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1. Introduction and main theorem. Gaussian primes are the ir-
reducible elements of the ring Z[i]; they emerge from factorization of the
rational primes. Any prime p ≡ 1 (mod 4) is represented as the sum of two
squares

(1.1) p = l2 +m2.

Therefore such a p factors into two complex conjugate Gaussian primes, say

(1.2) p = (l + im)(l − im) = ππ.

Moreover, 2 = (1 + i)(1 − i), but the primes which are ≡ −1 (mod 4)
do not factor in Z[i]. The Gaussian primes π = l + im can be viewed as
two-dimensional lattice points, and this allows us to explore the distribu-
tion problems from various directions. For instance, unlike for the rational
primes, one may seek an infinite string of Gaussian primes with absolutely
bounded distances between consecutive points (can one walk to infinity step-
ping on Gaussian primes?).

Applying standard methods of prime number theory to L-functions with
Grossencharacters E. Hecke [H] showed that Gaussian primes are equidis-
tributed over arithmetic progressions within regular planar domains. Actu-
ally, Hecke applied his method to prime ideals in any number field. How-
ever, the Grossencharacters are not capable of controling the coordinates of
π = l + im as much as we would like, say to fix l = 1 producing primes of
type p = m2 + 1, or to put l in a thin set of arithmetic nature.

In this paper we apply ideas of sieve methods to prove that there are
infinitely many primes of type p = l2 +m2 where l is a prime number. Ac-
tually, our main result is more general, and we also establish an asymptotic
formula.
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Theorem 1. Let λl be complex numbers with |λl| ≤ 1. Then

(1.3)
∑

l2+m2≤x

λlΛ(l2 +m2) =
∑

l2+m2≤x

λlψ(l) +O(x(log x)−A)

where Λ is the von Mangoldt function,

(1.4) ψ(l) =
∏

p ∤ l

(
1 − χ(p)

p− 1

)
,

χ is the non-trivial character to modulus 4, A is any positive number and

the implied constant in the error term depends only on A.

In particular, by (1.3) one infers

(1.5)
∑

l2+m2≤x

Λ(l)Λ(l2 +m2)

= 2
∏

p

(
1 − χ(p)

(p− 1)(p − χ(p))

)
x+O(x(log x)−A).

Theorem 1 admits various modifications. Employing the Hecke Grossen-
characters in our proof one can derive the expected asymptotic formula when
the points z = l+ im run over any regular planar domain and are restricted
to any fixed primitive residue class. To put these results in perspective we
shall write explicitly the representations of (1.1). These are determined by
p up to order and sign by virtue of the unique factorization in Z[i]. Since
p ≡ 1 (mod 4), we can require

l ≡ (−1)(p−1)/4 (mod 4).

Such an l is unique, namely we have l = 1
2ap, where

ap = −
∑

x (mod p)

(
x3 − x

p

)
.

This is (apart from the sign) the Jacobsthal sum [J]. For such choice of l we
have m even (m is determined up to sign) and the factorization (1.2) has
π = l+im ≡ 1 (mod 2(1+i)), thus π and π are primary and ap = π+π = 2l.
These primary primes are building blocks for the Hasse–Weil L-function of
the elliptic curve (see [IR], p. 307)

E : y2 = x3 − x.

For any p ≡ 1 (mod 4) the number of points on E over the field Fp is
equal to p− ap, where ap is also the eigenvalue of the Hecke operator Tp on
the modular form associated with E (a certain theta function). Therefore
Theorem 1, with its restriction by l+m ≡ 1 (mod 4) ensures that any ample
set of integers ≡ 2 (mod 4) must contain the Hecke eigenvalues ap, with the
correct asymptotic frequency.
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Another interpretation of the results is offered through the solutions to
the quadratic congruence

(1.6) ν2 + 1 ≡ 0 (mod p).

For p ≡ 1 (mod 4) the solutions are given by ν ≡ ±m/l (mod p); therefore
(1.5) implies that infinitely often ν (mod p) can be seen as a fraction with
prime denominator.

In our approach (based on sieve ideas) the special rational points ν/d
with

(1.7) ν2 + 1 ≡ 0 (mod d)

will play a prominent role. The key observation is that the points ν/d
are very well-spaced modulo 1, considerably better than the set of all the
rationals c/d with (c, d) = 1. Although spacing property is not as deep as
the equidistribution (see [DFI]), nevertheless it yields a powerful large sieve
type inequality (see Lemma 2).

Besides the main Theorem 1 we shall establish several easier results on
norms of ideals in abelian fields in place of primes (see Section 5).

We conclude this introduction by mentioning only three somewhat re-
lated results from a vast literature on the subject. In 1968, G. J. Rieger
[R] established that the number of integers n ≤ x which can be represented
as the sum of two squares n = l2 + m2, with l a prime (each n counted
without the multiplicity of such representations) has order of magnitude
x/ log x. More recently M. Coleman [C] showed there are infinitely many
primes p = l2 +m2 with l a small positive integer, namely l < p0.1631. This
is an improvement of many earlier results of that kind which are obtained by
employing the theory of Hecke L-functions. We also recommend the work
of W. Duke [D], which gives a powerful treatment of a variety of related
problems by means of Grossencharacters.

Using sieve methods J. Pomyka/la [P] has considered the equation Na =
l2+m2 where a runs over the integral ideals of a fixed cubic, normal field, and
has shown there are infinitely many of these with l a small prime, namely
l < m7/20. We shall improve 7/20 to 9/40, which result follows from a more
general Theorem 7.

Acknowledgements. We thank A. Schinzel for pointing out the paper
[R], and J. Friedlander for helpful suggestions. Our work on this problem
began during the visit of E. Fouvry to Rutgers University in February–
March 1995; he is thankful for receiving a warm welcome.

2. A large sieve inequality for roots of quadratic congruences.

The classical large sieve inequality gives an ℓ2-estimate for a general trigono-
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metric polynomial

S(x) =
∑

n≤N

αne(xn)

at well-spaced points x (mod 1). Precisely, if ‖xr − xs‖ ≥ δ for r 6= s, then
∑

r

|S(xr)|2 ≤ c(δ−1 +N)‖α‖2

where

‖α‖2 =
∑

|αn|2,
and c is an absolute constant. The first result of this type was established
by Davenport and Halberstam [DH], and the best possible constant c = 1 is
due to Selberg [S] and Montgomery–Vaughan [MV]. We shall employ their
result for the arithmetic points ν/d (mod 1) with ν varying over the roots
of the congruence (1.7). These points can be expressed by the primitive
representations of the modulus as the sum of two squares,

d = r2 + s2 with (r, s) = 1 and − s < r ≤ s.

Each such representation corresponds to a unique root of (1.7) given by
νs ≡ r (mod d). Hence

ν

d
≡ r

sd
− r

s
(mod 1) where rr ≡ 1 (mod s).

Here the fraction r/s has much smaller denominator than ν/d, and the other
term is negligible. Precisely, we have

|r|
sd

<
1

2s2
.

Hence we infer that the distinct points ν/d (mod 1) for which the corre-
sponding r have a fixed sign and the moduli restricted to 8D < d ≤ 9D are
well-spaced. Indeed, 2D1/2 < s < 3D1/2 so

∥∥∥∥
ν

d
− ν1
s1

∥∥∥∥ >
1

ss1
− max

(
1

2s2
,

1

2s21

)
>

1

4ss1
>

1

36D
.

Therefore by the large sieve inequality we conclude the following:

Lemma 2. For any complex numbers αn we have

∑

8D<d≤9D

∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

n≤N

αne

(
νn

d

)∣∣∣∣
2

≤ 72(D +N)‖α‖2.

Applying Cauchy’s inequality and counting lattice points inside a quarter
of a disk we deduce from Lemma 2 that

(2.1)
∑

d≤D

∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

n≤N

αne

(
νn

d

)∣∣∣∣ ≤ 150D1/2(D +N)1/2‖α‖.
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We shall use (2.1) for

αn =
∑

kl=n

αk,l

with n > 0 where αk,l are any complex numbers. We define α̃n = αn

√
τ(n)

where τ is the usual divisor function. Since

‖α‖2 ≤ ‖α̃‖2 =
∑

k

∑

l

|αk,l|2τ(kl)

we obtain
∑

d≤D

∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

0<k≤K
0<l≤L

αk,le

(
νkl

d

)∣∣∣∣ ≤ 150D1/2(D +KL)1/2‖α̃‖.

Next we introduce the condition (d, l) = 1. This will cost us an additional
factor log 3D in the upper bound. Indeed, relaxing the condition (d, l) = 1
by Möbius inversion, we find that the restricted sum is bounded by

∑

b≤D

̺(b)
∑

d≤D/b

∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

0<k≤K
0<l≤L/b

αk,ble

(
νkl

d

)∣∣∣∣

≤ 150
(∑

b≤D

̺(b)b−1
)
D1/2(D +KL)1/2‖α̃‖

where ̺(b) is the number of solutions to ν2 + 1 ≡ 0 (mod b). We have

̺(b) ≤
∑

c|b
χ(c),

and ∑

b≤D

̺(b)b−1 ≤
∑

d≤D

d−1
∑

c≤D/d

χ(c)c−1 <
∑

d≤D

d−1 < log 3D;

therefore

(2.2)
∑

d≤D

∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

0<k≤K

∑

0<l≤L
(l,d)=1

αk,le

(
νkl

d

)∣∣∣∣

≤ 150(log 3D)D1/2(D +KL)1/2‖α̃‖.
Finally, we shall replace e(νkl/d) in (2.2) by the arithmetic function

(2.3) ̺k,l(d) =
∑

ν2+l2≡0 (mod d)

e(νk/d).

This function serves as a “harmonic” à la Weyl for the equidistribution of
roots of the congruence ν2 + l2 ≡ 0 (mod d). From (2.2) we derive
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Lemma 3. For any complex numbers αk,l we have
∑

d≤D

∣∣∣
∑

0<k≤K

∑

0<l≤L

αk,l̺k,l(d)
∣∣∣ ≤ 150(log 3D)3D1/2(D +KL)1/2‖α̃‖.

P r o o f. First we relate ̺k,l(d) to ̺kl,1(d). These are equal if (d, l) = 1.
In general we write (d, l2) = ab2 where a is squarefree so d = ab2d1, l = abl1
and (d1, al1) = 1. The congruence ν2+l2 ≡ 0 (mod d) reduces to ν2

1 +l21 ≡ 0
(mod d1) after the substitution ν = abν1 and division by a2b2. Hence

̺k,l(d) =
∑

ν1 (mod bd1)

ν2

1
+l2

1
≡0 (mod d1)

e(ν1k/(bd1)).

This sum vanishes unless k = bk1, in which case we obtain

(2.4) ̺k,l(d) = b
∑

ν1 (mod d1)

ν2

1
+l2

1
≡0 (mod d1)

e(ν1k1/d1) = b̺k1l1,1(d1)

by changing ν1 into ν1l1 modulo d1 and dividing the new congruence by l21.

By (2.4) it follows that the sum in Lemma 3 is majorized by

∑

ab2d≤D

b
∑

ν2+1≡0 (mod d)

∣∣∣∣
∑

0<k≤K/b

∑

0<l≤L/(ab)
(l,d)=1

αbk,able

(
νkl

d

)∣∣∣∣.

Hence we obtain the same bound as (2.2) but with the extra factor
∑

ab2≤D

b(ab2)−1 < (log 3D)2.

This completes the proof of Lemma 3.

Before concluding this section we offer a slight generalization of Lemma 3
with

(2.3′) ̺k,l(d; q, a) =
∑

ν2+l2≡0 (mod d)

ν2+l2≡a (mod q)

e(νk/(dq))

in place of ̺k,l(d) where (a, q) = 1. Here q must be relatively small since
our estimate will be weakened by a factor q3 (for the actual applications we
have in mind even a fixed q would be useful). Precisely, one can derive from
(2.1) in the same fashion as Lemma 3 the following:

Lemma 3′. For any complex numbers αk,l we have
∑

d≤D

∣∣∣
∑

0<k≤K
0<l≤L

αk,l̺k,l(d; q, a)
∣∣∣ ≤ 150(q log 3D)3D1/2(D +KL)1/2‖α̃‖.
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P r o o f (sketch). Note that the sum (2.3′) is void unless (d, q) = 1, in
which case it factors into

̺k,l(d; q, a) =
∑

ν2+l2≡0 (mod d)

e(νkq/d)
∑

ω2+l2≡a (mod q)

e(ωkd/q).

The second sum depends on the residue classes of k, l modulo q but not on
k, l in any other way. Let k0, l0 denote these classes. The first sum is just
̺kq,l(d). Assuming (d, l) = 1 (as we can by applying (2.4)) we have

̺kq,l(d) = ̺klq,1(d) =
∑

ν2+1≡0 (mod d)

e

(
νklq

d

)
.

Now we remove the condition (d, l) = 1 by Möbius inversion (the same
device was used for (2.2)). After this we write kl = nq+ n0 where n0 is the
fixed residue class of kl modulo q (i.e. n0 ≡ k0l0 (mod q)) to get

∑

ν2+1≡0 (mod d)

e

(
νn0q

d

)
e

(
νn

d

)
.

Here the second exponential is free of q (recall that q stands for the multi-
plicative inverse of q modulo d). Now (2.1) can be applied for

αn =
∑

kl=nq+n0

αk,l

giving the same results as before. The above operations are performed on
each partial sum restricted by the residue classes k0, l0 and ω such that
ω2 + l20 ≡ a (mod q). Since the number of such partial sums does not
exceed q3, we multiply by q3 to get the bound for the whole original sum.

R e m a r k. One could establish stronger estimates with respect to q but
the resulting refinement is not significant to produce new applications.

3. The remainder term. Given complex numbers λl with l ≥ 1 we
consider the sequence

(3.1) an =
∑

l2+m2=n

λl

with the intention of applying sieve methods (a combinatorial device of
exclusion-inclusion). This will lead us to the problem of estimating sums of
the type

(3.2) Ad(x) =
∑

n≤x
n≡0 (mod d)

an
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for various d ≥ 1. We expect that the main term for Ad(x) is

(3.3) Md(x) =
1

d

∑

l2+m2≤x

λl̺l(d)

where ̺l(d) = ̺0,l(d) denotes the number of roots of ν2 + l2 ≡ 0 (mod d)
(see (2.3)). By (2.4) we have ̺0,l(d) = b̺(d/(ab2)) where ab2 = (d, l2) with
a squarefree. Let r = r(d) be the largest integer such that r2 | d. We have
b = (r(d), l) and

(3.4) ̺l(d) = (r(d), l)̺(d/(d, l2)).

We define

(3.5) Rd(x) = Ad(x) −Md(x),

which we expect to be a small error term. Estimating trivially one gets

(3.6) |Rd(x)| ≤ 4x1/2d−1
∑

l

|λl|̺l(d)

if d ≤ x1/2. Only a slightly better bound would suffice for applications;
however, we need the relevant improvements in a large range of d. We call

(3.7) R(x,D) =
∑

d≤D

|Rd(x)|

the remainder term, and we prove the following:

Lemma 4. Let λl be any complex numbers for 1 ≤ l ≤ √
x. Then for

1 ≤ D ≤ x,

(3.8) R(x,D) ≪ ‖λ‖D1/4x1/2+ε

with any ε > 0, the implied constant depending only on ε. Here

‖λ‖ =
(∑

l

|λl|2
)1/2

.

R e m a r k s. Estimating trivially one gets R(x,D) ≪ ‖λ‖1x
1/2+ε with

‖λ‖1 =
∑

l

|λl|.

However, for applications we need R(x,D) ≪ ‖λ‖1x
1/2−ε; therefore our

result (3.8) beats this for D as large as D = ‖λ‖4
1‖λ‖−4x−8ε. If the sequence

λl is not sparse in the sense that

(3.9) ‖λ‖1 ≫ ‖λ‖x1/4−ε

we have a satisfactory bound for the remainder term R(x,D) with D =
x1−12ε.
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Lemma 4 will be derived from a stronger result for sums of type

(3.10) Ad(f) =
∑

n≡0 (mod d)

anf(n)

where f is a smooth function on R+ such that

f(u) = 0 if u ≥ x,(3.11)

f (j)(u) ≪ ∆j if 1 ≤ u < x,(3.12)

with some ∆ subject to x−1 ≤ ∆ ≤ 1, the implied constant depending on
j only. Splitting the summation into residue classes (mod d) and applying
Poisson’s formula we derive

Ad(f) =
∑

l

λl

∑

ν2+l2≡0 (mod d)

∑

m≡ν (mod d)

f(l2 +m2)

=
1

d

∑

k

∑

l

λl̺k,l(d)Fl(k/d)

where

Fl(z) =

∞\
−∞

f(l2 + t2)e(−zt) dt.

The zero frequency (k = 0) yields

(3.13) Md(f) =
1

d

∑

l

λl̺l(d)Fl(0),

which we regard as the main term for Ad(f). Here

(3.14) Fl(0) =

∞\
−∞

f(l2 + t2) dt.

Subtracting we define the error term as

(3.15) Rd(f) = Ad(f) −Md(f).

Lemma 5. Let λl be any complex numbers for 1 ≤ l ≤ √
x and f be

a smooth function supported on [0, x] whose derivatives satisfy (3.12) with

x−1 ≤ ∆ ≤ 1. Then for 1 ≤ D ≤ x,

(3.16)
∑

d≤D

|Rd(f)| ≪ ‖λ‖∆D1/2x5/4+ε

with any ε > 0, the implied constant depending only on ε.

R e m a r k s. The sharpest result is obtained when we have the best pos-
sible smoothing. This allows ∆ = x−1. In that case Lemma 5 becomes

(3.17)
∑

d≤D

|Rd(f)| ≪ ‖λ‖D1/2x1/4+ε
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while the trivial argument yields O(‖λ‖1x
1/2+ε). Applications require

O(‖λ‖1x
1/2−ε); therefore our result (3.17) satisfies this bound for D =

‖λ‖2
1‖λ‖

−2x1/2−4ε. In particular, if λl is the characteristic sequence of a
set L ⊂ [1,

√
x ] we have a satisfactory estimate for the smoothed remainder

term of level

(3.18) D = |L|x1/2−4ε

where |L| denotes the number of elements of L.

P r o o f o f L e m m a 5. The error terms have the Fourier expansion

Rd(f) =
2

d

∞∑

k=1

∑

l

λl̺k,l(d)Fl(k/d).

We can truncate the series over k at some point because it converges rapidly.
To determine this point we give an estimate for the Fourier transform Fl(z).
First by j-fold partial integration we write

Fl(z) = (2πiz)−j

√
x\

−√
x

e(−zt)(∂j/∂tj)f(l2 + t2) dt,

then we estimate the partial derivative

(∂j/∂tj)f(l2 + t2) =
∑

0≤2i≤j

cijt
j−2if (j−i)(l2 + t2) ≪ (∆

√
x)j

and we get

Fl(z) ≪
√
x(∆

√
x/z)j

for all z > 0 with any j ≥ 0. Since 1 ≤ d ≤ D the above estimate yields

Fl(k/d) ≪ k−2D−1 if k ≥ K = ∆Dx1/2+ε

by choosing j = j(ε) sufficiently large. Hence the tail of the Fourier series
for Rd(f) over k ≥ K is negligible; it contributes O(̺(d)d−1‖λ‖1). The
remaining double sum over k, l is an imitation of that in Lemma 3 with
the coefficients αk,l = λlFl(k/d). However, these must not depend on d. To
separate d from k, l in Fl(k/d) we change the variable of integration,

Fl(k/d) = 2
√
xk−1

∞\
0

f(l2 + xv2k−2) cos(2πv
√
x/d) dv.

Note that k > v and l <
√
x or else the integrand vanishes. Hence we derive

d|Rd(f)| ≤ 4
√
x

K\
0

∣∣∣
∑

v<k<K
0<l<

√
x

λlk
−1f(l2 + xv2k−2)̺k,l(d)

∣∣∣ dv +O(̺(d)‖λ‖1).
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Now Lemma 3 can be applied with αk,l = λlk
−1f(l2 + xv2k−2). We have

‖α̃‖2 ≪ ‖λ̃‖2
∑

k>v

τ(k)k−2 ≪ ‖λ̃‖2 log(v + 2)

v + 1

where

‖λ̃‖2 =
∑

l

|λl|2τ(l),

and
K\
0

(
log(v + 2)

v + 1

)1/2

dv ≪ (K log(K + 1))1/2.

Therefore Lemma 3 yields
∑

d≤D

d|Rd(f)| ≪ ‖λ̃‖(D +K
√
x)1/2(DKx)1/2(log x)4.

This implies the inequality of Lemma 5.

We derive Lemma 4 from Lemma 5 by comparing Rd(x) with Rd(f) for
f such that

f(u) = 1 if 0 < u ≤ x− y,

f (j)(u) ≪ y−j if x− y < u < x,

f(u) = 0 if u ≥ x,

and then we choose the y which minimizes the resulting bound. All terms
of Ad(x) agree with those of Ad(f) except for x− y < n ≤ x. In this short
segment we estimate trivially as follows:

∑

d

|Ad(x) −Ad(f)| ≤
∑

x−y<n≤x

|an|τ(n) ≪ xε
∑

x−y<l2+m2≤x

|λl|

≪ yxε
∑

l≤√
x

|λl|(x+ y − l2)−1/2

≪ ‖λ‖yxε
( ∑

l≤√
x

(x+ y − l2)−1
)1/2

≪ ‖λ‖(y1/2 + yx−1/4)xε.

With the main terms Md(x), Md(f) we argue similarly and obtain the same
estimate. Combining both with the estimate of Lemma 5 (f satisfies (3.12)
with ∆ = y−1) we deduce

∑

d≤D

|Rd(x)| ≪ ‖λ‖(y−1D1/2x5/4 + y1/2 + yx−1/4)xε.

Finally, choosing y = D1/4x3/4 we complete the proof of Lemma 4.
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R e m a r k. If λ is supported on a thin set the above argument is wasteful
but it can be improved.

As we did at the end of the previous section, we can generalize these
results to cover any fixed residue class a (mod q) with (a, q) = 1. First we
consider smoothed sums

(3.10′) Ad(f ; q, a) =
∑

n≡0 (mod d)
n≡a (mod q)

anf(n)

for which the main term is

(3.13′) Md(f ; q, a) =
1

dq

∑

l

λl̺l(d; q, a)Fl(0).

Here ̺l(d; q, a) = ̺0,l(d; q, a) is the number of solutions to the system of
congruences

ν2 + l2 ≡ 0 (mod d), ν2 + l2 ≡ a (mod q)

(see (2.3′)). Since (d, q) = 1, or else both Ad(f ; q, a) and Md(f ; q, a) would
vanish, we have

(3.19) ̺l(d; q, a) = ̺l(d)̺l(q, a)

where the second factor is the number of solutions to the second congruence
above (it does not depend on d). Recall that the first factor can be expressed
by the simpler function ̺(d) (see (3.4)). The error term

(3.15′) Rd(f ; q, a) = Ad(f ; q, a) −Md(f ; q, a)

has the Fourier expansion

Rd(f ; q, a) =
2

dq

∞∑

k=1

∑

l

λl̺k,l(d; q, a)Fl(k/(dq))

by Poisson summation as in the proof of Lemma 5. The remaining arguments
are identical as before except that we use Lemma 3′ rather than Lemma 3
at the very end. We obtain

Lemma 5′. Let λl and f be as in Lemma 5. Let q ≥ 1 and (a, q) = 1.
Then for 1 ≤ D ≤ x,

(3.16′)
∑

d≤D

|Rd(f ; q, a)| ≪ ‖λ‖∆D1/2x5/4+ε

with any ε > 0, the implied constant depending on ε and q only.

We shall demonstrate the strength of our estimates for the remainder
terms with selected applications in Sections 5 and 6 before employing these
for the proof of the main Theorem 1.
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4. Digressions on convolution sequences. In number theory we
often ask if one set of integers meets another, i.e. we want to know if the
equation m = n has solutions in m, n from the prescribed sets. When
counting these solutions one may as well evaluate the sum

S =
∑

n

anbnf(n)

where an, bn (the multiplicities) are arithmetic functions supported on the
prescribed sets in question, and f is a suitably chosen smooth test function.
We can write

S =
∑∑

m=n

ambng(m)h(n)

with gh = f and try to relax the equation m = n by means of some kind of
harmonics. For instance, we can detect this equation with the integral

1\
0

e(α(m− n)) dα =

{
1 if m = n,
0 otherwise,

getting

S =

1\
0

(∑

m

amg(m)e(αm)
)(∑

n

bnh(n)e(−αn)
)
dα.

In this way the desired twisting of an with bn is diverted to twisting either
one with additive characters, and the latter problem can be considerably
more approachable, especially so if both sequences a = (am), b = (bn)
have intrinsic additive properties. This idea lies at the foundation of the
circle method; it led (through sophisticated refinements) to solutions of very
attractive problems in additive number theory.

However, for this paper we have in mind sequences b = (bn) which conceal
some multiplicative properties. Analytic number theory supplies a variety
of adequate harmonics, either classical (the Dirichlet characters) or modern
ones (the Fourier coefficients of automorphic forms). One can also do quite
well with elementary considerations if the sequence b = (bn) is of convolution
type, say for example

(4.1) bn =
∑

d|n
γd.

Unfolding the convolution and interchanging the order of summation we get

S =
∑

d

γdAd(f)

where
Ad(f) =

∑

n≡0 (mod d)

anf(n).
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We assume we have some knowledge of Ad(f), namely that it approximates
very well a simpler sumMd(f). Thus we expect that the error term Rd(f) =
Ad(f) −Md(f) is small. Now, replacing Ad(f) by the expected main term
Md(f) we get

S =
∑

d

γdMd(f) +R

where R is the remainder

R =
∑

d

γdRd(f).

This scheme is interesting if we can control the support of γ = (γd). Suppose
γd = 0 if d > D and |γd| ≤ 1 for 1 ≤ d ≤ D; then |R| is bounded by

R(f,D) =
∑

d≤D

|Rd(f)|,

which we call the remainder term of level D. The latter can be estimated
successfully provided D is not too large. On the other hand, the main term

T =
∑

d

γdMd(f)

can be arranged as a sum of multiplicative functions so its evaluation can be
performed routinely by means of associated zeta-functions (see, for example,
the proof of Theorem 6).

5. Representations by the norm of ideals. In practice the exact
convolution shape (4.1) rarely occurs so it is necessary to employ a bit of
imagination to furnish (4.1) from a given sequence. Consider the function

(5.1) b(n) =
∑

a⊂K
Na=n

1

which is the number of integral ideals a in a field K of norm Na = n. The
generating Dirichlet series of these numbers is the Dedekind zeta-function

ζK(s) =
∞∑

n=1

b(n)n−s =
∑

a

(Na)−s.

Suppose K/Q is abelian of degree g ≥ 2 and discriminant ±q. Then ζK(s)
factors into Dirichlet L-functions

(5.2) ζK(s) =
∏

1≤j≤g

L(s, χj)

where χj are distinct primitive characters of conductors qj such that q1 . . . qg
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= q and exactly one is trivial (ζK(s) has a simple pole at s = 1). Hence

(5.3) b(n) =
∑

n1...ng=n

χ1(n1) . . . χg(ng).

We shall establish an asymptotic formula for the sum

(5.4) S =
∑

(n,q)=1

anb(n)f(n)

where the an are given by (3.1) and f(u) is a smooth function supported
on x ≤ u ≤ 2x with derivatives f (j)(u) ≪ x−j . For convenience we break S
into sums over reduced residue classes

(5.5) S(a) =
∑

n≡a (mod q)

anb(n)f(n).

Note that the summation is void unless a ≡ Na (mod q) for some a ⊂ K.
Such residue classes form a group, say H, which has index g in (Z/qZ)∗.

We split the formula (5.3) for b(n) by applying a smooth partition of
unity to each of the variables n1, . . . , ng. Let ϕ, ψ be smooth functions on
R+ such that

0 ≤ ϕ,ψ ≤ 1, ϕ+ ψ = 1,

ϕ(u) = 0 if u ≥ 2z and ψ(u) = 0 if u ≤ z,

for some z. By successive application of ϕ+ ψ = 1 we arrive at

(5.6) b(n) =
∑

1≤j≤g

bj(n) + b′(n)

where

bj(n) =
∑

n1...ng=n

χ1(n1) . . . χg(ng)ϕ(n1) . . . ϕ(nj−1)ψ(nj)

and

b′(n) =
∑

n1...ng=n

χ1(n1) . . . χg(ng)ϕ(n1) . . . ϕ(ng).

Note that b′(n) = 0 if n ≥ (2z)g so we choose

(5.7) (2z)g = x

to kill the term b′(n) in (5.6). Considering (5.6) we split

(5.8) S(a) =
∑

1≤j≤g

Sj(a)

where

(5.9) Sj(a) =
∑

n≡a (mod q)

anbj(n)f(n).
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Next we write bj(n) in a convolution form. To accomplish this we single out
the variable nj , for which we replace χj(nj) by

χj(nj) = χj(a)
∏

i 6=j

χj(ni).

This yields

bj(n) =
∑

d|n
γj(d)ψ(n/d)

with

(5.10) γj(d) = χj(a)
∑

n1...n̂j ...ng=d

(∏

i 6=j

χiχj(ni)
)(∏

i<j

ϕ(ni)
)

(the hat over a variable indicates the variable is deleted). Observe that
γj(d) ≪ dε. Hence by changing the order of summation

Sj(a) =
∑

(d,q)=1
d<D

γj(d)
∑

n≡0 (mod d)
n≡a (mod q)

anψ(n/d)f(n)

where

(5.11) D = xz−1.

Here the condition d < D is redundant since ψ(n/d)f(n) = 0 if d ≥ D;
nevertheless we shall display this condition when estimating the remainder
term. According to (3.13′) the main term for the inner sum in Sj(a) is

Md(f ; q, a) =
1

dq

∑

l

λl̺l(d; q, a)

∞\
−∞

ψ

(
l2 + t2

d

)
f(l2 + t2) dt.

We estimate the resulting error terms by an appeal to (3.16′) (with∆ = x−1)
and obtain

Sj(a) =
∑

(d,q)=1

γj(d)Md(f ; q, a) +O(‖λ‖D1/2x1/4+ε).

One should note carefully that we have applied Lemma 5′ for the test func-
tion ψ(n/d)f(n), which strictly speaking is not admissible because it de-
pends on d (though mildly). This problem can be easily resolved by any
standard method of separation of variables (choose ψ to be of a convolution
type and change variables).

It remains to compute the leading term. In particular, we wish to relax
its dependence on the partition of unity. First we simplify the sum over
moduli. Factoring ̺l(d; q, a) as in (3.19) we arrange

Sj(a) = q−1
∑

l

λl̺l(q, a)

∞\
−∞

Sj(l, t)f(l2 + t2) dt +O(‖λ‖D1/2x1/4+ε)
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where

Sj(l, t) =
∑

(d,q)=1

d−1γj(d)̺l(d)ψ

(
l2 + t2

d

)
.

Recall that ̺l(d) is a multiplicative function; it is equal to ̺(d) if (d, l) = 1,
and in general is given by (3.4). But γj(d) is not multiplicative because of
the truncation factor

∏
i<j ϕ(ni) in (5.10). This obstruction can be removed

at a small cost. We write
∏

i<j

ϕ(ni) = 1 −
∑

1≤i<j

( ∏

1≤k<i

ϕ(nk)
)
ψ(ni)

and accordingly

γj(d) = γjj(d) −
∑

1≤i<j

γij(d),

Sj(l, t) = Sjj(l, t) −
∑

1≤i<j

Sij(l, t).

For each 1 ≤ i < j the sum Sij is quite small. We shall get a good bound
by exploiting cancellation in the sum over ni

(5.12)
∑

(ni,q)=1

n−1
i χiχj(ni)̺l(dini)ψ(ni)ψ

(
l2 + t2

dini

)
≪ z−1/2xε

where di = n1 . . . n̂i . . . n̂j . . . ng. The zeta-function for this sum is
L(s, χiχj)L(s, χiχjχ) up to an Euler product which converges absolutely in
Re s > 1/2. Assuming 2 ∤ q both characters χiχj and χiχjχ are non-trivial
(recall that χ is the non-trivial character modulo 4) so the zeta-function is
holomorphic in Re s > 1/2, whence (5.12) follows. By (5.12) we get

Sij(l, t) ≪ z−1/2xε if 1 ≤ i < j,

so

Sj(l, t) = Sjj(l, t) +O(z−1/2xε).

Next we compute

γjj(d) = χj(a)
∑

n1...n̂j ...ng=d

(∏

i 6=j

χiχj(ni)
)

= χj(a)χj(d)
∑

n1...n̂j ...ng=d

χ1(n1) . . . χ̂j(nj) . . . χg(ng),

∞∑

j=1

γjj(d)χj(d)d
−s = χj(a)

∏

i 6=j

L(s, χi) = χj(a)ζK(s)/L(s, χj);
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hence

γjj(d) = χj(a)
∑

m|d
µ(d/m)χj(m)b(m).

Since for (h, q) = 1,

∑

1≤j≤g

χj(h) =

{
g if h (mod q) ∈ H,
0 otherwise,

we obtain

(5.13) c(d) =
1

g

∑

1≤j≤g

γjj(d) =
∑

m|d
µ(d/m)b(m)

provided a (mod q) ∈ H (otherwise we get nothing), and

S(l, t) =
∑

1≤j≤g

Sjj(l, t) = g
∑

(d,q)=1

d−1c(d)̺l(d)ψ

(
l2 + t2

d

)
.

Here the truncation factor ψ
(

l2+t2

d

)
can be removed at a low cost. To this

end we employ the associated zeta-function

(5.14) Zl(s) =
∑

(d,q)=1

c(d)̺l(d)d
−s.

It factors into

Zl(s) = Pl(s)ζK(s)LK(s, χ ◦N)/ζ(s)L(s, χ)

where

LK(s, χ ◦N) =
∑

a⊂K

χ(Na)(Na)−s

and Pl(s) is an Euler product which converges absolutely in Re s > 1/2;
therefore Zl(s) is holomorphic in Re s > 1/2 and has moderate growth.
This shows that

S(l, t) = gZl(1) +O(xε(z/x)1/2)

where the error term represents the estimate for the complementary sum
with ψ replaced by ϕ (the complementary sum ranges over d > x/(2z)).
Check that

Zl(1) = Pl(1)
LK(1, χ ◦N)

L(1, χ)

∏

χi 6=1

L(1, χi) > 0.

Gathering the above results we obtain

S(a) = gq−1
∑

l

λl̺l(q, a)Zl(1)Fl(0)(5.15)

+O((‖λ‖1 + ‖λ‖x1/4)x1/2−1/(2g)+ε)
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provided a (mod q) ∈ H or else S(a) vanishes. Summing over a we get

(5.16) ωl(q) =
∑∗

a (mod q)

̺l(q, a) =
∑

ω2+l2 (mod q)∈H
1.

Finally, we conclude:

Theorem 6. Let K/Q be an abelian extension of degree g ≥ 2 and

discriminant ±q which is odd. Let b(n) denote the number of integral ideals

in K of norm n. Then for any complex numbers λl and a smooth test

function f supported on [x, 2x] with derivatives f (j) ≪ x−j we have

(5.17)
∑ ∑

(l2+m2,q)=1

λlb(l
2 +m2)f(l2 +m2)

=
∑

l

λlpl(K)

∞\
−∞

f(l2 + t2) dt +O((‖λ‖1 + ‖λ‖x1/4)x1/2−1/(2g)+ε)

where pl(K) = gq−1ωl(q)Zl(1) > 0 and with ωl(q) defined by (5.16). The

implied constant depends only on ε and q.

R e m a r k s a b o u t t h e p r o o f. Our introduction of the partition of
unity was not only a technical device which controls the range of the mod-
uli in the remainder term, but above all it was necessary to go through
this careful argument to get the correct main term. Indeed, if we treated
b(n) straightforwardly as a convolution by writing n = n1 . . . ng = n1d, say,
with the trivial character χ1 attached to n1 and the non-trivial characters
χ2, . . . , χg attached to d, we would easily get an asymptotic result by ignor-
ing the remainder term; however, this could be a wrong result! In particular,
applying this simple-minded approach we would not be able to capture the
arithmetical conditions stemming from ωl(q) > 0, i.e. that the congruence

(5.18) ω2 + l2 ≡ Na (mod q)

has a solution ω (mod q) for some ideal a ⊂ K with (a, q) = 1.

We apply Theorem 6 for the characteristic function of a set L ⊂ [1,
√
x ]

contained in arithmetic progressions l (mod q) for which ωl(q) > 0. For
such a set the main term in (5.17) is ≫ |L|x1/2 whereas the remainder term
is ≪ |L|1/2x3/4−1/(2g)+ε so the asymptotic formula is meaningful if

(5.19) |L| ≫ x1/2−1/g+ε.

Therefore for any set L satisfying the local conditions (5.18) and of car-
dinality (5.19) with x > x0(ε, q) there are integral ideals a ⊂ K of norm
x < Na < 2x such that

(5.20) Na = m2 + l2 with l ∈ L,
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and we have an asymptotic formula for the number of the above represen-
tations.

Next we shall swap the asymptotic (5.17) for a lower bound (of correct
order of magnitude) by applying a sieve method of Brun type to produce
results which are valid for sets L thinner than those satisfying (5.19). Let H
be the collection of arithmetic progressions modulo q which are represented
by norms of ideals prime to q,

(5.21) H = {h ∈ Z : h (mod q) ∈ H}.
The sieve method works nicely with the function

(5.22) b∗(n) =

{
1 if p |n⇒ p ∈ H,
0 otherwise,

in place of b(n). Recall that the primes p ∈ H are unramified, and they split
completely in K/Q so they are norms of prime ideals of degree 1. Therefore
b∗(n) is supported on norms of integral ideals. We wish to estimate

S∗ =
∑

n

anb
∗(n)f(n)

(this sum takes numbers an for n = Na without multiplicity). To this end
we consider the sifting sum

S∗(z) =
∑

n∈H
(n,P (z))=1

anf(n)

where P (z) is the product of primes p < z, p 6∈ H. We have

S∗(z) = S∗ if z ≥
√

2x.

Indeed, a number n accounted for in S∗(z) has at most one bad prime factor,
i.e. outside H, because n < 2x ≤ z2. On the other hand, the total number
of bad prime factors of n (counted with multiplicity) must be even because
n ∈ H; thus n has none.

The sieve method (in the context of S∗(z)) replaces b∗(n) by a lower
bound

(5.23) b∗(n) ≥
∑

d|n
γ−d

with certain numbers γ−d for d |P (z) satisfying |γ−d | ≤ 1 if 1 ≤ d ≤ D and
γ−d = 0 if d > D where D can be chosen at will. If D is not too small,
precisely if

(5.24) D ≥ zβ+ε

for a certain positive number β called the sieving limit (β depends on the
dimension of the sieve which in our case is κ=1−g−1), and simultaneously D
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is not too large for the successful estimation of the remainder term, namely

(5.25) D ≤ |L|x1/2−4ε

(see (3.18)), then the sieve theory yields (see [I])

S∗(z) ≫ x1/2
∑

l∈L
ωl(q)Vl(z)

with
Vl(z) =

∏

p|P (z)

(1 − ̺l(p)p
−1) ≫ (log z)−κ.

We have tacitly assumed that L is contained in admissible residue classes
modulo q, i.e. in the set

(5.26) L(K) = {l ∈ Z : ωl(q) > 0},
and the test function f is such that

Fl(0) =
\
f(l2 + t2) dt ≫ x1/2

for any l ≤ √
x. Suppose L is contained in

L(K,
√
x) = {1 ≤ l ≤

√
x : ωl(q) > 0}

and that |L| > x(β−1)/2+5ε so there is room between (5.24) and (5.25) for
the choice z =

√
2x and D = zβ+ε giving

S∗(
√

2x) ≫ |L|x1/2(log x)−κ.

This establishes

Theorem 7. Let L be a subset of L(K,
√
x) such that

(5.27) |L| > x(β−1)/2+ε

where β is the limit for the sieve of dimension κ = 1 − g−1. Then

(5.28)
∑

l∈L

∑

m≤√
x

b∗(l2 +m2) > η|L|x1/2(log x)−κ

with some positive constant η = η(ε,K) provided x is sufficiently large in

terms of ε and the field K.

As an example consider a cubic normal extension K/Q of odd discrim-
inant ±q. In this case g = 3, κ = 2/3 and β = 1.2242. . . (see [I]), so
Theorem 7 implies that any set L ⊂ L(K,

√
x ) with |L| > x0.1122 contains

elements l such that l2 +m2 is the norm of an integral ideal a ⊂ K prime to
q. In particular, we can solve the equation l2 +m2 = Na with a ⊂ K and l
a prime number, l < m9/40, to which we referred in the introduction.

Another possibility is to take for L the set of biquadrates (note that
the congruence m2 + n8 ≡ 1 (mod q) has solutions). By this choice one
concludes
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Corollary. Let K/Q be a cubic normal extension of odd discriminant.

Then the number of solutions to

(5.29) Na = m2 + n8 ≤ x

in integral ideals a ⊂ K and rational integers m, n has the order of magni-

tude x5/8(log x)−2/3.

One can obtain comparable results for abelian fields of any degree g ≥ 2.
Here is a selection of values of the sieving limit βκ for dimension κ = 1−g−1

(see Table 2 of [I]): β1/2 = 1, β2/3 = 1.2242 . . . , β3/4 = 1.3981 . . . , β4/5 =
1.5107 . . . , β5/6 = 1.5884 . . . As κ approaches 1 for increasing degree g the
sieving limit βκ tends to 2, and the condition (5.27) requires L to be a set
of almost full size in the logarithmic scale.

6. An application of Bombieri’s sieve. Our final destination is the
sum

(6.1) P (x) =
∑

n≤x

anΛ(n)

with an given by (3.1). Nevertheless it will be instructive to consider prior
to P (x) the allied sum

(6.2) Pk(x) =
∑

n≤x

anΛk(n)

where Λk is the von Mangoldt function of order k defined by

(6.3) Λk(n) =
∑

d|n
µ(d)

(
log

n

d

)k

or by the recurrence formula Λk+1 = Λk ∗ Λ + Λk · L where L denotes the
logarithm function, L(n) = log n. Hence 0 ≤ Λk ≤ Lk and Λk is supported
on positive integers having at most k distinct prime factors.

Since Λk is given by the convolution formula (6.3) one might follow the

procedure described in Section 4 for γd = µ(d) (the smooth function
(
log n

d

)k

can be incorporated in the procedure by partial summation). To succeed
one must first reduce the support of γd to the level required by Lemma 4
since the error terms Rd(x) are out of control for large moduli. Even if (3.9)
holds, Lemma 4 does not cover the range x1−ε < d < x.

E. Bombieri [B1, B2] has shown how to proceed in the upper range

x1−ε < d < x provided k > 1. He observed that
(
log n

d

)k
is relatively

small in this critical range (it is still small if k = 1 but not enough), and
he applied Selberg’s sieve to take advantage of this observation. Of course,
the complete argument is quite sophisticated; it requires the an to be real,
non-negative numbers together with a few minor conditions. By virtue of
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Lemma 4 we can apply Bombieri’s sieve (see a new version in [FI]) to the
sequence (3.1) getting

Theorem 8. Let λl be real numbers such that 0 ≤ λl ≤ 1 and

(6.4)
∑

l≤y

λl ≫ y1−ε

for any y ≥ 1 and ε > 0, the implied constant depending only on ε. Then

for k ≥ 2,

(6.5)
∑

l2+m2≤x

λlΛk(l2 +m2) ∼ k(log x)k−1
∑

l2+m2≤x

λlψ(l)

as x→ ∞. Here ψ(l) is the same as in Theorem 1.

R e m a r k. Theorem 8 does not follow from Theorem 1 by induction on
k because the latter requires a somewhat stronger condition than (6.4) (in
order to neglect the error term in (1.3)).

7. Sums over primes. It was hoped at the time of its creation that
the linear sieve (i.e. of dimension κ = 1) would be a tool for treating sums
over primes or the allied sum

(7.1) P (x) =
∑

n≤x

anΛ(n),

but it failed for a serious reason, which is known as the parity problem.
Bombieri’s results [B1, B2] offer a great deal of insight into this intricate
matter. The parity problem of sieve theory implies in general that any
reasonable approximation to

(7.2) Ad(x) =
∑

n≤x
n≡0 (mod d)

an

for all d < x1−ε is not sufficient to produce an asymptotic formula for P (x),
nor even a lower bound of the right order of magnitude. In recent work
[DFI] the parity problem was resolved for the sequence

(7.3) an =
∑

ν2+1≡0 (mod n)

e

(
νk

n

)

by a subtle application of the exclusion-inclusion argument (modelled on an
old idea of I. M. Vinogradov) and by adding new information to sieve theory
through estimates for very special bilinear forms. Both arguments of [DFI]
are tight. To the contrary in the case of our sequence (3.1) we shall enjoy a
great flexibility for building bilinear forms due to the robust Lemma 4.

In this section we treat P (x) for a general sequence of complex numbers
an by an appeal to the popular identity of R. C. Vaughan [V]. Choose y ≥ 1
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and z ≥ 1. For any n > z we have

(7.4) Λ(n) =
∑

b|n
b≤y

µ(b) log
n

b
−

∑

bc|n
b≤y, c≤z

µ(b)Λ(c) +
∑

bc|n
b>y, c>z

µ(b)Λ(c)

and if n ≤ z, the right-hand side vanishes. Suppose x > yz. According to
Vaughan’s identity, P (x) splits into

(7.5) P (x) = A(x; y, z) +B(x; y, z) + P (z)

where

(7.6) A(x; y, z) =
∑

b≤y

µ(b)
{
A′

b(x) −Ab(x) log b−
∑

c≤z

Λ(c)Abc(x)
}

and

(7.7) B(x; y, z) =
∑

bd≤x
b>y

µ(b)
(∑

c|d
c>z

Λ(c)
)
abd.

Note that

(7.8) |B(x; y, z)| ≤
∑

z<d<x/y

(log d)
∣∣∣

∑

y<b≤x/d

µ(b)abd

∣∣∣.

Moreover, A′
b(x) in (7.6) denotes the sum (7.2) derived from the sequence

a′n = an log n. It can be expressed as

(7.9) A′
b(x) = Ab(x) log x−

x\
1

Ab(t)
dt

t
.

Now suppose Ad(x) is well approximated by a sum of type

(7.10) Md(x) =
1

d

∑

n≤x

an(d)

where the complex numbers an(d) are somewhat simpler than the original
an. Naturally one may assume that an(1) = an but it is not necessary to
do so. Define the error term

(7.11) Rd(x) = Ad(x) −Md(x)

and the remainder

(7.12) R(x,D) =
∑

d≤D

|Rd(x)|.

Replacing Ad(x) by Md(x) +Rd(x) in (7.6) and (7.9) we write

(7.13) A(x; y, z) = M(x; y, z) +R(x; y, z)
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where

M(x; y, z) =
∑

n≤x

∑

b≤y

µ(b)

b

{
an(b) log

n

b
−

∑

c≤z

Λ(c)

c
an(bc)

}

and

R(x; y, z) =
∑

b≤y

µ(b)

{
Rb(x) log

x

b
−

x\
1

Rb(t)
dt

t
−

∑

c≤z

Λ(c)Rbc(x)

}
.

Note that

(7.14) |R(x; y, z)| ≤ R(x, yz) log x+

x\
1

R(t, y)
dt

t
.

To proceed further with M(x; y, z) we assume that every an(d) in the
main term (7.10) is a linear combination of nice multiplicative functions in
d, say

(7.15) an(d) =
∑

l

λl(n)̺l(d)

with λl(n) = 0 for almost all l. Inserting these we obtain

M(x; y, z) =
∑

n≤x

∑

l

λl(n)σl(n; y, z)

where

σl(n; y, z) =
∑

b≤y

µ(b)

b

{
̺l(b) log

n

b
−

∑

c≤z

Λ(c)

c
̺l(bc)

}
.

Furthermore, we assume that each of the multiplicative functions ̺l(d) sat-
isfies the condition

(7.16)

∣∣∣∣
∑

b≤y

µ(b)

b
̺l(bc)

∣∣∣∣ ≤ (c, l)τ(c)∆l(y)

for all y > 1 where ∆l(y)(log y)
2 is decreasing. This condition implies that

we can extend σl(n; y, z) to an infinite series with respect to b, and its tail

(7.17) δl(n; y, z) =
∑

b>y

µ(b)

b

{
̺l(b) log

n

b
−

∑

c≤z

Λ(c)

c
̺l(bc)

}

is bounded by

(7.18) δl(n; y, z) ≪ ∆l(y) log(2lnz).

The complete series σl(n; y, z) + δl(n; y, z) = ψ(l), say, reduces to

(7.19) ψ(l) = −
∑

b

µ(b)

b
̺l(b) log b =

∏

p

(
1 − ̺l(p)

p

)(
1 − 1

p

)−1

.
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Hence we obtain

(7.20) M(x; y, z) =
∑

n≤x

∑

l

λl(n)(ψ(l) + δl(n; y, z)).

Collecting (7.5), (7.13) and (7.20) we conclude:

Proposition 9. Suppose every function ̺l(d) from the main terms sat-

isfies (7.16) with some ∆l(y) such that ∆l(y)(log y)
2 is decreasing. Then for

y, z ≥ 1 and x > yz we have the identity

P (x) =
∑

n≤x

∑

l

λl(n){ψ(l) + δl(n; y, z)}(7.21)

+B(x; y, z) +R(x; y, z) + P (z).

Recall that δl(n; y, z) satisfies (7.18), B(x; y, z) satisfies (7.8) and
R(x; y, z) satisfies (7.14).

Finally, we specialize Proposition 9 to the sequence an given by (3.1).
We take

λl(n) =
∑

l2+m2=n

λl.

We have ̺l(d) = (r(d), l)̺(d/(d, l2)) (see (3.4)) so the condition (7.16) holds
true with ∆l(y) = cAτ(l)(log y)

−A for any A ≥ 2. This gives us the estimate
(7.18) for δl(n; y, z). We also have the trivial bounds P (z) ≪ z andR(t, y) ≪
t1+ε. Combining the latter with Lemma 4 by (7.14) we obtain

R(x; y, z) ≪ x1−ε/5 if yz ≤ x1−ε.

Hence we conclude:

Corollary 10. Let an be given by (3.1) with |λl| ≤ 1. Suppose 0 < ε ≤
1/3, x > 1, y ≥ xε, z ≥ xε and yz ≤ x1−ε. Then

(7.22)
∑

n≤x

anΛ(n) =
∑

l2+m2≤x

λlψ(l) +B(x; y, z) +O(x(log x)−A)

with any A ≥ 2, the implied constant depending only on ε and A.

8. Digressions on bilinear forms. Auxiliary transformations.

The error term in (7.22) is admissible for (1.3), and the leading terms coin-
cide. Therefore we are left with the bilinear form

(8.1) B(x; y, z) =
∑

z<d<x/y

( ∑

c|d, c>z

Λ(c)
) ∑

y<b≤x/d

µ(b)abd.

Its very presence in the formula for the sum over primes is indispensable
in view of the parity problem of sieve theory. Of course B(x; y, z) must
contribute only to the error term, but proving this is the crux of the present
paper.
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Perhaps some of the forthcoming transformations will not be familiar
to everybody so we dwell on expressing the key issues in a general context
before focusing on B(x; y, z). Given a matrix A = (amn) of complex numbers
having some arithmetical nature we wish to estimate the bilinear form

uAvt =
∑

m

∑

n

umvnamn

for two sequences u = (um), v = (vn) one of which is fairly arbitrary and
the other, say v, varies in a tractable manner (like a Dirichlet character,
the Möbius function or a constant for example). However, the variation of
amn with respect to n might be out of control. Therefore we cannot hope
to execute either of the two summations directly. A standard procedure for
estimating the bilinear form uAvt is by applying Cauchy’s inequality and
by enlarging the outer summation so much (though not excessively) as to
fill up gaps and straighten irregularities. We obtain

|uAvt| ≤
∑

m

|um|
∣∣∣
∑

n

vnamn

∣∣∣ ≤ ‖u‖
( ∑

m

g(m)
∣∣∣
∑

n

vnamn

∣∣∣
2)1/2

where g(m) is a nice non-negative function with g(m) ≥ 1 whenever um 6= 0.
Two goals are achieved at once. The first is a kind of completeness in m
(think spectrally); the second is a decrease in complexity of the original
vector u = (um) (compare the divisor function versus a smooth function).
Reversing the order of summation we arrive at the sum

A(n1, n2) =
∑

m

g(m)amn1
amn2

.

This can be evaluated asymptotically with considerable uniformity in n1,
n2. If the main term exists, say M(n1, n2), it usually behaves nicely so the
further summation ∑

n1

∑

n2

vn1
vn2

M(n1, n2)

can be executed precisely, and it reduces the contribution of the main terms
because the variations in signs of vn1

, vn2
, M(n1, n2) do not conspire (in

the true setting of the method anyway).
Now we are ready to come to the point. There are situations in which

the straightforward application of Cauchy’s inequality is not a clever first
move. Suppose the arithmetic entries amn have a hidden multiplicity with
respect to n; this multiplicity carries over to the sum A(n1, n2) making it
hard to evaluate with decent uniformity in n1, n2. For example imagine
that mn occurs with multiplicity equal to the number of representations
as the sum of two squares (possibly restricted by suitable side conditions);
then the summation in A(n1, n2) amounts to counting lattice points on a 4-
dimensional hyperboloid (subject to the relevant side conditions). Without
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the involved multiplicity we would count integers in a segment, a much easier
job indeed! In view of the above scenario one should not rush to the Cauchy
inequality. Try first to unfold the suspected multiplicity using some sort of
parametrization, and then pull out all but one of the involved parameter
to the outer summation. Such performance will be much better not only
because the multiplicities do not multiply but they can be wiped out entirely
after Cauchy’s inequality is applied. One can find such an arrangement in
Section 5 of [DFI]. Here we arrange the bilinear form B(x; y, z) in a similar
manner.

Our target is the estimate

(8.2) B(x; y, z) ≪ ∆x(log x)5

where ∆ = (log x)−A for any fixed A ≥ 5. By (8.1) we have

(8.3) |B(x; y, z)| ≤ (log x)
∑

d>z

∣∣∣
∑

y<b≤x/d

µ(b)abd

∣∣∣.

In order to control the size and to separate the variables b, d (i.e. to relax
the condition bd ≤ x) we are going to break the sum into short sums of the
type

(8.4) B(M,N) =
∑

M<m≤2M

∣∣∣
∑

N<n≤N ′

µ(n)amn

∣∣∣

where N ′ = e∆N . Using these sums for M = 2jz and N = e∆ky we get

(8.5) |B(x; y, z)| ≤ (log x)
∑∑

∆x<MN<x
M≥z, N≥y

B(M,N) +O(∆x(log x)2)

where the error term O(∆x(log x)2) represents a trivial bound for the con-
tribution of µ(b)abd with bd ≤ 2∆x or e−2∆x < bd ≤ x, which terms are not
covered exactly. There are fewer than 2∆−1(log x)2 short sums B(M,N) in
(8.5) so we need to show that each of these satisfies

(8.6) B(M,N) ≪ ∆2x(log x)2.

Note the trivial bound

B(M,N) ≤
∑

M<m≤2M

̺(m)
∑

N<n≤N ′

̺(n) ≪ ∆MN.

Let Bd(M,N) denote the sum (8.4) with the variables restricted by (m,n) =
d. We have

B(M,N) ≤
∑

d<∆−1

Bd(M,N) +O(∆2x)

where the error term O(∆2x) represents a trivial bound for the contribution
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of µ(n)amn with (m,n) ≥ ∆−1. Note that

Bd(M,N) ≤ B1(dM,N/d)

(to see this, transfer the common factor d = (m,n) from n to m and ignore
the property that the new m is divisible by d2). Hence we need to show that

(8.7) B1(M,N) ≪ ∆3x(log x)2

for any M,N with M ≥ z, N ≥ ∆y and ∆x < MN < x.

If (m,n) = 1 every representation of mn as the sum of two squares
is obtained exactly four times from the representations of m and n (the
multiplicity four is the number of units in Z[i]). Thus, using Gaussian
integers (think in terms of ideals) we write each amn in B1(M,N) as

(8.8) amn = 1
4

∑

|w|2=m

∑

|z|2=n

λl

where z,w ∈ Z[i] and l = Re zw (here z has nothing in common with the real
parameter z which was used throughout the former section). For notational
simplicity we write

λl = λ(l),(8.9)

Re zw = z · w.(8.10)

We shall often regard z, w as vectors in R2 so z ·w denotes the inner product.
Hence

(8.11) 4B1(M,N) ≤
∑

M<|w|2≤2M

∣∣∣
∑

N<|z|2≤N ′

(|z|2,|w|2)=1

µ(|z|2)λ(z · w)
∣∣∣.

Next we relax the condition (|z|2, |w|2) = 1 by the Möbius formula
∑

r|(m,n)

µ(r) =
{

1 if (m,n) = 1,
0 otherwise.

If n is squarefree with r |n, then all solutions to the equation |z|2 = n are
accounted for exactly four times when counting the solutions to the system
of equations

|z|2 = n, |ζ|2 = r with ζ | z,
and, of course, this system has no solutions if r ∤n. Therefore the innermost
sum in (8.11) is equal to

1
4

∑

r||w|2
µ(r)

∑

|ζ|2=r

∑

N<r|z|2≤N ′

µ(r|z|2)λ(ζz · w)

by changing z to ζz. Inserting this into (8.11) and changing ζw to w we
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arrive at

4B1(M,N) ≤
∑

r

̺(r)
∑

rM<|w|2≤2rM

r2||w|2

∣∣∣
∑

N<r|z|2≤N ′

µ(r|z|2)λ(z · w)
∣∣∣

(we have estimated the number of ζ’s by 4̺(r) simply ignoring the condition
ζ |w). Estimating trivially we find that the terms with r ≥ ∆−2 contribute

≪ ∆MN
∑

r>∆−2

̺(r)2r−2 ≪ ∆3x(log x)2.

In the remaining terms we ignore the condition r2 | |w|2 and obtain

4B1(M,N) ≤
∑

r<∆−2

̺(r)
∑

rM<|w|2≤2rM

∣∣∣
∑

N<r|z|2≤N ′

µ(r|z|2)λ(z · w)
∣∣∣(8.12)

+O(∆3x(log x))2.

Put

(8.13) Cr(M,N) =
∑

M<|w|2≤2M

∣∣∣
∑

N<|z|2≤N ′

µ(r|z|2)λ(z · w)
∣∣∣.

We need to show that

(8.14) Cr(M,N) ≪ ∆5x(log x)2

for every r, M , N with r < ∆−2, M ≥ z, N ≥ ∆3y and ∆x < MN < x.
A Gaussian integer w = u + iv is said to be primitive if (u, v) = 1. We

put

(8.15) Ccr(M,N) =
∑∗

M<|w|2≤2M

∣∣∣
∑

N<|z|2≤N ′

µ(r|z|2)λ(cz · w)
∣∣∣

where ∗ restricts the summation to the primitive integers. Thus we have

Cr(M,N) =
∑

c≥1

Ccr(c
−2M,N) =

∑

1≤c≤∆−4

Ccr(c
−2M,N) +O(∆5x)

by the trivial bound Ccr(M,N) ≪ ∆MN . Therefore it suffices to show that

(8.16) Ccr(M,N) ≪ ∆5MN

for every c, r, M , N with c < ∆−4, r < ∆−2, M ≥ ∆4z, N > ∆3y and
∆5x < MN < x.

In the next section we shall establish estimates for bilinear forms slightly
more general than (8.15). In particular, by (9.29) we obtain

(8.17) Ccr(M,N) ≪MN(logN)−j

subject toNε < M < N1−ε andN < N ′ ≤ 2N uniformly in c, r ≤ N for any
ε, j > 0, the implied constant depending only on ε, j. These conditions are
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satisfied if we choose y = xθ and z = xϑ with 1/2 < θ < 1 and 0 < ϑ < 1−θ.
By the estimate (8.17) we complete the proof of the main Theorem 1.

9. Bilinear forms over Gaussian integers. The following notation
is in force throughout:

• z, w run over Gaussian integers,

• z · w = Re zw is the scalar product,

• w = u+ iv is primitive if (u, v) = 1,

• w∗ = w/(u, v) is the primitive kernel of w,

• ∑∗ denotes summation restricted to primitive Gaussian integers.

Let α, β be complex-valued functions on Z[i] such that

• α(z) is supported in the disc |z| ≤ A,

• β(w) is supported in the annulus B ≤ |w| ≤ 2B.

We shall impose additional conditions on α in due course; for the time
being we only assume that A ≥ B.

For any complex valued function λ on Z we wish to estimate the bilinear
form

(9.1) C(α, β;λ) =
∑

z

∑∗

w

α(z)β(w)λ(z · w).

Without loss of generality we assume that λ(l) is supported in the interval
|l| ≤ 2AB so that

(9.2) ‖λ‖2 =
∑

l∈Z

|λ(l)|2 <∞.

Naturally we set

‖α‖2 =
∑

z∈Z[i]

|α(z)|2, ‖β‖2 =
∑

w∈Z[i]

|β(w)|2.

We begin by applying Cauchy’s inequality as follows:

(9.3) |C(α, β;λ)| ≤
∑

l

|λ(l)|
∑∗

w

|β(w)|
∣∣∣

∑

z·w=l

α(z)
∣∣∣ ≤ ‖λ‖ · ‖β‖D(α)1/2

where

(9.4) D(α) =
∑∗

w

g(w)
∑

l

∣∣∣
∑

z·w=l

α(z)
∣∣∣
2

.

Here g(w) can be any non-negative function with g(w) ≥ 1 if B ≤ |w| ≤ 2B.
We do not need to be specific at this point; nevertheless it will be convenient
to assume that g(w) is radially smooth and compactly supported, say g(w) =
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G(|w|2) where

0 ≤ G(t) ≤ 1, G(t) = 1 if B2 ≤ t ≤ 4B2,

suppG ⊂ [B2/4, 9B2], G(j) ≪ B−2j .

Since l runs over all integers (without any restriction), after squaring out
we obtain

(9.5) D(α) =
∑∗

w

g(w)
∑

z·w=0

(α ∗ α)(z)

where α ∗ α stands for the convolution

(9.6) (α ∗ α)(z) =
∑

z1−z2=z

α(z1)α(z2).

Note that

(α ∗ α)(0) = ‖α‖2.

The orthogonality relation z · w = 0 for a primitive w in (9.5) is equivalent
to the statement that z is a rational integer multiple of iw, i.e. z = icw for
some c ∈ Z. Indeed, if z = x + iy and w = u + iv with (u, v) = 1, then
z · w = ux+ vy = 0 has solutions x = cv, y = −cu as claimed. Therefore

(9.7) D(α) =
∑

c∈Z

∑∗

w

g(w)(α ∗ α)(cw) = D0(α) + 2D∗(α),

say, where D0(α) denotes the contribution of c = 0 and D∗(α) that of all
c > 0. Thus

(9.8) D0(α) = ‖α‖2
∑∗

w

g(w) ≪ ‖α‖2B2

and

(9.9) D∗(α) =
∑

z 6=0

g(z∗)(α ∗ α)(z)

where z∗ denotes the primitive kernel of z (warning: even if α is supported
on primitive numbers, the convolution α ∗ α need not be so). We trade
the primitivity condition for congruence conditions by means of Möbius
inversion getting

(9.10) D∗(α) =
∑∑

b,c>0

µ(b)D(α; bc)

where

(9.11) D(α; bc) =
∑

z≡0 (mod bc)

g(z/c)(α ∗ α)(z).
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Note that |z| ≤ 2A (from the support of α) and cB/2 < |z| < 3cB (from
the support of g); hence c < 4AB−1, otherwise D(α; bc) is void. Let

(9.12) 1 ≤ Λ ≤ 4AB−1 = C,

say (we shall choose the best Λ later). By the trivial bound

D(α; bc) ≪ ‖α‖2B2b−2

we see that the terms with b ≥ Λ or c ≤ CΛ−1 contribute to D∗(α) at most
O(‖α‖2ABΛ−1) so

(9.13) D∗(α) =
∑

b≤Λ

µ(b)
∑

CΛ−1<c<C

D(α; bc) +O(‖α‖2ABΛ−1).

Now having the above restrictions for b, c at hand we no longer need
to refer to the support of g(z/c) to control the ranges so we can separate
z from c quite freely. However, in the process of separation we must be
careful not to introduce highly oscillatory factors since these would interfere
with the sign change of α(z), which is vital at the end of our arguments (we
have in mind α(z) = µ(r|z|2)). There are plenty of ways to do the job. We
take advantage of the convolution structure (9.6) so we represent g(w) by
its Fourier transform

g(w) =
\

R2

f(ω)e(ω · w) dω.

By Fourier inversion (spectral resolution of the Laplace operator)

f(ω) =
\

R2

g(w)e(−ω · w) dw.

Since g is radial, so is f (the Laplacian is rotation invariant!). More precisely,
if g(w) = G(|w|2), then f(ω) = F (|ω|2) where F is the Hankel transform
of G,

F (s) = π

∞\
0

J0(2π
√
st)G(t) dt.

Here J0(x) is the Bessel function. By repeated partial integration we infer

(9.14) F (s) ≪ B2(1 + sB2)−3/2.

Applying the above transformations we write

g(z/c) =
\

R2

c2f(ωc)e(ω · z) dω;

then we insert this to (9.11) getting

D(α; bc) =
\

R2

c2f(ωc)Sbc(ω) dω
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where

Sd(ω) =
∑

z≡0 (mod d)

(α ∗ α)(z)e(ω · z)(9.15)

=
∑ ∑

z1≡z2 (mod d)

α(z1)α(z2)e(ω · (z1 − z2))

=
∑

δ (mod d)

∣∣∣
∑

z≡δ (mod d)

α(z)e(ω · z)
∣∣∣
2

.

Here δ runs over (Z/dZ)2. Note that Sd(ω) is real, non-negative. By (9.14)
we derive the following estimate:

c2f(ωc) = c2F (|ω|2c2) ≪ ΛA2h(ω)

where h(ω) = (1 + |ω|2A2)−3/2. Hence

(9.16) D(α; bc) ≪ ΛA2
\

R2

h(ω)Sbc(ω) dω.

Note that d = bc (for b, c in the range of (9.13)) lies in the segment CΛ−1 <
d < CΛ = 4ΛAB−1 = D, say. Putting

(9.17) S(ω) =
∑

d≤D

d2Sd(ω),

by (9.13) and (9.16) we conclude that

(9.18) D∗(α) ≪ Λ3B2
\

R2

h(ω)S(ω) dω + ‖α‖2ABΛ−1.

It remains to estimate S(ω). This is an attractive proposition per se so
it deserves a separate section. In the next section we establish a general
inequality for sums of type (9.17), which yields (see Proposition 15)

(9.19) S(ω) ≤ 2D
∑

d≤G

d2Sd(ω) +O(A2DGε−1‖α‖2)

where G can be chosen arbitrarily subject to DG < A1−ε. We assume
B > Λ7Aε, choose G = Λ6 and insert (9.19) into (9.18) getting

(9.20) D∗(α) ≪ Λ4AB
∑

d≤G

d2Dd(α) + ‖α‖2ABΛ−1

where

(9.21) Dd(α) =
\

R2

h(ω)Sd(ω) dω.



Gaussian primes 283

Next we insert (9.15) into (9.21) getting

(9.22) Dd(α) =
∑

z≡0 (mod d)

(α ∗ α)(z)H(z)

where H(z) is the Fourier transform of h(ω),

H(z) =
\

R2

h(ω)e(ω · z) dω = 2πA−2 exp(−2π|z|/A).

Check this via Hankel transform with the formula (see [GR], 6.554.4)

∞\
0

J0(xy)x(1 + x2)−3/2dx = e−y.

Hence (9.22) becomes

(9.23) Dd(α) = 2πA−2
∑

z1≡z2 (mod d)

α(z1)α(z2) exp(−2π|z1 − z2|A−1).

Collecting (9.7), (9.8) and (9.20) we infer

(9.24) D(α) ≪ Λ4AB
∑

d≤Λ6

d2Dd(α) + ‖α‖2(B2 +ABΛ−1).

Finally, inserting (9.24) into (9.3) we obtain

Proposition 11. Suppose A, B and Λ ≥ 1 are such that

(9.25) Λ7Aε < B < AΛ−1

for some 0 < ε < 1. Then the bilinear form (9.1) satisfies the following

estimate:

C(α, β;Λ) ≪ ‖α‖ · ‖β‖ · ‖λ‖(AB)1/2Λ−1/2(9.26)

+ ‖β‖ · ‖λ‖(AB)1/2Λ2
( ∑

d≤Λ6

d2Dd(α)
)1/2

where the Dd(α) are given by (9.23), and the implied constant depends only

on ε.

Proposition 11 holds true for general sequences α, β, λ; still as it stands
the estimate (9.26) is not quite ready to use because the sums Dd(α) are
there. Trivially by Cauchy’s inequality one gets

(9.27) Dd(α) ≪ ‖α‖2d−2

but we need slightly better bounds. A better bound could result by ob-
serving cancellation of terms due to presumed sign change of α(z) while the
congruence z1 ≡ z2 (mod d) is not a strong interference since the modulus
is relatively small, d ≤ Λ6. It is reasonable to make the following
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Hypothesis. There is a j > 0 such that

(9.28) Dd(α) ≪ ‖α‖2(logA)−j

for all d ≥ 1, with the implied constant depending only on j.

Notice that (9.28) is non-trivial only for d2 < (logA)j . Inserting (9.28)
into (9.26) and choosing Λ = (logA)j/23 we derive

Corollary 12. Let ε > 0 and j > 0. Suppose Aε < B < A(logA)−j/23.

Then assuming (9.28) we have

(9.29) Cd(α, β;λ) ≪ ‖α‖ · ‖β‖ · ‖λ‖(AB)1/2(logA)−j/46

where the implied constant depends on ε and j only.

As an example of an α(z) which satisfies (9.28) we take

(9.30) α(z) = µ(r|z|2).
This is just the Möbius function on ideals (z) prime to r such that (z, z) = (1)
or (1 + i). In this case the hypothesis holds for any j > 0; it is analogous
to the celebrated Siegel–Walfisz theorem in prime number theory. By mod-
ern standards the proof of (9.28) in the above case is a routine traversal
throughout the zero-free region for L-functions with Hecke Grossencharac-
ters yet it is very long in detail so we skip it entirely (see [K], [F] for related
arguments).

One can verify (9.28) for α(z) = µ(r|z|2) indirectly by reducing to the
more familiar result for Gaussian primes in a box and in an arithmetic
progression. Though such a reduction can be made on an elementary level,
it still requires considerable skill with sieve methods.

10. A mean-value theorem for Gaussian integers in arithmetic

progressions. Let f be a complex-valued function on Z[i] supported on
the disc |z| ≤ A. Our aim is to estimate

(10.1) Sf (D) =
∑

d≤D

d2
∑

δ (mod d)

∣∣∣
∑

z≡δ (mod d)

f(z)
∣∣∣
2

.

For f(z) = α(z)e(ω · z) this is the sum S(ω) which emerged at the end of
the previous section. We put

Sf (d, δ) =
∑

z≡δ (mod d)

f(z).

Throughout we have in mind a function f(z) whose argument varies wildly
so we do not expect to see main terms for any of these sums. Using additive
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characters modulo d we get

S
2
f (d) = d2

∑

δ (mod d)

|Sf (d, δ)|2 =
∑

s (mod d)

∣∣∣∣
∑

z

f(z)e

(
s · z
d

)∣∣∣∣
2

.

Put s = a + bi, z = m + ni and write the fractions a/d, b/d in the lowest
terms to get

S
2
f (d) =

∑

k|d
l|d

∑∗

a (mod k)
b (mod l)

∣∣∣∣
∑

z

f(z)e

(
am

k
+
bn

l

)∣∣∣∣
2

where ∗ restricts the summations to primitive residue classes. Hence

Sf (D) ≤ D
∑

[k,l]≤D

[k, l]−1
∑

a (mod k)
b (mod l)

∣∣∣∣
∑

z

f(z)e

(
am

k
+
bn

l

)∣∣∣∣
2

where [k, l] = kl/(k, l) denotes the least common multiple of k, l.
If g = [k, l] is small, we estimate crudely by writing the fractions a/k,

b/l with common denominator g and by expanding the outer summations
to all residue classes modulo g. This way we get

∑∗

a (mod k)

∑∗

b (mod l)

∣∣∣∣
∑

z

f(z)e

(
am

k
+
bn

l

)∣∣∣∣
2

≤ g2
∑

z1≡z2 (mod g)

f(z1)f(z2) = S
2
f (g).

Hence the terms with g = [k, l] ≤ G, say, contribute to Sf (D) at most

(10.2) D
∑

g≤G

g−1
( ∑

[k,l]=g

1
)
S

2
f (g) ≤ 2DSf (G)

since the number of k, l with [k, l] = g is less than 2g.
For estimating the contribution of larger moduli we use the following

two-dimensional large sieve inequality:

Lemma 13. For any complex numbers cmn we have

∑

h≤H

∑

k≤K
l≤L

τ(hk)−1
∑∗

a (mod hk)
b (mod hl)

∣∣∣∣
∑

m≤M
n≤N

cmne

(
am

hk
+
bn

hl

)∣∣∣∣
2

≤ (H2K2 +M)(HL2 +N)
∑

mn

|cmn|2.

P r o o f. First we apply the one-dimensional large sieve inequality

∑

l≤L

∑∗

b (mod hl)

∣∣∣∣
∑

n≤N

cne

(
bn

hl

)∣∣∣∣
2

≤ (HL2 +N)
∑

n

|cn|2

for the numbers
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cn =
∑

m

cmne

(
am

hk

)
.

Then we apply the one-dimensional large sieve inequality

∑

h≤H

∑

k≤K

τ(hk)−1
∑∗

a (mod hk)

∣∣∣∣
∑

m

cmne

(
an

hk

)∣∣∣∣
2

≤ (H2K2 +M)
∑

m

|cmn|2

and the result follows.

The factor τ(hk)−1 in the above result is annoying. Using the estimate
τ(hk) ≪ (hk)ε we deduce from Lemma 13

Corollary 14. For X > Y ≥ 1, M ≥ 1, N ≥ 1 and any complex

numbers cmn we have

∑

Y <hkl≤X

(hkl)−1
∑∗

a (mod hk)
b (mod hl)

∣∣∣∣
∑

m≤M
n≤N

cmne

(
am

hk
+
bn

hl

)∣∣∣∣
2

≪ {(M +N +X)X1+ε +MNY ε−1}
∑

mn

|cmn|2

for any ε > 0, with the implied constant depending only on ε.

By Corollary 14 for Y = G, X = D, M = N = A, cmn = f(m + ni)
we deduce that the moduli k, l with g = [k, l] in the segment G < g ≤ D
contribute to Sf (D) at most

(10.3) D(AD1+ε +D2+ε +A2Gε−1)‖f‖2.

Adding (10.3) to (10.2) we conclude:

Proposition 15. Suppose A ≥ D ≥ 1. For any G ≥ 1 we have

(10.4) Sf (D) ≤ 2DSf (G) +O(AD(D1+ε +AGε−1)‖f‖2)

with any ε > 0, with the implied constant depending only on ε.

R e m a r k s. IfDG < A1−ε the second term reduces toO(A2DGε−1‖f‖2).
In applications one needs only slightly better than the trivial bound Sf (D)
≪ A2D‖f‖2, and (10.4) for G = (logA)j with j sufficiently large does the
job. One still needs to estimate Sf (G), but only for G small, and this is
a problem of Siegel–Walfisz type for which classical techniques of analytic
number theory can be used.
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Birkhäuser, 1996, 411–430.

[GR] I. S. Gradshteyn and I. M. Ryzh ik, Tables of Integrals, Series, and Products,
Academic Press, London, 1965.

[H] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen II , Math. Z. 6 (1920), 11–51.

[IR] K. I re land and M. Rosen, A Classical Introduction to Modern Number Theory ,
2nd ed., Springer, 1982.

[I] H. Iwaniec, Rosser’s sieve, Acta Arith. 36 (1980), 171–202.
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