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1. Introduction. Let k be a number field of degree d and let Γ be a
finitely generated subgroup of (k×)2 = G2

m(k). The unit equation for Γ is
the equation

(1.1) a1x1 + a2x2 = 1, (x1, x2) ∈ Γ
with coefficients a1, a2 ∈ k×.

In this paper we shall exploit an idea introduced in the paper [P] by the
third author, to obtain what may be called a cluster principle for solutions
of (1.1).

Roughly speaking, it asserts that solutions of (1.1) up to height H can
be subdivided into a bounded number of subsets, the bound depending only
on the rank of Γ , such that after rescaling each subset by an element of Γ
the rescaled subset has height proportional to logH. These subsets therefore
may be regarded as forming “clusters” of solutions of (1.1).

The principle of formation of clusters can be extended to analyze the
clusters themselves, which now split into a bounded number of clusters of
size log logH, and so on. After very few steps, the size of the clusters so
obtained becomes very small while their number remains controlled in terms
of the rank of Γ alone.

In order to apply this principle to all solutions of (1.1) we need bounds
for the heights of solutions of a unit equation. Baker’s theory of linear forms
in logarithms provides such a bound, in the form of iterated exponentials of
arguments depending on the degree and discriminant of the field k and the
heights of generators and rank of Γ . The presence of iterated exponentials
causes little harm here, because repeated application of the cluster principle
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brings in iterated logarithms. Thus after few steps we need only deal with
solutions of unit equations of rather small height.

An interesting feature of the cluster principle is that it becomes more
efficient if the group Γ has always “large” generators. The upshot is that in
the end we deal only with solutions with height bounded only in terms of
the rank of Γ and possibly the degree of the field k, thus showing that the
number of solutions of (1.1) is bounded in terms of the rank of Γ and the
degree d of the number field k. We shall prove by this method

Theorem. Let k be a number field of degree d and let Γ be a finitely
generated subgroup of rank s of G2

m(k). Then the generalized unit equation

a1x1 + a2x2 = 1, (x1, x2) ∈ Γ,
admits at most d9scs

2

1 solutions, for some absolute constant c1.

R e m a r k. A calculation shows that c1 = e86 is admissible here.

Although this result falls short of the remarkable bound 256s+1 recently
obtained by F. Beukers and H.-P. Schlickewei [BS], our method is entirely
different and has the potential to be extendable to other situations, such as
the study of rational points on curves in an abelian variety.

The principle behind the method has its roots in the remark that if
we have a congruence (1 + pa)m ≡ 1 (mod pr) with p > 2 a prime then
pr−1−ordp(a) |m (if p = 2, the result holds with r− 2 in place of r− 1). This
was used by C. Størmer in 1898 (see Ribenboim [R], part C, §9) to solve
effectively special unit equations, such as

AMe1
1 . . .Mem

m −BNf1
1 . . . Nfn

n = 1 or 2

where A, B, Mi, ei, Nj , fj are positive integers, and in 1960 J. W. S. Cassels
[C1] used related methods to solve effectively the above equation with any
constant C in place of Størmer’s 1 or 2.

In dealing with a general unit equation we encounter more general con-
gruences

s∏

i=1

(1 + pai)ui ≡ 1 (mod pr)

and the point is that it is still possible to extract some information from this.
The basic idea in [P] is that if r is large enough this congruence implies that
there are two distinct indices i and j such that ordp(uiai) = ordp(ujaj). This
is nontrivial information, lying at the basis of the clustering phenomenon.

The organization of this paper is as follows. In Section 2 we introduce
basic definitions and the notion of the mass of a subset of a finitely generated
abelian group G. Section 3 deals with the cluster principle at a single place.
The next two sections define general regulators and study their properties.
Section 6 states and proves the global version of the cluster principle. The
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next section deals with some consequences of Baker’s theory, and the final
section contains the proof of our theorem as a consequence of the cluster
principle and induction on the rank of Γ .

In order not to obscure the main ideas involved here, we have not tried in
this paper to obtain sharpest possible results, and significant improvements
can be obtained in our formulation of the cluster principle as well as in the
way of applying it.

Acknowledgements. During the period this research was done the sec-
ond author was partially supported by NSA Grant MDA 904-94-H-2004.

2. Some basic definitions. We denote by Mk the set of all places of k
and by | |v the associated normalized absolute values satisfying the product
formula. The normalization we shall use is the following. If v extends the
place v0 ∈ MQ, then ‖ ‖v0 denotes the usual p-adic or real absolute value.
In general, ‖ ‖v is normalized by means of

(2.1) log ‖x‖v = log ‖x‖v0 for x ∈ Q×.
If v is finite, lying over the rational prime p, the associated additive valuation
ordv( ) is normalized by means of ordv(p) = 1 and we have

(2.2) log ‖x‖v = −(log p) ordv(x).

There is another normalization | |v defined by

log |x|v =
dv
d

log ‖x‖v
where dv is the local degree [kv : Qv]. For each finite v we also write dv =
evfv where ev is the ramification index and fv is the residue class degree.

With this normalization we have the product formula
∑

v∈Mk

log |x|v = 0

for x ∈ k×. If k′ is a finite extension of k we also have the extension formula∑

w∈Mk′ , w|v
log |x|w = log |x|v

for x ∈ k×.
The absolute logarithmic height of x ∈ k× is given by

h(x) =
∑

v∈Mk

log+ |x|v

where log+ t = max(log t, 0). The absolute height H(x) is given by

H(x) = eh(x).
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If G is a finitely generated abelian group, the rank rk(G) of G is the rank
of the free abelian group G/tors. If E is a subset of G, the rank rk(E) of E
is the rank of the subgroup 〈E〉 generated by all elements of E.

In what follows, it is convenient to use a modified notion of rank of a
set.

Definition 1. Let T be an indeterminate which commutes with G and
let E ⊂ G. The augmented set Ẽ is the set Ẽ = {Te : e ∈ E}.

It is immediate that rk(Ẽ) = rk(E) or rk(E) + 1.
Let s = rk(G) and let (g1, . . . , gs) be generators of G up to torsion. Every

element of G can be written uniquely as

(2.3) g = ε

s∏
σ=1

gnσ(g)
σ

with ε ∈ tors(G) and nσ(g) ∈ Z.

Definition 2. Let E ⊂ G be a nonempty subset of G and let s = rk(G).
If s ≥ 1 the mass of E with respect to G is

m(E,G) = sup |det(nσ(ej))σ=1,...,s
j=1,...,s

|

where the supremum is over all s-tuples (e1, . . . , es) of elements of E. The
mass so defined is independent of a choice of generators of G.

The absolute mass of E is

m(E) = m(E, 〈E〉)
provided rk(E) ≥ 1, and is undefined otherwise.

It is clear that the mass is independent of a choice of generators of G,
because changing generators changes n = {n1(g), . . . , ns(g)} into B ·n with
det(B) = ±1.

The following facts are worth recording.

Lemma 1. The mass m(E,G) is 0 if and only if rk(E) < rk(G). More
generally , if G′ has finite index in G and if 〈E〉 ⊂ G′, we have

(2.4) m(E,G) = [G/tors : G′/tors]m(E,G′).

If E′ ⊂ E, then
m(E′) ≤ m(E).

We also have
m(Ẽ) ≤ (rk(E) + 1)m(E).

P r o o f. The first two statements are clear.
The third statement is proved as follows. We may assume that G is

torsion free. Let G′ = 〈E′〉, G = 〈E〉 be of rank s′, s. We take another s− s′
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independent elements e1, . . . , es−s′ of E and set E∗ = {E′, e1, . . . , es−s′},
G∗ = 〈E∗〉. By construction, G∗ has the same rank s as G. Generators for G∗

are obtained by taking a set of generators of G′ together with e1, . . . , es−s′ .
From this construction and the definition of mass we see, using this set of
generators for G∗, that m(E′) = m(E′, G′) = m(E∗, G∗). Finally,

m(E∗, G∗) = m(E,G)/[G/tors : G∗/tors] ≤ m(E,G) = m(E),

proving what we want.
For the last statement, we argue as follows. We may suppose that G =

〈E〉 is torsion free. Hence let G have rank s ≥ 1. We have two cases. Suppose
first that rk(Ẽ) = rk(E)+1 = s+1. Then 〈Ẽ〉 has finite index in G̃ = 〈T,G〉,
therefore by (2.4) we have

m(Ẽ) ≤ m(Ẽ, G̃).

Since G̃ = 〈T,G〉 we see that

m(Ẽ, G̃) = sup

∣∣∣∣∣∣∣
det




1 1 . . . 1
n1(e1) n1(e2) . . . n1(es+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ns(e1) ns(e2) . . . ns(es+1)




∣∣∣∣∣∣∣
.

By Laplace’s rule, this determinant does not exceed (s + 1)m(E), proving
our assertion in this case.

If instead rk(Ẽ) = rk(E) = s we see that elements of 〈Ẽ〉 are written
uniquely as Tn(g)g with g ∈ 〈E〉, for some homomorphism n : 〈E〉 → Z. The
map Tn(g)g 7→ g gives an isomorphism between 〈Ẽ〉 and 〈E〉, so that in this
case we have m(Ẽ) = m(E). This completes the proof of the lemma.

3. The Local Cluster Principle. Notation is as in the preceding sec-
tion. The following result shows that for each place v the points log ‖xj‖v,
with x a solution of the unit equation, tend to cluster in small intervals.

Local Cluster Principle (finite places). Let v be a finite place of k
lying over the rational prime p. Let j = 1 or 2 and let X be a finite set
of solutions of the unit equation a1x1 + a2x2 = 1 with x ∈ Γ , such that
ordv(ajxj) has fixed sign for every x ∈ X . Suppose rk(X ) ≥ 1. Then there
is a decomposition

X =
s⋃

i=−1

Xi

with the following two properties.

(i) Clustering property : If Xi 6= ∅ then for x,x′ ∈ Xi we have

|log ‖x′j/xj‖v| ≤ log((s+ 1)m(X ));
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(ii) Rank property : Let

X ′i =
⋃

h≥i
Xh.

Suppose that i ≥ 0 and that X ′i 6= ∅. Then

rk(X̃ ′i ) > rk(X̃ ′i+1).

P r o o f. It suffices to deal with the case j = 1. For notational simplicity,
we write a, b, x, y for a1, a2, x1, x2 (so as to avoid double indices) and we
also write

M = log(m(X̃ ))/ log p.

Consider first the case in which ordv(ax) ≥ 0 for every x ∈ X . We define
Xi inductively for i ≥ −1 as follows.

(3.1) X−1 = {x ∈ X : 0 ≤ ordv(ax) ≤ 1/(p− 1)}.
Once X−1, . . . ,Xi have been defined, we pick, if possible, an element

x0 ∈ X −
⋃

h≤i
Xh

such that ordv(ax0) is a minimum and define

(3.2) Xi+1 = {x ∈ X : ordv(ax0) ≤ ordv(ax) ≤ ordv(ax0) +M};
otherwise Xh = ∅ for h > i.

The proof of (i) is a consequence of definitions (3.1) and (3.2), which
imply that the range of ordv(ax) for x ∈ Xi is contained in an interval of
length M . In fact, let x,x′ ∈ Xi. Then we have, recalling (2.2) and Lemma 1,

|log ‖x′/x‖v| = |log ‖(ax′)/(ax)‖v| = (log p) · |ordv(ax′)− ordv(ax)|
≤ (log p)M ≤ log((s+ 1)m(X ))

proving (i).
Suppose that X ′i 6= ∅. The inequality rk(X̃ ′i ) ≥ rk(X̃ ′i+1) for i ≥ 0 is

obvious, and our claim is that this inequality is strict:

(3.3) rk(X̃ ′i ) > rk(X̃ ′i+1).

Note that since rk(X̃ ′1) ≤ rk(X̃ ) ≤ s+ 1 this implies that rk(X̃ ′i ) ≤ s+ 1− i
and therefore i ≤ s (note that if Y 6= ∅ then rk(Ỹ) ≥ 1). This implies that
the filtration {X ′i} stops at i = s+ 1 with the empty set, whence

X =
s⋃

i=−1

Xi.

Thus we need only prove (3.3).
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The following argument embodies the new idea in [P]. Suppose rk(X̃ ′i+1)
= rk(X̃ ′i ) = r and i ≥ 0. Let T be an indeterminate which commutes with
Γ . Then there are r elements xh ∈ X ′i+1, h = 1, . . . , r, such that Txh,
h = 1, . . . , r, are multiplicatively independent.

Let x0 ∈ Xi be an element of Xi for which ordv(ax0) is a minimum.
Then the r + 1 elements Txh, h = 0, . . . , r, are multiplicatively dependent
because rk(X̃ ′i ) = r by hypothesis. Therefore we have a relation

(3.4)
r∏

h=0

(Txh)uh ∈ tors(Γ )

for certain integers uh, with u0 6= 0.
Such a relation is equivalent to solving in integers uh, not all 0, the linear

system of equations given by

(3.5)

r∑

h=0

n1(Txh)uh = 0,

r∑

h=0

n2(Txh)uh = 0,

. . . . . . . . . . . . . . . . . . .
r∑

h=0

nr(Txh)uh = 0,

where the coefficients nσ(Txh) are determined as in (2.3) by a choice of
generators of the group 〈X̃ 〉.

By construction, the two matrices

A0 =



n1(Tx0) n1(Tx1) n1(Tx2) . . . n1(Txr)
n2(Tx0) n2(Tx1) n2(Tx2) . . . n2(Txr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nr(Tx0) nr(Tx1) nr(Tx2) . . . nr(Txr)




and

A1 =



n1(Tx1) n1(Tx2) . . . n1(Txr)
n2(Tx1) n2(Tx2) . . . n2(Txr)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
nr(Tx1) nr(Tx2) . . . nr(Txr)




have the same rank r. We may solve (3.5) using Cramer’s rule obtaining a
solution uh in which each uh equals (−1)h times the determinant of the r×r
minor of A0 obtained by deleting the (h+ 1)th column. Note that we have
u0 = det(A1) 6= 0 because A1 has maximal rank r.

It follows that

|u0| = |det(A1)| ≤ m(X̃ ′i+1) ≤ m(X̃ ).
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This implies

(3.6) 0 ≤ ordv(u0) ≤M.

By (3.4) and the equation ax+ by = 1 we get, specializing T to b,

(3.7)
r∏

h=0

(1− axh)uh ∈ tors(k×v ).

The logarithm function

log(1 + x) =
∞∑
m=1

(−1)m−1 1
m
xm

is well defined in the maximal ideal

mv = {x : ‖x‖v < 1}
of the ring of integers of kv, and provides a homomorphism

log : 1 + mv → k+
v

of the subgroup 1 + mv ⊂ k×v into the additive group k+
v . The kernel of

this homomorphism consists of the roots of unity in 1 + mv. We take the
logarithm of (3.7), thus killing the torsion because v is a finite place. We
obtain

(3.8)
r∑

h=0

uh

∞∑
m=1

1
m

(axh)m = 0,

where now axh is understood as an element of kv.
Since the points xh, h = 0, . . . , r, satisfy

ordv(axh) >
1

p− 1

we get (1):

For h = 0, . . . , r the term axh is the unique term of lowest order in the
series

∑ 1
m (axh)m.

Since the elements in the sum (3.8) add up to 0, we see that there are
two distinct terms with the same lowest order. Hence there are two distinct
indices h0 < h1, with uh0 6= 0 and uh1 6= 0, such that uh0axh0 and uh1axh1

have the same lowest order, that is,

(3.9) ordv(uh0axh0) = ordv(uh1axh1) = min
h

ordv(uhaxh);

(1) A more refined argument shows that the condition ordv(axh) 6= (pl(p− 1))−1 for
l = 0, 1, . . . suffices for the validity of the arguments which follow.
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moreover, since u0 6= 0, (3.6) implies

(3.10) min
h

ordv(uhaxh) ≤ ordv(u0ax0) ≤ ordv(ax0) +M.

On the other hand, xh1 ∈ X ′i+1 because h1 > h0, hence h1 ≥ 1. It follows
that

ordv(ax0) +M < ordv(uh1axh1) by (3.2)

≤ ordv(u0ax0) by (3.9)

≤ ordv(ax0) +M by (3.10).

This is a contradiction, proving our claim.

If instead ordv(ax) ≤ 0 for every x ∈ X we argue as follows. Consider
the transformation of the unit equation ax+ by = 1 into

1
a
· 1
x

+
(
− b
a

)
y

x
= 1.

This transformation (x, y) 7→ (1/x, y/x), (a, b) 7→ (1/a,−b/a) maps Γ into
an isomorphic group Γ ′, preserves ranks and mass, changes ordv(ax) into
− ordv(ax) and leaves |log ‖x′/x‖v| invariant. Then we conclude by the same
argument.

Local Cluster Principle (infinite places). Let v be an infinite place
of k. Let j = 1 or 2 and let X be a finite set of solutions of the unit equation
a1x1 + a2x2 = 1 with x ∈ Γ such that log ‖ajxj‖v has fixed sign for every
x ∈ X . Suppose rk(X ) ≥ 1. Then there is a decomposition

X =
s⋃

i=−1

Xi

with the following two properties. Let τ = |tors(Γ )|.
(i) Clustering property : If Xi 6= ∅ then for x,x′ ∈ Xi we have

|log ‖x′j/xj‖v| ≤ log(3s(s+ 1)τm(X ));

(ii) Rank property : Let

X ′i =
⋃

h≥i
Xh.

Suppose that i ≥ 0 and X ′i 6= ∅. Then

rk(X̃ ′i ) > rk(X̃ ′i+1).

P r o o f. It suffices to deal with the case j = 1. For notational simplicity,
we write a, b, x, y for a1, a2, x1, x2 (so as to avoid double indices) and we
also write

M = 3s(s+ 1)τm(X ).
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We deal first with the case in which log ‖ax‖v ≤ 0 for x ∈ X . We define
Xi inductively for i ≥ −1 as follows.

(3.11) X−1 = {x ∈ X : M−1 ≤ ‖ax‖v ≤ 1}.
Once X−1, . . . ,Xi have been defined, we pick, if possible, an element

x0 ∈ X −
⋃

h≤i
Xh

such that ‖ax0‖v is a maximum and define

(3.12) Xi+1 = {x ∈ X : M−1‖ax0‖v ≤ ‖ax‖v ≤ ‖ax0‖v};
otherwise Xh = ∅ for h > i.

The proof of (i) is as in the finite case, and as in the finite case it remains
only to prove the inequality rk(X̃ ′i ) > rk(X̃ ′i+1) for i ≥ 0 and X ′i 6= ∅.

Again, suppose rk(X̃ ′i+1) = rk(X̃ ′i ) = r. Let x0 ∈ Xi be an element of Xi
for which ‖ax0‖v is a maximum. Then the r+ 1 elements Txh, h = 0, . . . , r,
are multiplicatively dependent because rk(X̃ ′i ) = r by hypothesis. As in the
finite case, we get a relation

r∏

h=0

(Txh)uh ∈ tors(Γ )

for certain integers uh, with u0 6= 0 and

(3.13) max |uh| ≤ m(X̃ ) ≤ (3sτ)−1M.

As before, this implies

(3.14)
r∏

h=0

(1− axh)τuh = 1.

We take the logarithm of (3.14) and find

(3.15)
r∑

h=0

uh

∞∑
m=1

1
m

(axh)m ∈ 2πi
τ
· Z.

For simplicity we write | | instead of ‖ ‖v. We have

(3.16) |ax0| < 1/M and |axh| ≤ |ax0|/M < 1/M2 for h ≥ 1.

Then we estimate∣∣∣∣
r∑

h=0

uh

∞∑
m=1

1
m

(axh)m
∣∣∣∣ ≤

r∑

h=0

|uh|
∞∑
m=1

1
m
|axh|m ≤ (3sτ)−1M

r∑

h=0

|axh|
1− |axh|

≤ (3sτ)−1M

(
1

M − 1
+

r

M2 − 1

)

< (3sτ)−1 2M
M − 1

<
2π
τ
.
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In view of (3.15) we conclude

(3.17)
r∑

h=0

uh

∞∑
m=1

1
m

(axh)m = 0.

On the other hand, we have, using (3.12), (3.16), u0 6= 0 and M ≥ 6,
∣∣∣∣
r∑

h=0

uh

∞∑
m=1

1
m

(axh)m
∣∣∣∣> |ax0|

(
1− 1

2
· |ax0|

1− |ax0|
)
− (3sτ)−1M

r∑

h=1

|ax0|
M − 1

> |ax0|
(

1− 1
2(M − 1)

− (3sτ)−1 (s+ 1)M
M − 1

)

≥ |ax0|
(
1− 1

10 − 4
5

)
> 0.

This contradicts (3.17), and completes the proof of our claim.
The proof for the case in which ‖ax‖v ≥ 1 is the same as in the finite

case.

Our next goal is to obtain a global version of the cluster principle, as
well as its generalization to sets of solutions where we may have ‖ax‖v ≥ 1.

4. Regulators. Let Γ be a finitely generated group Γ ⊂ Gnm(k) of rank
s, and let γσ, σ = 1, . . . , s, be a set of generators of Γ up to torsion. We use
vector notation, so γ = (γ1, . . . , γn).

Definition 3. Let S be a subset of cardinality s of Mk×{1, . . . , n}. The
S-regulator RS(Γ ) of Γ is by definition

RS(Γ ) = |det(log ‖γσj‖v)σ=1,...,s
(v,j)∈S

|.

The set S is said to be nondegenerate with respect to Γ if RS(Γ ) 6= 0.

The S-regulator does not depend on the choice of generators of Γ .

Lemma 2. A nondegenerate set S for Γ always exists.

P r o o f. If we had RS(Γ ) = 0 for every S we would have

(4.1) rank(log ‖γσj‖v)σ=1,...,s
(v,j)∈Mk×{1,...,n}

< s.

Then there would be a relation of linear dependence among the rows of this
matrix:

(4.2)
s∑

σ=1

aσ log ‖γσj‖v = 0

for (v, j) ∈ Mk × {1, . . . , n}, with not all aσ = 0. Moreover, we see that we
may assume that this relation has coefficients in Z rather than in R. In fact,
let h be the class number of k. Let η1, . . . , ηt be a basis of the units of k
modulo torsion and, for each finite place w, let pw be the associated prime
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ideal and πw be a generator of the principal ideal phw = (πw). We can write,
with obvious vector notation,

γhσ = εσ

t∏

i=1

ηmiσ
i

∏

w finite

πnwσ
w

with εσ a torsion element and nwσ = 0 for almost all w. Thus (4.2) becomes

(4.3)
s∑

σ=1

( t∑

i=1

miσ log ‖ηi‖v +
∑

w finite

nwσ log ‖πw‖v
)
aσ = 0.

We have log ‖ηi‖v = 0 for every i and every finite v, and also log ‖πw‖v = 0
if v is finite and v 6= w, while log ‖πv‖v 6= 0. Hence, for all finite v, (4.3) is
equivalent to

(4.4)
s∑

σ=1

nvσaσ = 0.

Now we can use (4.4) to simplify and rewrite (4.3) as

(4.5)
t∑

i=1

log ‖ηi‖v
( s∑
σ=1

miσaσ

)
= 0

for every infinite place v.
The matrix (log ‖ηi‖v), i = 1, . . . , t, v |∞, has rank t by Dirichlet’s Unit

Theorem, therefore (4.5) is equivalent to

(4.6)
s∑

σ=1

miσaσ = 0

for i = 1, . . . , t. Since (4.4) and (4.6) form a system with rational integral
coefficients equivalent to (4.3), we see that if (4.2) has a nontrivial solution
in R it also has a nontrivial solution in Z.

Let aσ ∈ Z, σ = 1, . . . , s, be a nontrivial solution of (4.2). Then we see
that ∥∥∥

s∏
σ=1

γaσσ

∥∥∥
v

=
s∏

σ=1

‖γσ‖aσv = {1}

for every v ∈ Mk. On the other hand, by a result which goes back to Kro-
necker, we know that any element α ∈ k× with ‖α‖v = 1 for every v is a
root of unity. It follows that

s∏
σ=1

γaσσ ∈ tors(Γ ),

contradicting the fact that Γ has rank s and completing the proof.
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Definition 4. The support supp(Γ ) of Γ consists of all places v of k
such that log ‖γj‖v 6= 0 for some j ∈ {1, . . . , n} and some γ ∈ Γ .

It is clear that supp(Γ ) is a finite set because Γ is finitely generated.

Lemma 3. Let H ⊂ Γ be a subgroup of Γ . We have supp(H) ⊆ supp(Γ )
and equality holds if rk(H) = rk(Γ ). Moreover , if rk(H) = rk(Γ ) then

RS(H) = [Γ/tors : H/tors]RS(Γ ).

P r o o f. The inclusion supp(H) ⊆ supp(Γ ) is clear.
The rank of H is at most the rank of Γ ([MKS], Th. 4.5, Cor. 4.5.2

and Th. 4.1, p. 146). If H and Γ have the same rank then H has finite
index in Γ ([MKS], Th. 4.1, p. 146). Let v ∈ supp(Γ ) and let γ ∈ Γ and
j be such that log ‖γj‖v 6= 0. The powers γm of γ fall into finitely many
cosets of H in Γ , therefore there are two distinct powers in a same coset
and, taking their quotient, there is a power γ′ = γm ∈ H, with m 6= 0.
Now log ‖γ′j‖v = m log ‖γj‖v 6= 0 and v ∈ supp(H), as asserted. The final
statement of the lemma is also clear.

Let O×k be the group of units of k and define

Γ∞ = Γ ∩ (O×k )n.

Then there is a free subgroup Γ0 of Γ such that

Γ = Γ∞Γ0 and Γ0 ∩ (O×k )n = {1}.
To see this, let r = rk(Γ∞). By the structure theorem for finitely generated
abelian groups (see e.g. [MKS], Cor. 4.5.2, p. 146), there are generators γσ,
σ = 1, . . . , s, of Γ up to torsion and integers di such that γd1

1 , . . . ,γdrr are
generators of Γ∞ up to torsion, with di dividing di+1. On the other hand,
if γd is a unit then γ itself is a unit, hence we must have d1 = . . . = dr = 1.
Also tors(Γ ) ⊂ Γ∞. Thus we may take

Γ∞ = 〈γ1, . . . ,γr〉 · tors(Γ ) and Γ0 = 〈γr+1, . . . ,γs〉.
Although this decomposition is not canonical, the regulator behaves nicely
with respect to it. We have

Lemma 4. Let Γ = Γ∞Γ0 be as before and let S ⊂ Mk × {1, . . . , n} be
nondegenerate with respect to Γ . Let S∞ and S0 be the subsets of S consisting
of (v, j) with v |∞ and v -∞ respectively , and let us say that S is special if
their cardinality equals the ranks of Γ∞ and Γ0. Then

(i) there is a nondegenerate and special set S for Γ ;
(ii) for special S we have RS(Γ ) = RS∞(Γ∞)RS0(Γ0).

P r o o f. If S∞ and S0 are nondegenerate for Γ∞ and Γ0 then S = S∞ ∪
S0 is nondegenerate for Γ . A nondegenerate S∞ for Γ∞ may consist only
of (v, j) with v |∞ hence it is automatically special with respect to Γ∞.
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Therefore, to complete the proof of (i) we need only show that there is a
nondegenerate special set S0 = {(v, j)} for Γ0, in other words, such that
v -∞ for (v, j) ∈ S0.

Suppose this is not the case. Let {γσ}, σ = 1, . . . , s0, be generators for
Γ0; then the matrix

(log ‖γσj‖v)σ=1,...,s0
(v,j)∈{v -∞}×{1,...,n}

would have rank strictly less than s0. As in the proof of Lemma 2, this
would give us a nontrivial element γ ∈ Γ0 such that ‖γj‖v = 1 for (v, j) ∈
{v -∞} × {1, . . . , n}. Hence γ ∈ (O×k )n, contradicting the definition of Γ0.
This proves statement (i).

For the second statement we proceed as follows. Let Γ∞ = 〈γ1, . . . ,γr〉×
tors and Γ0 = 〈γr+1, . . . ,γs〉. Since γσj is a unit for σ = 1, . . . , r and j =
1, . . . , n we have log ‖γσj‖v = 0 for every (v, j) with finite v and σ = 1, . . . , r;
it follows that the matrix (log ‖γσj‖v)(v,j)∈S has a block structure as




(log ‖γσj‖v)σ=1,...,r
(v,j)∈S∞

0

∗ (log ‖γσj‖v)σ=r+1,...,s
(v,j)∈S0


 .

Since we assume that S is special, the two blocks containing the diagonal
are square blocks and the result follows upon taking determinants.

We conclude this section with an important definition.

Definition 5. Let T ⊂Mk×{1, . . . , n} and let X 6= ∅ be a finite subset
of Γ . Then we define

νT (X ) = max
x∈X

max
(v,j)∈T

|log ‖xj‖v|.

5. Finding good generators for Γ . The following result gives us good
generators for Γ .

Lemma 5. Let T be a subset of Mk × {1, . . . , n}, of cardinality t, con-
taining a nondegenerate subset for Γ . Then we can find generators γσ of Γ
such that , with S denoting s-subsets of T ,

t−s
s∏

σ=1

max
(v,j)∈T

|log ‖γσj‖v| ≤ max
S⊂T

RS(Γ ) ≤ ss max
S⊂T

s∏
σ=1

max
(v,j)∈S

|log ‖γσj‖v|.

P r o o f. Let γσ, σ = 1, . . . , s, be a set of generators of Γ up to torsion
and let T be the box in Rs defined by

T =
{

y ∈ Rs : max
(v,j)∈T

∣∣∣
s∑

σ=1

log ‖γσj‖vyσ
∣∣∣ ≤ 1

}
.
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By the Cube Slicing Theorem of Vaaler ([V], Th. 1, p. 543) the volume
of T is bounded below by

(5.1) Vol(T ) ≥ 2s{det((log ‖γσj‖v)′σ=1,...,s
(v,j)∈T

· (log ‖γσj‖v)σ=1,...,s
(v,j)∈T

)}−1/2

with ′ denoting the transpose of the matrix A = (log ‖γσj‖v).
By the Cauchy–Binet formula, we have

det(A′ ·A) =
∑

S⊂T
det(log ‖γσj‖v)2

σ=1,...,s
(v,j)∈S

≤
(
t

s

)
max
S⊂T

R2
S(Γ ).

If we combine this inequality with the preceding lower bound (5.1) for the
volume we get

(5.2) Vol(T ) ≥ 2s
(
t

s

)−1/2

(max
S⊂T

RS(Γ ))−1.

Let λ1, . . . , λs be the successive minima of T with respect to the standard
lattice Zs. By a theorem of Mahler (see for instance [C2], Ch. V, Lemma 8,
p. 135), there is a basis y1, . . . ,ys of Zs such that (2)

(5.3) max
(v,j)∈T

∣∣∣
s∑
%=1

log ‖γ%j‖v · yσ%
∣∣∣ ≤ σλσ.

This basis yields new generators γ′σ defined by

γ′σ =
s∏
%=1

γyσ%% , σ = 1, . . . , s,

such that

(5.4) log ‖γ′σj‖v =
s∑
%=1

yσ% log ‖γ%j‖v

for every v ∈ Mk and j ∈ {1, . . . , n}. In terms of these generators, we can
rewrite (5.3) as

(5.5) max
(v,j)∈T

|log ‖γ′σj‖v| ≤ σλσ for σ = 1, . . . , s.

By Minkowski’s Second Theorem in the Geometry of Numbers we have

λ1λ2 . . . λs Vol(T ) ≤ 2s

and hence by (5.2) we get

λ1 · (2λ2) . . . (sλs) ≤ s!
(
t

s

)1/2

max
S⊂T

RS(Γ ) ≤ ts max
S⊂T

RS(Γ ).

This and (5.3) prove the lower bound in Lemma 5.

(2) One can take max(1, σ/2)λσ in place of σλσ , but such improvements are irrelevant
here.
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Since regulators do not depend on the choice of generators we may use
the generators γ′ satisfying (5.5) to define the regulator RS(Γ ). Now RS(Γ )
can be estimated from above using Laplace’s expansion.

A set of generators satisfying the conclusion of Lemma 5 will be referred
to as a set of good generators relative to T .

We need lower bounds for regulators. This is provided by

Lemma 6. Let G = Gnm(k) and let Γ be a finitely generated subgroup of
G of rank s. Let Γ = Γ∞Γ0 be the decomposition considered in Lemma 4
and let S = S∞ ∪ S0 be a special nondegenerate subset of Mk × {1, . . . , n}
relative to this decomposition. Then

RS(Γ ) ≥ (9nd5)−s.

More generally , for every subgroup H of Γ of positive rank r there is a subset
Σ ⊆ S which is nondegenerate and special for H, such that

RΣ(H) ≥ (9nd5)−r.

Moreover , if Γ0 6= {1} let P be the largest prime such that there is v0 in the
support of Γ with v0 |P . Then there is a special nondegenerate S for Γ with
v0 ∈ S0, and we have the improved lower bound

RS(Γ ) ≥ (9nd5)−s(logP ).

Further , suppose that for some integer m ≥ 1 we have

Γ ⊂ Gm = {εgm : g ∈ G, ε ∈ tors(G)} ,
or in other words, suppose that elements of Γ are mth powers up to torsion.
Then the lower bounds for RS(Γ ) and RΣ(H) can be improved by a factor
ms and mr respectively.

P r o o f. By Lemma 4 we have

RS(Γ ) = RS∞(Γ∞)RS0(Γ0)

so it suffices to prove the result separately in the two cases Γ = Γ0, S = S0

and Γ = Γ∞, S = S∞; the statement about subgroups follows from the fact
that if S is nondegenerate and special for Γ and H is a subgroup of Γ then
there is a subset Σ ⊂ S which is nondegenerate and special for H.

To obtain a lower bound for the case Γ = Γ0, S = S0 we note that for
a ∈ k× and finite v we have

log ‖a‖v ∈ 1
ev

(log pv) · Z
where pv is the rational prime such that v | pv and ev is the ramification
index. Hence

(5.6) RS(Γ ) = |det(log ‖γσj‖v)σ=1,...,s
(v,j)∈S

| ∈
( ∏

(v,j)∈S

log pv
ev

)
· Z.
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Since every v in (v, j) ∈ S is a finite place, we get

RS ≥ ((log 2)/d)−s.

Moreover, we can choose S such that there is an element (v0, i) ∈ S with
v0 |P , in which case there is a factor (logP )/ev0 ≥ (logP )/d in the right-
hand side of (5.6). A fortiori, this proves the required lower bounds if Γ = Γ0,
S = S0.

Now consider the case Γ = Γ∞, S = S∞. In this case we need only
consider the set T = {v |∞} × {1, . . . , n} since log ‖γσj‖v = 0 if (v, j) 6∈ T .

By Lemma 5, noting that |T | ≤ nd, we get a set S ⊂ T of cardinality s
and generators γσ up to torsion, such that

(5.7) (nd)−s
s∏

σ=1

max
(v,j)∈T

|log ‖γσj‖v| ≤ RS(Γ ).

By a result of Dobrowolski [D], we have h(γσj) ≥ 1/(9d3) because γσj is not
a root of unity. Since log ‖γσj‖ 6= 0 may occur only for v|∞ we deduce that

max
(v,j)∈T

|log ‖γσj‖v| ≥ (9d4)−1

for σ = 1, . . . , s.
This inequality and (5.7) give

RS(Γ ) ≥ (9nd5)−s.

This completes the proof of the stated lower bounds for RS(Γ ).
The last statement of Lemma 6 is easy to prove. Let γσ be generators of

Γ up to torsion. If Γ ⊂ Gm we can write γσ = εση
m
σ . Let Γ ′ = 〈η1, . . . ,ηs〉×

tors(Γ ). Then we have [Γ ′ : Γ ] = ms and there is a subgroup H′ ⊇ H of
Γ ′ such that H has index [H′ : H] = mr in H′. By Lemma 3 we have
RS(Γ ) = msRS(Γ ′) and RΣ(H) = mrRΣ(H′), and the result follows by
applying the preceding lower bounds to Γ ′ and H′.

We use the results we have proved on regulators to compare the mass
and height of a set X ⊂ Γ . We begin by giving an upper bound for the mass
in terms of the height.

Lemma 7. Let X ⊂ Γ and let T ⊂Mk × {1, . . . , n} contain a nondegen-
erate subset Σ for X . Let H = 〈X 〉 and suppose r = rk(X ) ≥ 1. Then

m(X ) ≤ RΣ(H)−1(rνT (X ))r.

In particular , if Γ ⊂ Gm and T contains a nondegenerate special set for Γ

m(X ) ≤
(

9nd5r

m
νT (X )

)r
.

P r o o f. Let H = 〈X 〉 and let Σ be a nondegenerate set for H. Let
r = rk(X ) and let xi = (xi1, . . . , xin) ∈ X , i = 1, . . . , r, be r elements of X .
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Then

(5.8) |det(log ‖xij‖v) i=1,...,r
(v,j)∈Σ

| = RΣ(H) · |det(nσ(xi)) i=1,...,r
σ=1,...,r

|.

It follows that the maximum of this quantity over all choices of xi ∈ X ,
i = 1, . . . , r, is

(5.9) RΣ(H) ·m(X ).

On the other hand, by the Laplace expansion we have

(5.10) |det(log ‖xij‖v) i=1,...,r
(v,j)∈Σ

| ≤ (rmax
x∈X

max
(v,j)∈Σ

|log ‖xj‖v|)r ≤ (rνT (X ))r.

If we combine (5.8), (5.9) and (5.10) we deduce (3)

(5.11) m(X ) ≤ RΣ(H)−1(rνT (X ))r,

which is the first statement of the lemma.
For the second statement we fix a nondegenerate and special set S ⊂ T

for Γ and restrict our attention to Σ nondegenerate and special for H.
Lemma 6 provides a lower bound for RΣ(H), and we are done.

The following result will be used to provide control of the height.

Lemma 8. Let T ⊂ Mk × {1, . . . , n} contain a subset S∗ such that R =
RS∗(Γ ) is a maximum. Let t be the cardinality of supp(Γ ) and let X ⊂ Γ
be nonempty. Then

h(X ) ≤ (nst)s+1νT (X ).

P r o o f. Let T = supp(Γ ) × {1, . . . , n}. By definition of support, for
γ ∈ Γ we have log ‖γj‖v = 0 unless (v, j) ∈ T . Now Lemma 5 gives us
generators γσ of Γ up to torsion such that

(5.12) (nt)−s
s∏

σ=1

max
all (v,j)

|log ‖γσj‖v| ≤ R.

For x ∈ X consider the linear system of equations

(5.13)
s∑

σ=1

(log ‖γσj‖v)nσ(x) = log ‖xj‖v

for (v, j) ∈ S∗, with unknowns nσ(x). By Cramer’s rule we obtain

(5.14) R|nσ(x)| = ± det(log ‖xj‖v, log ‖γ%j‖v)%6=σ
(v,j)∈S∗

.

(3) We may replace rνT (X ) by
√
rνT (X ) if we use Lord Kelvin’s inequality (also more

widely known as Hadamard’s inequality).
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By the lower bound in (5.12) and the Laplace expansion of the determinant
in (5.14) we deduce

(nt)−s|nσ(x)|
{ s∏
%=1

max
all (v,j)

|log ‖γ%j‖v|
}

≤ ss( max
(v,j)∈S∗

|log ‖xj‖v|)
{∏

%6=σ
max

(v,j)∈S∗
|log ‖γ%j‖v|

}

and a fortiori we deduce

(5.15) |nσ(x)| max
all (v,j)

|log ‖γσj‖v| ≤ (nst)s max
(v,j)∈S∗

|log ‖xj‖v|.

We have, using (5.13) and (5.15),

h(x) = 1
2

∑

v∈supp(Γ )

dv
d

max
j
|log ‖xj‖v| ≤ 1

2 t max
all (v,j)

|log ‖xj‖v|

≤ 1
2 t max

all (v,j)

s∑
σ=1

|nσ(x)| · |log ‖γσj‖v| ≤ (nst)s+1 max
(v,j)∈S∗

|log ‖xj‖v|.

This proves the lemma.

6. The Global Cluster Principle. We begin with an extension of the
Local Cluster Principle to several places. We need the following definition
of signature of a solution x = (x1, x2) of a1x1 + a2x2 = 1.

Definition 6. Let T be a finite subset of Mk × {1, 2}. The signature
εT (x) of x = (x1, x2) relative to T is the vector

εT (x) = {sign log ‖ajxj‖v : (v, j) ∈ T},
where by convention sign 0 = 1.

Let us denote by w = (v, j) elements of T and let i denote a vector
i = (iw : w ∈ T ) with integer entries iw satisfying −1 ≤ iw. We define

‖i‖ =
∑

w∈T
max(0, iw).

We have a partial ordering on the set of such vectors, namely i ≤ i′ if and
only if iw ≤ i′w for every w ∈ T .

Global Cluster Principle. Let Γ ⊂ G2
m(k) be a finitely generated

group of rank s ≥ 1 and let X be a finite set of solutions (x1, x2) ∈ Γ
of the generalized unit equation a1x1 + a2x2 = 1. Let T = {(v, j)} be a
finite subset of Mk × {1, 2}. Suppose also that the signature of elements of
X relative to T is constant , i.e. εT (x) = εT for all x ∈ X , for some vector
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εT = {εw : w ∈ T} with εw = −1, 1. Then there is a partition

X =
⋃
Xi

indexed by vectors i = {iν}ν∈T , iν ≥ −1, with the following properties.

(i) Clustering property : If Xi 6= ∅ then for x ∈ Xi we have

νT (x−1Xi) ≤ log(6s2τm(X )).

(ii) Rank property : Let

X ′i =
⋃

h≥i

Xh.

Suppose that Xi 6= ∅. Then

rk(X̃ ′i ) ≤ rk(X̃ )− ‖i‖.
P r o o f (by induction on the cardinality of T ). We apply the Local Clus-

ter Principle as follows.
If T is empty, there is nothing to prove.
Suppose the statement is true for T and let us prove it for T ∗ = T ∪

{(v, j)}. We abbreviate w = (v, j).
We define X ′i,−1 = X ′i and apply the Local Cluster Principle at w = (v, j)

to the set X ′i,−1. This gives a partition

X ′i,−1 =
s⋃

h=−1

Xi,h

and sets
X ′i,i′ =

⋃

h≥i′
Xi,h

such that (i) holds and rk(X̃ ′i,i′) > rk(X̃ ′i,i′+1) provided X̃ ′i,i′ 6= ∅.
To verify (ii), it suffices to note that, by the induction hypothesis, we

have

rk(X̃ ′i,i′) ≤ rk(X̃ ′i )−max(0, i′) ≤ rk(X̃ )− ‖i‖ −max(0, i′)

= rk(X̃ )− ‖{i, i′}‖.
This proves the result.

For applications, we need an upper bound for the number of sets Xi.

Lemma 9. The number of sets Xi does not exceed 2s+2|T |.

P r o o f. Let us write t = |T |. If Xi is not empty then by (ii) we must
have ‖i‖ ≤ rk(X̃ ). Since i has t components, the number of solutions of this
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inequality is exactly
s∑

l=0

(
t

l

)(
rk(X̃ ) + t− l

t− l
)
< 2rk(X̃ )+2t−1 ≤ 2rk(Γ̃ )+2t−1,

proving the stated bound because rk(Γ̃ ) ≤ s+ 1.

One way of applying the Global Cluster Principle is as follows. We abbre-
viate G = G2

m(k) and define Gm as in Lemma 6, namely Gm is the subgroup
of elements of G which are mth powers up to torsion. We also define

L(t) = 1 + log+(t).

Lemma 10. Let Γ ⊂ Gm be a finitely generated group of rank s ≥ 1
and let X be a finite set of solutions (x1, x2) ∈ Γ of the generalized unit
equation a1x1 + a2x2 = 1. Let T = {(v, j)} be a finite subset of Mk ×
{1, 2} containing a nondegenerate special subset for Γ and define K = s(1+
log+(432d9s3m−1)). Then there is a partition

X =
⋃
Xi

of X into at most 2s+3|T | subsets Xi, with the following property. For every
subset Xi 6= ∅ and any choice of xi ∈ Xi we have

νT (x−1
i Xi) ≤ KL(νT (X )).

In particular , if m ≥ 432d9s3 we can take K = s.

P r o o f. We first split X into not more than 2|T | sets of constant signature
and apply the Global Cluster Principle to each subset so obtained, say Y.

We estimate the mass of Y using the second statement of Lemma 7. If
r = rk(Y) we find

νT (x−1
i Xi) ≤ log(6s2τm(Y))

≤ log
(

6s2τ

(
18d5r

m

)r
νT (Y)r

)

≤ log
(

6s2τ

(
18d5r

m

)r
νT (X )r

)

≤ log
(

6s2τ

(
18d5r

m

)r)
+ s log+(νT (X )).

Since τ ≤ |tors(k×)|2 ≤ (2d2)2, we have

log
(

6s2τ

(
18d5r

m

)r)
≤ r log

(
6s2(2d2)2 18d5r

m

)

≤ s log+(432d9s3m−1) = K − s,
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and we conclude that

νT (x−1
i Xi) ≤ K − s+ s log+(νT (X )) ≤ KL(νT (X )).

Finally, K = s if m ≥ 432d9s3.

Let us abbreviate

Ln(t) = L ◦ L ◦ . . . ◦ L︸ ︷︷ ︸
n times

(t).

The iteration of Lemma 10 leads to the following result.

Corollary. Assume the same hypotheses as in Lemma 10 and let n ≥ 1
be a positive integer. Then there are a partition

X =
⋃
Xi

and points xi ∈ Xi such that

(i) we have maxi νT (x−1
i Xi) ≤ 2KL(K)Ln(νT (X ));

(ii) the number of sets Xi does not exceed 2n(s+3|T |).

P r o o f (by induction on n). Let us denote by Xn a typical set x−1
i Xi

obtained at stage n. We will show that there is a sequence 1 = κ1 < κ2 <
. . . < 2 such that

νT (Xn) ≤ κnKL(K)Ln(νT (X )).

The Corollary clearly follows from this statement.
If n = 1, this comes from the Cluster Principle. Now suppose the state-

ment is true for n, so that

νT (Xn) ≤ κnKL(K)Ln(νT (X )),

and apply the Cluster Principle to each set Xn. Then we obtain

νT (Xn+1) ≤ KL(νT (Xn))

with not more than 2s+3|T | sets Xn+1 arising from each set Xn. In particular,
the total number of sets Xn+1 is at most 2(n+1)(s+3|T |).

From the last two displayed inequalities and L(uv) ≤ L(u)L(v) we infer

νT (Xn+1) ≤ KL(κnKL(K)Ln(νT (X ))) ≤ KL(κnKL(K))Ln+1(νT (X )),

yielding
νT (Xn+1) ≤ κn+1KL(K)Ln+1(νT (X ))

with

κn+1 = max
t

L(κntL(t))
L(t)

.
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We have L(κntL(t)) = log(κn) + L(t) + logL(t) for t ≥ 1, therefore setting
u = L(t) we find

κn+1 = 1 + max
u≥1

log κn + log u
u

.

The maximum occurs for u = e/κn, whence κn+1 = 1 + e−1κn and

κn =
1− e−n
1− e−1 <

e

e− 1
< 2

by induction on n. This completes the proof of the Corollary.

7. Moderate growth bounds. For t ≥ 1 we define E(t) = exp(t − 1)
and

En(t) = E ◦ E ◦ . . . ◦ E︸ ︷︷ ︸
n times

(t).

The inverse function of E(t) is the function L(t) = 1 + log+(t) introduced
in the preceding section, and the inverse function of En(t) is

Ln(t) = L ◦ L ◦ . . . ◦ L︸ ︷︷ ︸
n times

(t).

Let f(z) ≥ 1 be a function of a positive argument z ≥ 1. We say that f
has moderate growth of order n if there is a positive integer n such that
f(z) ≤ En(z + 1). The property of being of moderate growth is stable by
sum, product and composition.

In this section, we consider normalized equations ax+ (1− a)y = 1 and
obtain, as a consequence of Baker’s theory of linear forms in logarithms,
bounds for various quantities associated with them. All such bounds will be
described by functions of moderate growth in their arguments.

We say that ax+by = 1 is equivalent to a′x+b′y = 1 if (a′, b′) = (aγ1, bγ2)
for some γ ∈ Γ .

Definition 6. The equation ax + (1 − a)y = 1 is said to be reduced if
h(a) is a minimum among all equivalent normalized equations.

We note the following property of a reduced equation.

Lemma 11. Let x = (x, y) 6= (1, 1) be a solution of a normalized unit
equation ax+ (1− a)y = 1. Then

h(a) ≤ 3h(x) + log 4.

P r o o f. Since ax+ (1− a)y = 1 we have

a =
1− y
x− y .
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Taking heights, we find

h(a) ≤ h(1− y) + h(x− y) ≤ h(x) + 2h(y) + 2 log 2.

Lemma 12. Let Γ be a finitely generated subgroup of G2
m(k) of rank s,

let t be the cardinality of the support of Γ , and let R be the largest regulator
associated with Γ . Also let P be the largest prime such that there is v ∈
supp(Γ ) with v |P if supp(Γ ) contains at least one finite place, and P = 1
otherwise. Then there is a set of generators γσ of Γ up to torsion whose
height h(γσ) is bounded by a function of moderate growth in d, s and R,
namely

h(γσ) ≤ E3(3 max(d, s,R)).

Moreover , t ≤ 2dP and logP ≤ (2ds)sR, and t and P are also bounded by
E3(3 max(d, s,R)).

P r o o f. Let T = supp(Γ )×{1, 2} and let γσ be good generators relative
to T . Since log ‖γσj‖v = 0 if (v, j) 6∈ T , Lemma 5 shows that

(7.1) (2t)−s
s∏

σ=1

max
all (v,j)

|log ‖γσj‖v| ≤ R.

We have

h(γσ) = 1
2

∑
v

dv
d

max
all (v,j)

|log ‖γσj‖v| ≤ 1
2 t max

all (v,j)
|log ‖γσj‖v|,

therefore by (7.1) we obtain

(7.2)
s∏

σ=1

h(γσ) ≤ t2sR.

A bound for the individual quantities h(γσ) is obtained from (7.2) and
Dobrowolski’s [D] lower bound h(γσ) ≥ 1/(9d3), giving

(7.3) h(γσ) ≤ (9d3t2)sR.

The bound t ≤ dP is obvious, and the bound logP ≤ (18d5)sR follows from
Lemma 6. In view of (7.3), this gives

(7.4) h(γσ) ≤ (9d5)sR exp(2s(18d5)sR),

which indeed can be expressed as a function of moderate growth in the
argument 3 max(d, s,R). We leave it to the reader to determine that

(9d5)sR exp(2s(18d5)sR) ≤ E3(3 max(d, s,R)).

This completes the proof.

Lemma 13. There is a positive integer n1 ≥ 3 with the following prop-
erty. Let the notation and hypotheses of Lemma 12 hold. Then the height
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of solutions of the unit equation ax + (1 − a)y = 1 in Γ is majorized by a
function of moderate growth in d, s, R and h(a), namely

h((ax, (1− a)y)) ≤ En1(3 max(d, s,R, h(a))).

R e m a r k. A calculation shows that we can take n1 = 6.

P r o o f o f L e m m a 13. Bounds for solutions of the unit equations
have been obtained by several authors using Baker’s theory of linear forms
in logarithms. For our purposes, we refer to Győry [G] and Evertse, Győry,
Stewart and Tijdeman [EGST]. Lemma 7 of [EGST] states a bound for the
height of solutions of the equation in question which is of moderate growth
in d, P , the cardinality t of supp(Γ ), and two unspecified constants c14 and
c15 depending only on the degree d and the discriminant Dk of the field k
(in their notation, A ≤ 2 exp(h(a)) and s = t+u with u < d the rank of the
group of units of k). However, inspection of [G] shows that these constants
are also majorized by functions of moderate growth in d and Dk (use for
example Siegel’s bounds [S, Satz 1] to bound the product of the class number
and regulator of the field k).

Since by Lemma 12 both t and P are majorized by functions of moderate
growth in d, s and R, it remains to prove that Dk can also be majorized by
a function of moderate growth in d, s and R. If the equation ax+(1−a)y =
1 has only the trivial solution (1, 1), Lemma 13 is trivial. If instead this
equation admits a nontrivial solution then a = (1− y)/(x− y), therefore

a ∈ Q(tors(k×),γ1, . . . ,γs)

with γσ, σ = 1, . . . , s, a set of generators of Γ up to torsion. The group
tors(k×) is cyclic of order at most 2d2 (and better bounds are easily pro-
vided), hence it is controlled solely in terms of d.

Replacing k by Q(tors(k×),γ1, . . . ,γs) it is easy to see that Dk admits
a bound which is a function of moderate growth in the heights of the gen-
erators γσ of Γ and in the degree d of the field; a neat explicit bound is in
[BW], Lemma 2.

Finally, Lemma 12 shows that we can find a set of generators of Γ such
that h(γσ) is majorized by a function of moderate growth in 3 max(d, s,R).
The required result follows.

8. Application of the Cluster Principle. In this section we prove
the theorem stated in the introduction.

Lemma 14. Let ax+ (1− a)y = 1 be a reduced equation to be solved with
x = (x, y) ∈ Γ . Let R = maxS RS(Γ ) be the largest regulator associated with
Γ . Then either this equation has at most cs2 solutions for a certain absolute
constant c2 or h(a) is majorized by a function of moderate growth in d, s
and R.
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R e m a r k. The proof shows that h(a) ≤ E4(3 max(d, s,R)).

P r o o f o f L e m m a 14. If h(a) ≤ max(d, s,R) there is nothing to
prove. Hence let us assume that h(a) > max(d, s,R).

Let T ⊂ Mk × {1, 2} be given by T = S ∪ S∗ where S is nondegenerate
and special for Γ and S∗ is such that R = RS∗ . Clearly |T | ≤ 2s. Also
let K = s(1 + log(432d9s3)) and let X be the set of solutions of the unit
equation in question.

We apply the Corollary to Lemma 10 to this situation obtaining a par-
tition X =

⋃Xi of X into not more than 27ns disjoint subsets Xi such that
for xi ∈ Xi we have

(8.1) νT (x−1
i Xi) ≤ 2KL(K)Ln(νT (X )).

Since S∗ ⊂ T , Lemma 8 shows that

(8.2) h(x−1
i Xi) ≤ (2st)s+1νT (x−1

i Xi)
where t is the cardinality of the support of Γ .

On the other hand, for any x ∈ Γ we have

νT (x) ≤ dh(x) ≤ d(h(a) + h(ax)),

and therefore using Lemma 13 and h(a) ≥ max(d, s,R) we get

(8.3) νT (X ) ≤ d(h(a) + En1(3h(a))) ≤ En1+1(3h(a)).

By (8.1), (8.2) and (8.3) taking n = n1 + 2 we deduce

h(x−1
i Xi) ≤ (2st)s+12KL(K)Ln1+2(En1+1(3h(a)))(8.4)

= (2st)s+12KL(K)L(3h(a));

the number of sets Xi is at most 27(n1+2)s.
Now suppose that there is a set Xi containing at least two elements, say

xi = (xi, yi) and x′i = (x′i, y
′
i). Set a′ = axi, x′ = (x′, y′) = x′i/xi. Then

(8.4) yields

(8.5) h(x′) ≤ (2st)s+12KL(K)L(3h(a)).

Since x′ is a nontrivial solution of the normalized equation a′x′+(1−a′)y′ =
1, we may apply Lemma 11 and deduce from (8.5) that

(8.6) h(a′) ≤ 3h(x′) + log 4 ≤ 3(2st)s+12KL(K)L(3h(a)) + log 4.

Finally, h(a) ≤ h(a′) because ax + (1 − a)y = 1 is a reduced equation. In
view of (8.6), this gives

(8.7) h(a) ≤ 3(2st)s+12KL(K)L(3h(a)) + log 4.

By Lemma 12, t ≤ E3(3 max(d, s,R)) and (8.7) now implies that h(a) admits
a bound of moderate growth in d, s and R, which is the conclusion of
Lemma 14.
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It remains to consider the case in which every Xi consists of only one
element. Since the number of sets Xi is at most 27(n1+2)s, Lemma 14 follows.

P r o o f o f T h e o r e m. For the rest of this section, we assume that h(a)
satisfies the moderate growth bound provided by the second alternative of
Lemma 14. Then Lemma 13 provides a bound

(8.8) h(X ) ≤ En2(3 max(d, s,R))

for the set of solutions of the reduced and normalized equation ax+(1−a)y =
1 with x ∈ Γ , for a certain absolute integer constant n2, in fact with n2 ≤ 10.

We apply again the Corollary to Lemma 10 to this situation taking
T = S ∪ S∗ as in the proof of Lemma 14 and n = n2 + 1, and obtain a
partition X =

⋃Xi of X into not more than 27(n2+1)s disjoint subsets Xi
such that for xi ∈ Xi we have

(8.9) νT (x−1
i Xi) ≤ 2KL(K)Ln2+1(νT (X )).

As noted in the proof of Lemma 14 we have νT (x) ≤ dh(x), and therefore
from (8.8) and (8.9) we easily infer that

(8.10) νT (x−1
i Xi) ≤ 2KL(K)L(4 max(d, s,R)).

We claim that if Γ ⊂ Gm and m ≥ 1800d9s4 we have

(8.11) rk(x−1
i Xi) < rk(X ).

To see this, let us consider a subset x−1
i Xi. Suppose that rk(x−1

i Xi) =
rk(X ) = s. Then H = 〈x−1

i Xi〉 would have finite index in Γ and therefore

(8.12) RS∗(H) ≥ RS∗(Γ ) = R.

Now we apply Lemma 7 to the set x−1
i Xi. In view of (8.10) and (8.12) we

infer

(8.13) m(x−1
i Xi)1/s ≤ R−1/ss2KL(K)L(4 max(d, s,R)).

If we take m ≥ 1800d9s4 then, as noted in Lemma 10, we have K = s and
(8.13) simplifies, after some generous majorizations, to

(8.14) m(x−1
i Xi)1/s

≤ R−1/s2s2L(s)L(4 max(d, s,R))

= R−1/s2s2(1 + log s)(1 + log 4 + max(log d, log s, logR))

≤ 5ds2(1 + log s)2R−1/s max(1, logR).

Now recall that by the last part of Lemma 6 and m ≥ 1800d9s4 we have

R1/s ≥ m

18d5 ≥ 100(ds)4,
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while R−1/s logR is decreasing in R for R1/s ≥ e. Then (8.14) gives a fortiori
the bound

m(x−1
i Xi)1/s ≤ 5ds2(1 + log s)2R−1/s logR(8.15)

≤ 5ds2(1 + log s)2(100(ds)4)−14s log( 4
√

100ds)

≤ 5−1d−3s−1(1 + log s)2 log(4ds)

≤ 5−1 max
z≥1

z−1(1 + log z)2 log(4z) < 1

as a simple numerical maximization shows.
On the other hand, the mass of a set of positive rank is always a positive

integer, which contradicts (8.15). This proves our claim (8.11).
Let Nm(s) be the maximum number of solutions of a generalized unit

equation for a group Γ ⊂ Gm. We have shown that if m ≥ 1800d9s4 we have

Nm(s) ≤ 27(n2+1)sNm(s− 1)

and Nm(s) ≤ 27(n2+1)s2Nm(0) follows by induction on s. Also, it is trivial
that Nm(0) ≤ 2 (intersect the circle |z| = 1 with the circle |1−az| = |1−a|),
therefore for m ≥ 1800d9s4 we have

(8.16) Nm(s) ≤ 27(n2+1)s2+1.

For a general Γ we may replace Γ by Γm = Γ ∩ Gm and note that Γm
has index ms in Γ . By expressing Γ as a union of ms cosets of Γm we obtain
ms generalized unit equations to be solved in Γm. By (8.16), we conclude
that

N1(s) ≤ msNm(s) ≤ (1800d9s4)s27(n2+1)s2+1 ≤ d9scs
2

1

and with it the proof of the Theorem.
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