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1. Introduction. Let

(1.1) K(an/1) :=
a1

1 +
a2

1 +
a3

1 + . . .

be a continued fraction and let

(1.2)
Pn
Qn

:=
a1

1 +
a2

1 + . . . +
an
1
, n ≥ 1,

be the nth convergent (or approximant) of K(an/1). Set P−1 = 1, Q−1 = 0,
P0 = 0, and Q0 = 1. By convention, the value of K(an/1), if it exists, is
defined to be the limit of the sequence {Pn/Qn} as n tends to infinity.

Some basic and important facts about Pn and Qn [2, p. 9] are

(1.3) Pn = Pn−1 + anPn−2, Qn = Qn−1 + anQn−2,

and

(1.4) PnQn−1 − Pn−1Qn = (−1)n−1a1 . . . an,

where n = 1, 2, . . .
Now, by putting an = axn−1 in (1.1), we obtain the continued fraction

(1.5) R(a) :=
a

1 +
ax

1 +
ax2

1 + . . .
.

On page 46 of his lost notebook [5], Ramanujan evaluates R(a) in terms
of its (m − 1)th convergent when x is a primitive mth root of unity. More
precisely, Ramanujan claims that, given any primitive mth root of unity x,

(1.6) R(a) =
P (a) + 1

2 (−1 +
√

1 + 4am)
Q(a)

,
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where

P (a)
Q(a)

=
a

1 +
ax

1 + . . . +
axm−2

1

is the (m − 1)th convergent of R(a). Note that one can obtain this kind
of result simply by solving a quadratic equation. However, to prove (1.6)
requires more than that. Especially, nontrivial observations are needed.

In Section 2, we proceed with the study of the convergents of R(a). In
particular, Theorem 2.2 is one of the main ingredients needed to prove (1.6).
It turns out that Theorem 2.2 can be established by proving an interesting
identity (2.1).

The third section is devoted to the proof of (2.1). Arising naturally in
the proof is the notion of relative decompositions (mod m) which was first
introduced and studied by Stern [8], [9] and then further developed and
generalized by von Sterneck [10]–[12].

In Section 4, (1.6) is restated as Theorem 4.4 in a more precise way and
is proved by using results of Worpitzky (Lemma 4.1) and Vitali (Lemma
4.2).

In the final section, we generalize Theorem 4.4 by proving some results
on page 57 of Ramanujan’s lost notebook.

2. On convergents of R(a). To simplify notation, we define the two
sets,

An := {~v = (n1, . . . , nr) ∈ Nr : r ≥ 1, n1 = 1, ni+1 − ni ≥ 2, and nr ≤ n},
and

Bn := {~v = (n1, . . . , nr) ∈ Nr : r ≥ 1, n1 ≥ 2, ni+1 − ni ≥ 2, and nr ≤ n}.

Lemma 2.1. For each positive integer n,

(i) Pn =
∑

~v∈An
an1 . . . anr

and

(ii) Qn = 1 +
∑

~v∈Bn
an1 . . . anr ,

where Pn and Qn are defined in (1.2).

P r o o f o f (i). Use induction on n. Clearly (i) is valid for n = 1. Assume
that (i) is true up to n. Then, by the first recurrence relation in (1.3),
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Pn+1 = Pn + an+1Pn−1

=
∑

~v∈An
an1 . . . anr +

∑

~v∈An−1

an1 . . . anran+1

=
∑

~v∈An+1

an1 . . . anr .

Identity (ii) can be proved in a similar manner by using the second
recurrence relation in (1.3).

In the sequel, we will denote the nth convergent of R(a) by Pn(a)/Qn(a),
i.e.,

Pn(a)
Qn(a)

=
a

1 +
ax

1 + . . . +
axn−1

1
.

Theorem 2.2. For any number a, and any primitive mth root of unity x,

Pm−1(a) +Qm(a) = 1.

Before we prove Theorem 2.2, let us take a closer look at the sum of
Pm−1(a) and Qm(a). First, define An(l) to be the subset of An which
contains all the l-dimensional vectors. Similarly, Bn(l) contains all the l-
dimensional vectors in Bn. Then, by Lemma 2.1, we find that

Pm−1(a) +Qm(a)

=
∑

~v∈Am−1

axn1−1axn2−1 . . . axnr−1 + 1 +
∑

~v∈Bm
axn1−1axn2−1 . . . axnr−1

= 1 +
[m/2]∑
r=1

arx−r
∑

~v∈Am−1(r)

xn1+...+nr +
[m/2]∑
r=1

arx−r
∑

~v∈Bm(r)

xn1+...+nr

= 1 +
[m/2]∑
r=1

arx−r
( ∑

~v∈Am−1(r)

xn1+...+nr +
∑

~v∈Bm(r)

xn1+...+nr
)

= 1 +
[m/2]∑
r=1

arx−r
( ∑

~v∈Cm(r)

xn1+...+nr
)
,

where Cm(r) is the union of Am−1(r) and Bm(r).
Therefore, to prove Theorem 2.2, it suffices to show that, given any

primitive mth root of unity x,

(2.1)
∑

~v∈Cm(r)

xn1+...+nr = 0, for each r = 1, 2, . . . , [m/2].

We will prove (2.1) as a corollary of a result in the following section.
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3. Relative decompositions (mod m). The notion of the following
definition was first introduced by Stern [8] and the name relative decompo-
sitions (mod m) was given by Bachmann [1, Part II, Chap. 5].

Definition. Let n be a positive integer. A sequence (n1, . . . , nr) of pos-
itive integers is called a relative decomposition (mod m) of n (with r parts)
if

(3.1) 0 ≤ n1 < . . . < nr ≤ m− 1

and

(3.2) n ≡ n1 + . . .+ nr (mod m).

Also, we adopt von Sterneck’s notation (n)r to indicate the number of
all possible relative decompositions (mod m) of n with r parts. The func-
tion (n)r can be viewed as an analogue of p(n, r), the number of ordinary
partitions of n into r parts. It is easy to see that p(n, r) ≤ (n)r. For the
work on relative decompositions, we refer the readers to [1] and [8]–[12].

From now on, instead of considering (n)r, we will focus on restricted
relative decompositions (mod m) with r parts. More precisely, for each n =
0, 1, . . . ,m − 1, let Gr(n) denote the set of all the relative decompositions
(mod m) of n with r parts subject to the conditions

(3.3) ni+1 − ni ≥ 2 for each i = 1, . . . , r − 1,

and

(3.4) nr − n1 ≤ m− 2.

Note that Gr(n), n = 0, 1, . . . ,m − 1, are pairwise disjoint. Also, let gr(n)
be the cardinality of Gr(n).

Theorem 3.1. Let r and m be positive integers with greatest common
divisor d and let j1, j2 ∈ {0, 1, . . . ,m − 1}. If d divides j1 − j2 or j1 + j2,
then

gr(j1) = gr(j2).

In particular , if r and m are relatively prime, then

gr(0) = gr(1) = . . . = gr(m− 1).

P r o o f. First, suppose that d divides j1 − j2. Then we can write j2 =
j1 +ud for some integer u. To prove the result, it suffices to find a one-to-one
mapping from Gr(j1) onto Gr(j2). Note that, since d = (r,m), there exist
integers α and β such that αr + βm = d.

Next, given an element (n1, . . . , nr) in Gr(j1), define a new sequence of
positive integers

(3.5) (n1 + uα, n2 + uα, . . . , nr + uα),
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where z designates the smallest positive residue of z modulo m. Finally,
denote the sequence (3.5) by (k1, . . . , kr), after rearranging the coordinates
in a nondecreasing order.

Now, define ϕ from Gr(j1) to Gr(j2) by assigning to each element
(n1, . . . , nr) in Gr(j1) the sequence (k1, , . . . , kr) obtained by the procedure
described above. The mapping ϕ is clearly one-to-one and onto (u and α
are fixed) provided that ϕ is well-defined. Thus, it remains to show that
(k1, . . . , kr) satisfies (3.2)–(3.4) with n replaced by j2. By taking congru-
ences modulo m, we find that

r∑

i=1

ki ≡
r∑

i=1

ni + uαr

≡ j1 + ud (since αr + βm = d)

≡ j2 (mod m),

and hence (3.2) is justified.
Next, observe that

(k1, . . . , kr) = (n1 + uα, . . . , nr + uα) if n1 + uα ≤ . . . ≤ nr + uα,

and otherwise,

(k1, . . . , kr) = (nν + uα, . . . , nr + uα, n1 + uα, . . . , nν−1 + uα),

where ν is the smallest integer such that nν + uα < nν−1 + uα. In any
case, (3.3) and (3.4) are satisfied. Therefore, Gr(j1) ∼= Gr(j2) (as sets), i.e.,
gr(j1) = gr(j2). The case in which d divides j1 + j2 is proved similarly.

Theorem 3.1 yields immediately the following result.

Corollary 3.2. Given positive integers r and m with (r,m) = d, we
have

gr(ld+ k) = gr(k)

for any k ∈ {0, 1, . . . , d− 1} and any l ∈ {0, 1, . . . ,m/d− 1}.
Now, we are in a position to prove (2.1) and finish the proof of Theo-

rem 2.2.

Corollary 3.3. (2.1) holds for any primitive mth root of unity x.

P r o o f. Given r ∈ {1, 2, . . . , [m/2]}, we denote (r,m) by d. By the defi-
nitions of Cm(r) and Gr(j),

(3.6) Cm(r) = Gr(0) ∪Gr(1) ∪ . . . ∪Gr(m− 1).
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Then, by (3.6), the disjointness of the sets Gr(j), and Corollary 3.2,

∑

~v∈Cm(r)

xn1+...+nr =
m−1∑

j=0

gr(j) xj =
d−1∑

k=0

m/d−1∑

l=0

gr(ld+ k)xld+k

=
d−1∑

k=0

gr(k)xk
m/d−1∑

l=0

xld = 0,

where the last equality follows from the fact that xd is a primitive (m/d)th
root of unity. Hence, (2.1) is established, and so is Theorem 2.2.

4. Proof of (1.6)

Lemma 4.1 (Worpitzky’s theorem). Let K(an/1) be the continued frac-
tion defined in (1.1). If |an| ≤ 1/4, then K(an/1) converges. Moreover , all
approximants Pn/Qn defined in (1.2) are in the disk |w| < 1/2, and the
value of the continued fraction is in the disk |w| ≤ 1/2.

P r o o f. See [3, p. 35].

Definition. Let Λ be a set of functions, all defined on the same domain
G, and suppose that for every compact subset F ⊂ G there is a number
M(F ) > 0 such that

|f(z)| ≤M(F )
for all f ∈ Λ and z ∈ F . Then Λ is said to be uniformly bounded inside G.

Lemma 4.2 (Vitali’s theorem). Let G be a domain and let {fn} be a
sequence of analytic functions in G. Suppose that {fn} is uniformly bounded
inside G and converges on a set of points E ⊂ G with a limit point in G.
Then {fn} converges uniformly inside G.

P r o o f. See [4, Vol. I, pp. 415–417].

Lemma 4.3. For each fixed primitive root of unity x, R(a) is an analytic
function of a inside the domain G = {a : |a| < 1/4}.

P r o o f. For convenience, denote Pn(a)/Qn(a) by fn(a) for each n ∈ N.
By Lemma 4.1, we have

(4.1) |fn(a)| < 1
2
, for each n ∈ N and each a ∈ G,

and {fn(a)} converges to R(a) in the domain G. Hence, {fn} is uniformly
bounded inside G. On the other hand, by Lemma 2.1, Pn(a) and Qn(a) are
polynomials in a with coefficients in C. This, combined with (4.1), implies
that {fn} is indeed a sequence of analytic functions in G. Therefore, by
Lemma 4.2, {fn(·)} converges uniformly to R(·) in G. Finally, the analyticity
of R(·) follows from Weierstrass’s uniform convergence theorem [4, p. 333].



Evaluations of Rogers–Ramanujan continued fractions 55

We should mention that Ramanujan recorded (1.6) with no indication
of any admissible range for a. However, this can be done without too much
difficulty. Indeed, the domain G in Lemma 4.3 is, in general, the best possible
circular domain for a according to Lemma 4.1 and the fact that the continued
fraction K(a/1) diverges for real a with a < −1/4. In the following, we
restate (1.6) in a more precise way.

Theorem 4.4. Let x be a primitive mth root of unity and |a| < 1/4. Let
R(a) be the continued fraction defined in (1.5). Then

R(a) =
Pm−1(a) + 1

2

{−1 +
√

1 + 4am
}

Qm−1(a)
,

where
Pm−1(a)
Qm−1(a)

=
a

1 +
ax

1 + . . . +
axm−2

1
.

P r o o f. Observe that R(a) becomes a periodic continued fraction when
xm = 1. Hence,

R(a) =
a

1 +
ax

1 +
ax2

1 + . . . +
axm−1

1 +
R(a)

1
(4.2)

=
Pm(a) +R(a)Pm−1(a)
Qm(a) +R(a)Qm−1(a)

,

by (1.3). The identity (4.2) gives a quadratic equation in R(a), i.e.,

(4.3) Qm−1(a)R(a)2 − {Pm−1(a)−Qm(a)}R(a)− Pm(a) = 0.

Solving (4.3) by the quadratic formula, we obtain

R(a) =
{Pm−1(a)−Qm(a)} ±

√
{Pm−1(a)−Qm(a)}2 + 4Pm(a)Qm−1(a)

2Qm−1(a)
.

By Theorem 2.2, the last identity can be rewritten as
(4.4)

R(a) =
Pm−1(a) + 1

2{−1±
√

1 + 4{Pm(a)Qm−1(a)− Pm−1(a)Qm(a)}}
Qm−1(a)

.

Let us write x = exp(2πih/m), with (h,m) = 1. Then, by (1.4),

Pm(a)Qm−1(a)− Pm−1(a)Qm(a)

= (−1)m−1a · ax · . . . · axm−1 = (−1)m−1amxm(m−1)/2

= (−1)m−1ame
2πih
m ·m(m−1)

2 = (−1)(h+1)(m−1)am = am,

where the last equality follows from the fact that h and m are coprime.
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Hence, from (4.4),

(4.5) R(a) =
Pm−1(a) + 1

2{−1 +
√

1 + 4am}
Qm−1(a)

or

(4.6) R(a) =
Pm−1(a) + 1

2{−1−√1 + 4am}
Qm−1(a)

.

Now, it remains to exclude (4.6). By Lemma 2.1, Pm−1(a) and Qm−1(a)
are both polynomials in a and approach 0 and 1, respectively, when a tends
to zero. Hence, when a is inside a small neighborhood of 0, the quantity on
the right side of (4.6) will be outside the disk |w| ≤ 1/2, which contradicts
Lemma 4.1. This implies that (4.5) is valid for |a| ≤ %, where % is a small
positive number depending on m only. Finally, the desired result follows by
Lemma 4.3 and analytic continuation.

To conclude this section, we state Schur’s result on the case a = 1 and
relate it to Theorem 4.4.

Theorem 4.5 ([7, pp. 319–321]). Let F (x) := R(1), where x is a prim-
itive mth root of unity. If m is a multiple of 5, F (x) diverges. Otherwise,
F (x) converges and

(4.7) F (x) = αF (α)x(α%m−1)/5,

where α denotes the Legendre symbol
(
m
5

)
and % is the least positive residue

of m modulo 5. Moreover , in the latter case,

(4.8) Pm−1(1) =
1
2

(1− α) and Qm−1(1) = αx(1−α%m)/5.

According to the table on page 57 of his lost notebook, Ramanujan
apparently tried to establish results like (4.8) to obtain (4.7). Unfortunately,
this table is not completely correct by comparison to that of Schur [7, p.
319], and probably led Ramanujan to the following (incorrect) result which
was recorded on page 383 of his second notebook [6].

“If u := x1/5F (x), then u2 + u − 1 = 0 when xn = 1, where n is any
positive integer except multiples of 5 in which case u is not definite.”

To obtain the result above, Ramanujan might have used his table and
applied Theorem 4.4 with a = 1. If so, Ramanujan intended Theorem 4.4 to
be valid for a = 1. Indeed, this turns out to be the case since, when a = 1,
Theorem 4.4 reduces to (4.7) simply by using (4.8). Therefore, it is likely
that Theorem 4.4 holds for a larger region of a. Finally, we emphasize that
the convergence problem of F (x) on the unit circle except primitive roots
of unity is still unsolved.
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5. A generalization of Theorem 4.4. On page 57 of his lost notebook,
Ramanujan generalizes Theorem 4.4 by considering the continued fraction

(5.1) ε =
1
1 +

ax

1 +
ax2

1 + . . . +
axn

1 + λε
.

Observe that, by choosing λ = a, the continued fraction (5.1) reduces to
a−1R(a).

Let, for j ∈ N,

(x)j := (1− x)(1− x2) . . . (1− xj),
and define the Gaussian coefficients by[

k
0

]

x

=
[
k
k

]

x

= 1

and by

(5.2)
[
k
l

]

x

=
(x)k

(x)l(x)k−l
when 0 < l < k. Here we only consider integral values for k and l. Note that
(5.2) is indeed a polynomial in x.

Theorem 5.1. Let

An(a) =
[(n+1)/2]∑

j=0

ajxj
2
[
n− j + 1

j

]

x

, for n ∈ N,

A0 ≡ 1, A−1 ≡ 1, and A−2 ≡ 0. Then, for n ≥ 0,

An−1(a)An−1(ax)−An(a)An−2(ax) = (−a)nxn(n+1)/2,(i)

An(a) = An−1(ax) + axAn−2(ax2),(ii)

An(a) = An−1(a) + axnAn−2(a),(iii)

1
1 +

ax

1 +
ax2

1 + . . . +
axn

1 + η
=
An−1(ax) + ηAn−2(ax)
An(a) + ηAn−1(a)

.(iv)

P r o o f. Observe that An(a) is indeed the numerator of the nth conver-
gent of the continued fraction a/R(a), which is a result due to Ramanujan
and can be found in Berndt’s book [2, p. 31, Entry 16]. In other words,

An(a)
Bn(a)

= 1 +
ax

1 +
ax2

1 + . . . +
axn

1
,

where Bn(a) denotes the corresponding denominator. In fact, one can easily
show that Bn(a) = a−1Pn+1(a). Furthermore,

An(a)
Bn(a)

= 1 +
ax

1 +
ax2

1 +
ax3

1 + . . . +
axn

1

(5.3)
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= 1 +
ax

An−1(ax)/Bn−1(ax)

=
An−1(ax) + axBn−1(ax)

An−1(ax)
.

The equality (5.3) implies immediately that

(5.4) Bn(a) = An−1(ax)

and

An(a) = An−1(ax) + axAn−2(ax2),

which proves (ii). By (5.4), (i) follows from (1.4). (iii) is simply the first
recurrence relation in (1.3). Finally, (iv) follows from (1.3) and (5.4).

Theorem 5.2. Let |a| < 1/4, |λ| < 1/4, and |x| ≤ 1. If ε is the continued
fraction defined in (5.1), then

ε =
An−2(ax) + Z

An−1(a)
,

where

(5.5) λZ2 + {An(a) + λAn−2(ax)}Z = (−a)nxn(n+1)/2,

and the ambiguous sign in the solution of (5.5) is always positive.

P r o o f. Throughout the proof, we restrict a, λ, and x to be inside the
prescribed areas. First, the convergence of the continued fraction ε is guar-
anteed by Lemma 4.1. By Theorem 5.1(iv),

(5.6) ε =
An−1(ax) + λεAn−2(ax)
An(a) + λεAn−1(a)

.

Solving the quadratic equation deduced from (5.6), we have

ε =
2λAn−2(ax)− Y ±

√
Y 2 + 4λ(−a)nxn(n+1)/2

2λAn−1(a)
,

where we have used Theorem 5.1(i) and, for convenience, we denote
λAn−2(ax) +An(a) by Y . Hence,

(5.7) ε =
An−2(ax) + Z

An−1(a)
,

where

(5.8) Z =
1

2λ

[−Y ±
√
Y 2 + 4λ(−a)nxn(n+1)/2

]
.

One can easily check that Z satisfies the equation (5.5). Therefore, it remains
to verify that the ambiguous sign is always positive. By Lemma 2.1, both
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An(a) and An−2(ax) are polynomials in a and approach 1 when a tends to
0, and hence

(5.9) Y → 1 + λ as a→ 0.

Now, let us first fix x and λ, with 0 < λ < 1/4. Then, by (5.7)–(5.9),
when a tends to 0, ε approaches 1 and −1/λ, respectively, according to
the “+” and “−” signs in (5.8). However, by Lemma 4.1, ε converges to a
value in the disk |w| ≤ 2, which excludes the value −1/λ when a is small
enough. In other words, the “+” sign is always correct when a is in a small
neighborhood of the origin. Furthermore, a similar argument used in the
proof of Lemma 4.3 shows that ε is an analytic function of a. Therefore,
by analytic continuation, Theorem 5.2 is valid for |x| ≤ 1, |a| < 1/4, and
0 < λ < 1/4. Finally, the desired domain for λ can be obtained by analytic
continuation since ε is also analytic in λ.

In addition to Theorems 5.1 and 5.2, Ramanujan recorded the following
two results on p. 57 of his lost notebook [5].

(5.10) If xn = 1 (x primitive), then An−1(a) + aAn−3(ax) = 1,
and
(5.11) An−2(a)A(ax)−An−3(ax)A(a) = (−a)n−1xn(n−1)/2A(axn).

P r o o f o f (5.10). This result is actually a restatement of Theorem 2.2.

P r o o f o f (5.11). It is clear that Ramanujan uses A(a) as the limit of
An(a) when n tends to infinity without any indication. It is easily seen that,
by a similar argument, Theorem 5.1(ii) remains valid if we replace An(·) by
A(·). In other words,
(5.12) A(a) = A(ax) + axA(ax2).

By Theorem 5.1(ii) and (5.12),

(5.13) An−2(a)A(ax)−An−3(ax)A(a)

= {An−3(ax) + axAn−4(ax2)}A(ax)−An−3(ax){A(ax) + axA(ax2)}
= −ax{An−3(ax)A(ax2)−An−4(ax2)A(ax)}.

Note that the expression inside the parentheses on the far right side of (5.13)
is exactly the expression on left side with the subscripts reduced by 1 and
with a replaced by ax. Hence, we can reiterate the recurrence above to
obtain
An−2(a)A(ax)−An−3(ax)A(a)

= (−ax)(−ax2) . . . (−axn−1){A−1(axn−1)A(axn)−A−2(axn)A(axn−1)}
= (−a)n−1xn(n−1)/2A(axn),

since A−1 ≡ 1 and A−2 ≡ 0.
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R e m a r k. Because of the appearance of (5.10) in the lost notebook, it is
very likely that the proof of Theorem 4.4 we gave in Section 4 is essentially
the one that Ramanujan had. However, we have no clue how Ramanujan
found and proved Theorem 2.2.
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[12] —, Über die Kombinationen der Potenzreste einer Primzahl zu bestimmten Sum-

men, ibid. 114 (1905), 711–758.

Department of Mathematics
University of Illinois
1409 West Green Street
Urbana, Illinois 61801
U.S.A.
E-mail: shuang@math.uiuc.edu

Received on 13.2.1996
and in revised form on 28.5.1996 (2929)


