + min

j
vσ(aj) + 2 min

j
vσ(c(σ)

j )

≥ −vσ(Q)− vσ(A) + 2 min
j
vσ(c(σ)

j )

for all h = 1, . . . , n. We want to make vσ(c(σ)
h ) as large as possible. A priori

we have
vσ(c(σ)

h ) = vσ(bhai(σ) − bi(σ)ah)− vσ(ai(σ))

≥ min
j
vσ(bj) ≥ −vσ(B) for all h.

By suitable choice of b ∈ V we want to arrange that

(∗) vσ(c(σ)
j ) ≥ −vσ(B) + γσ for all j 6= i(σ)

where the numbers γσ ∈ N0 (σ = 1, . . . , s) are chosen later. [Note that
c
(σ)
i(σ) = 0, vσ(c(σ)

i(σ)) =∞.]
Fix for a moment σ, j 6= i(σ) and π = πσ. In the completion Kσ

∼=
kσ((π)) of K with respect to Pσ the element c(σ)

j has a Laurent series

c
(σ)
j = π−vσ(B)(c0 + c1π + . . .) with c0, c1, . . . ∈ kσ.
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(∗) is fulfilled for c(σ)
j iff c0 = c1 = . . . = cγσ−1 = 0. Let

W :=
s⊕

σ=1

⊕

j 6=i(σ)

Wσ,j with Wσ,j := kγσσ .

Then W is a k-vector space of dimension dimW = (n− 1)
∑s
σ=1 fσγσ. The

map
α : V →W, b 7→

⊕
σ

⊕

j

(c0, . . . , cγσ−1)σ,j ,

is clearly k-linear.
(∗) is fulfilled for all σ and j iff 0 6= b ∈ kerα. Therefore we impose the

condition dimV > dimW. This gives some upper bound for
∑
fσγσ.

5. The above estimate for vσ(a∗h) leads to a useful estimate for vσ(A∗)
only in the case

−vσ(Q)− vσ(A) + 2(−vσ(B) + γσ) ≤ 0.

Therefore we impose the following conditions on the numbers γσ ∈ N0:

(1) γσ ≤ γ∗σ := vσ(B) +
[
vσ(Q) + vσ(A)

2

]
for each σ = 1, . . . , s,

(2)
∑s
σ=1 fσγσ <

n

n− 1
(degB + 1− g), i.e. dimW < dimV.

We compute
∑
fσγ

∗
σ:

(i) For s ≥ 2 we have vσ(Q) ≥ 1 for all σ by our a priori assumption.
This gives

γ∗σ ≥ vσ(B) + 1
2vσ(A),∑

fσγ
∗
σ ≥ degB + 1

2 degA ≥ degB + 1
2 (degB + 1)

= 3
2 (degB + 1)− 1 ≥ n

n− 1
(degB + 1− g)− 1

=
1

n− 1
dimV − 1

since n ≥ 3.
(ii) For s = 1 we have A = mP with m > 0, B = (m− 1)P . Then

γ∗1 ≥ m− 1 +
[
m

2

]
≥ m− 1 +

m− 1
2

= 3
2 (m− 1),

f1γ
∗
1 = fγ∗1 ≥ 3

2f(m− 1) = 3
2 degB.

Hence again (for n ≥ 3)
1

n− 1
dimV − 1 ≤ 1

2 dimV − 1 = 1
2 (degB + 1− g)− 1 ≤ 3

2 degB ≤ f1γ
∗
1

since − 1
2 (1 + g) ≤ 0 ≤ degB.



Zeros of quadratic forms 229

Since
∑
fσγ

∗
σ ∈ N0 this shows that

∑
fσγ

∗
σ is greater than or equal to

the largest integer below dimV /(n− 1) in both cases.
Let now (γ1, . . . , γs) be any s-tuple with 0 ≤ γσ ≤ γ∗σ and

∑s
σ=1 fσγσ

> 0. Replacing a fixed γτ > 0 by γτ−1 reduces this sum to
∑
fσγσ−fτ where

1 ≤ fτ ≤ f . This shows that for any closed interval I ⊂ [0, 1
n−1 dimV

)
of

length ≥ f there exists a system (γ1, . . . , γs) ∈ Ns0 with γσ ≤ γ∗σ for all σ
and

∑
fσγσ ∈ I.

6. We are now able to derive an estimate for degA∗. From our Hypothesis
we have

degB ≥ degA− f > n(g − 1) + (n− 1)f +
n− 1

2
degQ,

1
2 degQ+ f <

1
n− 1

(degB + n(1− g)),

1
2 degQ+ degB + f <

n

n− 1
(degB + 1− g) =

1
n− 1

dimV,

say
1
2 degQ+ degB + f + ε =

1
n− 1

dimV with ε > 0.

Choose I =
[

1
2 degQ + degB + ε/2, 1

2 degQ + degB + f + ε/2
]
. Then

we find a system (γ1, . . . , γs) as above such that
∑
fσγσ ∈ I, i.e.

(∗∗) 1
2 degQ+ degB <

∑
fσγσ <

1
n− 1

dimV.

Put C :=
∑s
σ=1 γσPσ. Let W be the k-vector space corresponding to

(γ1, . . . , γs). Then dimW = (n− 1)
∑
fσγσ < dimV.

Choose

0 6= b ∈ ker{α : V →W}, a∗ = q(b)a− q(a, b)b ∈ Rn

and let A∗ denote the pole divisor of a∗. The estimates of part 4 imply:

vσ(a∗h) ≥ −vσ(Q)− vσ(A) + 2 min
j
vσ(c(σ)

j )

≥ −vσ(Q)− vσ(A)− 2vσ(B) + 2γσ,

vσ(A∗) ≤ vσ(Q) + vσ(A) + 2vσ(B)− 2γσ ∈ N0,

degA∗ =
s∑

σ=1

fσvσ(A∗) ≤ degQ+ degA+ 2 degB − 2 degC < degA,

since degQ+2 degB−2 degC < 0 by (∗∗). This contradicts the minimality
of the isotropic vector a and proves the theorem.

From Theorem 1 we can easily derive the following more general but
slightly weaker
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Theorem 2. Let q 6= 0 be an isotropic quadratic form over K of di-
mension n ≥ 2. Let Q be the pole divisor of q. For Q 6= 0 let S be the
exact support of Q, and f = f(S). For Q = 0 choose S = {P} and
f = f(S) = fP with an arbitrary prime divisor P ∈ Ω, e.g. such that
fP = f0 := min{fP : P ∈ Ω}. In addition, let D be any divisor of K such
that

degD ≥ n(f + g − 1) +
n− 1

2
degQ+ g.

Then there exists a non-trivial vector b = (b1, . . . , bn) with q(b) = 0 and
(bi) +D ≥ 0 (i = 1, . . . , n).

P r o o f. Define R = R(S) and choose a minimal vector a ∈ Rn of q with
pole divisor A ≥ 0. By Theorem 1 we have

degA ≤ n(f + g − 1) +
n− 1

2
degQ.

We put b = t · a with t ∈ K∗ and try to choose t such that (bi) + D ≥ 0
(i = 1, . . . , n). Clearly q(b) = 0. Since (ai) +A ≥ 0, bi = tai we need

(ai) + (t) +D ≥ 0.

This is true if (t) +D ≥ A, i.e. t ∈ L(D−A). So we need dimL(D−A) > 0.
This is certainly the case if

degD − degA+ 1− g > 0, degD ≥ degA+ g.

By our assumption on D this inequality is true.

N o t e. If we write D = D1 − D2 with (disjoint) non-negative divisors
D1, D2 then (bi) + D1 ≥ 0. This means bi ∈ R1 := R(S1) where S1 =
supp(D1), 0 6= b ∈ Rn1 , q(b) = 0. Here S1 and q are not compatible in
general.

Instead of scaling the vector a we can also scale the quadratic form q
without changing the equation q(a) = 0. Thereby we can derive

Theorem 1′. Every isotropic form q admits an isotropic vector a 6= 0
such that

degA ≤ 3n− 1
2

(f0 + g − 1) +
n− 1

2
degQ

where f0 = min{fP : P ∈ Ω}.
P r o o f. Let P0 ∈ Ω be such that fP0 = f0. We try to find q0 ∈ K∗ such

that (q0qij) + mP0 ≥ 0 for suitable m ∈ N0. We need (q0) + mP0 −Q ≥ 0.
For this it is enough that

g ≤ mf0 − degQ ≤ g + f0 − 1, or m =
[

degQ+ f0 + g − 1
f0

]
.
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We apply Theorem 1 to the isotropic form q′ = q0q with pole divisor
Q′ ≤ mP0. This leads to an isotropic vector a ∈ Rn0 (where R0 = R({P0}))
such that

degA ≤ n(f0 + g − 1) +
n− 1

2
degQ′ ≤ n(f0 + g − 1) +

n− 1
2

mf0

≤ 3n− 1
2

(f0 + g − 1) +
n− 1

2
degQ.

N o t e. Depending on the special values of f0, f, g and n, Theorem 1′ or
Theorem 1 may give a “smaller” isotropic vector a for q.

Example 1. For the rational function field K = k(x) and the set S =
{∞} with v∞(u) = − deg u for all u ∈ K we have R = k[x], f = 1, g = 0.
If then qij ∈ R (1 ≤ i ≤ j ≤ n), Theorem 1 coincides with the theorem of
Prestel [5]. The estimate is then best possible for all n.

Example 2. Let char k 6= 2 and let q = 〈1, q2, q3〉 be an anisotropic
ternary quadratic form over k. Consider for g ∈ N0 the function field

K = k(t, u) with − u2 = q2t
2g+2 + q3.

It has genus g. All prime divisors P of K have even degree, since otherwise
q⊗kP would be isotropic over the odd-degree extension kP /k, which contra-
dicts Springer’s theorem. There is one place P =∞ over the infinite place of
k(t), it has k∞ = k(

√−q2), f∞ = 2. For S = {∞} we get R = R(S) = k[t, u]
and Q = 0 since q is a “constant” form. The vector a = (u, tg+1, 1) is a min-
imal vector of q over R with degA = 2(g+ 1). The minimality follows since
u must occur in at least one component of every isotropic vector a ∈ R3 and
since u has pole divisor U = (g + 1)∞ with degU = 2(g + 1). The estimate
of Theorem 1 gives the weaker estimate

degA ≤ n(f + g − 1) = 3(g + 1).

[For g = 0 Theorem 1 is essentially sharp since degA ≤ 3 automatically
implies degA ≤ 2.]

Example 3. Let k = Qpyth be the pythagorean closure of Q. Then k is
real with Pythagoras number p(k) = 1. It is known (see e.g. [4, Ch. 7]) that
p(k(t)) ≥ 3 and that there exists a polynomial h = h(t) of degree 4 which is
a sum of 3 but not of 2 squares in k[t]. Put K = k(t, u) with u2 = −h. Then
K is non-real. In particular, all prime divisors of K/k have even degree, the
place ∞ has degree f∞ = 2, t has pole divisor ∞, u has pole divisor 2∞.
Let S = {∞} and R = [t, u] as above. Then f = 2 and g = 1 (since h has
degree 4).

We take the constant ternary quadratic form q = 〈1, 1, 1〉 with pole
divisor Q = 0. From the equation u2 + h = 0 it follows that the form
〈1〉 ⊕ q = 4 × 〈1〉 is isotropic over K. As is well known this implies that
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q ⊗K is isotropic as well. Let a = (a1, a2, a3) be a minimal vector of q over
R. Then ai = bi + ciu (i = 1, 2, 3) with bi, ci ∈ k[t], and ai has pole divisor
mi · ∞ with

mi = max{deg bi,deg ci + 2}
where deg is the ordinary degree on k[t]. Theorem 1 gives the estimate
degA ≤ 3(f + g − 1) = 6 for the pole divisor A of a. We want to show that
this estimate is sharp (recall that degA is even):

Assume degA ≤ 4. Then c1, c2, c3 must be constants from k (not all
zero). The equation

0 =
3∑

i=1

(bi + ciu)2 =
∑

b2i − h
∑

c2i + 2u
∑

bici

implies:

1)
∑
bici = 0, i.e. b1, b2, b3 are linearly dependent over k, say b3 =

λb1 + µb2 with λ, µ ∈ k,
2)
∑3
i=1 b

2
i = h

∑3
i=1 c

2
i = h · c2 with 0 6= c ∈ k.

By normalizing we can arrange c = 1. Then

h = b21 + b22 + (λb1 + µb2)2 in k[t].

Put

τ :=
√
λ2 + µ2 + 1 ∈ k, ν =

λ2µ+ τ

λ2 + 1
, ω =

λ(µ− τ)
λ2 + 1

.

An easy computation yields

h = (b1 + ωb2)2 + (λb1 + νb2)2,

i.e. h is a sum of 2 squares in k[t]: Contradiction.

F i n a l r e m a r k s t o T h e o r e m s 1, 1′, 2

1. Since the estimates for degA grow with the number n = dim q they can
only be sharp if all proper subforms of q are anisotropic over K. For certain
fields this ensures an a priori upper bound for n. If e.g. K is a Ci-field then
every quadratic form of dimension > 2i over K is isotropic, which means
that we can suppose n ≤ 2i + 1.

2. If g 6= 1 then there is a well-known upper bound for the greatest
common divisor δ of all possible divisor degrees (δ is called the index of
K/k) and for the minimal prime divisor degree f0, namely δ ≤ f0 ≤ |2g−2|.
Then f0 or f = f(S) could be eliminated from the estimates in many cases.

3. If g = 1 then f0 = δ and δ can be any natural number. For concrete
examples where k is a p-adic field see e.g. [7, Cor. 13a].

3. The Darstellungssatz. Let now q 6= 0 be a quadratic form over k
and suppose that q ⊗K represents a given element t ∈ K∗. We look for a
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representation

(1) q(u) = q(u1, . . . , un) = t

for which the pole divisor U of u has small degree. The result will be slightly
different depending on whether q⊗K is isotropic or not. For the anisotropic
case we first need a variant of Theorem 1. Here a non-trivial solution in K
of the equation

(2) q(a1, . . . , an)− ta2
0 = 0

automatically satisfies a0 6= 0, q(a1, . . . , an) 6= 0, and leads to a solution of
(1) by putting ui = ai/a0. Since then a0 is (up to sign) completely deter-
mined by q, t and the vector a = (a1, . . . , an) we measure the “smallness” of
a solution of (2) be the degree of the pole divisor A of a (as in Section 2).

Let N ≥ 0 be the divisor of zeros of t, let T ≥ 0 be the pole divisor of t,
i.e. (t) = N−T . We have unique decompositionsN = 2N0+N1, T = 2T0+T1

with vP (N1), vP (T1) ∈ {0, 1} for all prime divisors P . Since degN = deg T
we have

2 deg(T0 + T1 −N0) = deg T + deg T1 − 2 degN0

= deg T1 + degN − 2 degN0

= deg T1 + degN1 ≥ 0.

If suppT 6= ∅ let S = suppT , otherwise let S = {P} be any one-point
set from Ω. Put R = R(S) and f = f(S). Call a non-trivial solution
(a1, . . . , an, a0) of (2) resp. its vector a = (a1, . . . , an) minimal if degA
is as small as possible.

Theorem 3. Under the above assumptions there exists a non-trivial so-
lution of (2) with a ∈ Rn. If a is minimal then

degA ≤ (n+ 1)(f + g − 1) + deg(T0 + T1 −N0).

P r o o f. The first statement is clear since q ⊗K represents t and K =
quot(R). Suppose now that a is minimal but degA does not satisfy the
estimate of Theorem 3. Then A =

∑s
σ=1 vσ(A)Pσ with Pσ ∈ S, s = |S|,

and vσ0(A) > 0 for at least one σ0 since degA > 0 by our assumption. Fix σ0

and put B := A−Pσ0 . Then 0 ≤ B < A and degB = degA−f0 ≥ degA−f .
As in the proof of Theorem 1 we shall construct a vector 0 6= a∗ ∈ Rn and an
element a∗0 6= 0 such that q(a∗) = ta∗20 but degA∗ < degA. This contradicts
the minimality of a and proves the theorem.

From (2) we have

(ai) +A ≥ 0 for i = 1, . . . , n,

hence
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(t) + 2(a0) + 2A ≥ 0,

N1 + 2N0 − 2T0 + 2(a0) + 2A ≥ 0,

2(N0 − T0 + (a0) +A) ≥ 0,

and finally,

(3) (a0) +A+N0 − T0 ≥ 0.

We look for vectors b = (b1, . . . , bn) ∈ Kn and elements b0 ∈ K such that

(4)
(bi) +B ≥ 0 for i = 1, . . . , n,

(b0) +B +N0 − T0 − T1 ≥ 0.

The k-vector space V of all (n+ 1)-tuples (b1, . . . , bn, b0) satisfying (4) has
dimension

(5) dimV ≥ (n+ 1)(degB + 1− g) + deg(N0 − T0 − T1).

From (2) and (4) we conclude

(ta2
0) + 2A ≥ 0, (tb20) + T −N + 2B + 2(N0 − T0 − T1) ≥ 0,

i.e. (tb20) + 2B − T1 −N1 ≥ 0, hence

(6) (tb20) + 2B ≥ 0 and (ta0b0) +A+B ≥ 0.

For all i = 0, . . . , n define

a∗i : = (q(b)− tb20)ai − (q(a, b)− 2ta0b0)bi,

a∗ : = (a∗1, . . . , a
∗
n), A∗ := pole divisor of a∗.

It follows that

q(a∗) = ta∗20 ,(7)

(a∗i ) +A+ 2B ≥ 0 for i = 1, . . . , n,

(a∗0) +A+ 2B +N0 − T0 ≥ 0.
(8)

In particular, we have a∗ ∈ Rn.
Since B < A we cannot have q(b) − tb20 = 0 unless b = 0 and b0 = 0.

If 0 6= (b1, . . . , bn, b0) ∈ V this implies that (b, b0) is independent of (a, a0)
over K, hence a∗ 6= 0. We have to choose (b, b0) in such a way that degA∗ <
degA. As in the proof of Theorem 1 we choose for each σ ∈ {1, . . . , s} an
index i(σ) ∈ {1, . . . , n} such that vσ(A) = −vσ(ai(σ)) and put

c
(σ)
j := bj −

bi(σ)

ai(σ)
aj (j = 0, . . . , n).

Then we get

a∗j = (q(c(σ))− tc(σ)2
0 ) aj − (q(a, c(σ))− 2ta0c

(σ)
0 ) c(σ)

j
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with c
(σ)
i(σ) = 0,

vσ(c(σ)
j ) + vσ(B) ≥ 0 (j = 1, . . . , n),

vσ(t0c
(σ)2
0 ) + 2vσ(B) ≥ 0.

By a suitable choice of (b, b0) ∈ V we want to arrange for stronger inequal-
ities

(9)
vσ(c(σ)

j ) + vσ(B)− γσ ≥ 0 for i(σ) 6= j ∈ {1, . . . , n},
vσ(tc(σ)2

0 ) + 2vσ(B)− 2γσ ≥ 0

where the γσ ∈ N0 are chosen later. If (9) holds then a∗ satisfies

(10) vσ(a∗j ) + vσ(A) + 2vσ(B)− 2γσ ≥ 0 (j = 1, . . . , n).

For fixed σ condition (9) puts nfσγσ k-linear equations on the vector (b, b0) ∈
V , that is, n

∑s
σ=1 fσ γσ equations altogether. We take

γσ = vσ(B) +
{

0 for σ 6= σ0,
1 for σ = σ0.

Then n
∑
fσ γσ = n(degB + f0) < dimV , since

dimV − n(degB + f0)

≥ (n+ 1) degB + (n+ 1)(1− g) + deg(N0 − T0 − T1)− n(degB + f0)

= degB − nf0 − (n+ 1)(g − 1)− deg(T0 + T1 −N0)

≥ degA− (n+ 1)(f + g − 1)− deg(T0 + T1 −N0) > 0

by our assumption. Therefore there exists 0 6= (b, b0) ∈ V with (9). By (10)
the pole divisor A∗ of a∗ satisfies vσ(A∗) ≤ vσ(A) for σ 6= σ0 and

vσ0(A∗) ≤
{
vσ0(A)− 2 for vσ0(A) ≥ 2,
0 for vσ0(A) = 1.

In any case we get vσ0(A∗) < vσ0(A), hence degA∗ < degA: Contradic-
tion.

N o t e s. 1. For a prime divisor P ∈ supp(N1+T1) the validity of equation
(1), when read over the completion KP of K, implies that q ⊗ KP , hence
q ⊗ kP must be isotropic. By Springer’s theorem this implies that degP =
[kP : k] is even.

2. For t ∈ k∗, i.e. T = N = 0, Theorem 3 coincides with Theorem 1 for
the constant quadratic form q ⊥ 〈−t〉.

Example 4. Let K = k(x) be the rational function field, and let t =
f(x) ∈ k[x] be a squarefree polynomial. If the anisotropic form q (which
remains anisotropic over K) represents t over K then deg f = d = 2m is
even and the pole divisor T of t is given by T = 2T0 with T0 = m · ∞, f =
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f∞ = 1, g = 0. Theorem 3 gives us a representation q(a1, . . . , an) = ta2
0

with

ai ∈ k[x] = R(∞), deg ai ≤ 0 + deg T0 = m (i = 1, . . . , n).

Then 0 6= q(a) ∈ k[x] with deg q(a) ≤ 2m. Since f is squarefree we get
0 6= a0 ∈ k[x] with deg a0 ≤ 0, i.e. a0 ∈ k∗. This proves the original repre-
sentation theorem (for anisotropic form q).

We are now ready to state and prove the representation theorem for an
arbitrary algebraic function field K/k with genus g.

Theorem 4 (Darstellungssatz). Let q be a quadratic form over k, dim q =
n. Suppose that t ∈ K∗ is represented by the form q⊗K. Let N = 2N0 +N1,
T = 2T0 + T1 and S ⊂ Ω, f = f(S) be as before. Then there exists a vector
u = (u1, . . . , un) ∈ Kn with pole divisor U such that q(u) = t and

degU ≤ (n+ 1)(f + g − 1) + deg(T0 + T1) + 1
2 degN1

or
degU ≤ n(f + g − 1) + deg T.

[In the “reduced” case the first (second) estimate holds if q⊗K is anisotropic
(isotropic).]

P r o o f. Since the estimates for degU grow with n we can assume that t is
not represented by q̃⊗K for any proper k-subform q̃ of q (otherwise replace
q by q̃ with dim q̃ < dim q). We then call q reduced with respect to t. In
particular, q is non-defective, i.e. q = q′ ⊥ q′′ with q′ = rad q = 〈q1, . . . , qr〉
anisotropic over k and q′′ regular over k. (See e.g. [4, Ch. 1]; for char k 6= 2
one has q′ = 0, q regular.)

F i r s t c a s e: q ⊗ K anisotropic. Here we can start with a non-trivial
solution of q(a1, . . . , an) − ta2

0 = 0 according to Theorem 3 and put ui =
ai/a0 (i = 1, . . . , n), u = a/a0 ∈ Kn.

A pole P of ui either comes from a pole of ai or from a zero of a0. In
the first case we have P ∈ S. Let U = U1 + U2 with U1 ≥ 0, U2 ≥ 0,
suppU1 ⊂ S, S ∩ suppU2 = ∅. The equation q(a) = ta2

0 shows:

1) For P 6∈ S we have vP (ai) ≥ 0, vP (q(a)) ≥ 0, vP (t) ≥ 0 and
vP (q(a)) = vP (t) + 2vP (a0). Hence

vP

(
ai
a0

)
+ 1

2vP (q(a)) ≥ −vP (a0) + 1
2vP (q(a)) ≥ 0.

This implies vP (U2) ≤ 1
2vP (q(a)) for every P 6∈ S, i.e.

degU2 ≤ 1
2

∑

P 6∈S
fP vP (q(a)).
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2) For P ∈ S we have vP (ai) + vP (A) ≥ 0, vP (t) + vP (T ) ≥ 0 and again
2vP (a0) = vP (q(a))− vP (t). Hence

vP

(
ai
a0

)
+ vP (A) + 1

2vP (q(a))− 1
2vP (t) ≥ 0,

where vP (A) + 1
2vP (q(a)) ≥ 0. This implies vP (U1) ≤ vP (A) + 1

2vP (q(a)) +
1
2vP (T ), hence

degU1 ≤ degA+ 1
2 deg T + 1

2

∑

P∈S
fP vP (q(a)).

Since
∑

allP fP vP (q(a)) = deg(q(a)) = 0 the two estimates imply

degU = degU1 + degU2 ≤ degA+ 1
2 deg T = degA+ degN0 + 1

2 degN1.

With the estimate of Theorem 3 for degA this gives

degU ≤ (n+ 1)(f + g − 1) + deg(T0 + T1) + 1
2 degN1.

S e c o n d c a s e: q ⊗K isotropic. Here we first show that q′ ⊗K must
be anisotropic (if q is reduced). Suppose that q′ ⊗K is isotropic, say qr =∑r−1
i=1 qic

2
i with ci ∈ K. Let t = q(u1, . . . , un) = q′(u1, . . . , ur) + q′′(ur+1, . . .

. . . , un) be any representation with ui ∈ K. Then

q′(u1, . . . , ur) =
r∑

i=1

qiu
2
i =

r−1∑

i=1

qi(u2
i + c2iu

2
r) =

r−1∑

i=1

qi(ui + ciur)2.

Hence t is represented by q̃ ⊗K where q̃ = 〈q1, . . . , qr−1〉 ⊥ q′′ is a proper
subform of q (over k): Contradiction.

Let now 0 6= a ∈ R(S)n be a solution of q(a) = 0 which satisfies the
condition of Theorem 1, i.e. a has pole divisor A with degA ≤ n(f + g− 1).
[Note that q is constant, i.e. Q = 0.] Assume for a moment that q(a, b) = 0
for all vectors b ∈ kn. By linearity this would imply q(a, b) = 0 for all
b ∈ Kn, i.e. 0 6= a ∈ rad(q ⊗ K) = q′ ⊗ K. In other words, q′(a) = 0,
which is a contradiction. Hence we can choose a vector 0 6= b ∈ kn such that
a0 := q(a, b) ∈ K∗. Clearly (a0) +A ≥ 0, in particular a0 ∈ R = R(S).

We can now find a good representation of t. Put u := b+ λa with some
λ ∈ K. Then

q(u) = q(b) + λq(a, b) = q(b) + λa0,

i.e.

q(u) = t⇔ λ =
t− q(b)
a0

⇔ u = b+ (t− q(b)) · a
a0
.

Let C be the pole divisor of c := a/a0. Since b ∈ kn and q(b) ∈ k this shows
that the pole divisor U of u satisfies U ≤ T + C. It remains to estimate
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degC. For every P ∈ Ω we have

vP (a0) + vP (A) ≥ 0 and vP

(
ai
a0

)
+ vP (a0) + vP (A) ≥ 0 (i = 1, . . . , n),

hence vP (ci) + (vP (a0) + vP (A)) ≥ 0 for ci = ai/a0, i.e. vP (C) ≤ vP (a0) +
vP (A). This gives

degC =
∑

P

fP vP (C) ≤
∑

P

fP vP (a0) +
∑

P

fP vP (A) = degA,

since
∑
fP vP (a0) = deg(a0) = 0. Therefore

degU ≤ degC + deg T ≤ degA+ deg T ≤ n(f + g − 1) + deg T.

N o t e. If q(u) = t then the poles P ∈ suppT must turn up with suitable
multiplicity among the poles of ui for at least one i ∈ {1, . . . , n}. This shows
that U = T0 + T1 + U ′ with a non-negative divisor U ′ ≥ 0 of degree

degU ′ ≤ (n+ 1)(f + g − 1) + 1
2 degN1 or degU ′ ≤ n(f + g − 1) + deg T0.

It does not seem possible to prescribe the prime divisors P ∈ suppU ′ since
this would amount to knowing the zeros of a0.
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