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1. Introduction. Continued fractions of the form

[c0; c1, . . . , cn, Q1(k), . . . , Qp(k)]∞k=0

are called Hurwitzian if c0 is an integer, c1, . . . , cn are positive integers,
Q1, . . . , Qp are polynomials with rational coefficients which take positive
integral values for k = 0, 1, 2, . . . and at least one of the polynomials is not
constant. Q1, . . . , Qp are said to form a quasi-period. The expansions

e = [2, 1, 2k + 2, 1]∞k=0 and e1/q = [1, (2k + 1)q − 1, 1]∞k=0

when q is an integer ≥ 2 are well-known examples (see Euler [3], Perron
[7], Davis [2], Matthews and Walters [6]). Other classical examples of Hur-
witzian numbers are th(1/q) or tan(1/q) when q is a nonnegative integer,
e2/q when q is odd and many other real numbers determined by means of
Bessel functions (see Cabannes [1], Lehmer [4] and Stambul [10]). A recogniz-
able Hurwitzian number whose quasi-period is determined by polynomials
of degree ≥ 2 is still unknown.

Let h : x 7→ (ax + b)/(cx + d) be a Möbius transformation where
a, b, c, d are integers. If x is Hurwitzian, it follows from a theorem of O.
Perron ([7], 127–131) that h(x) is also Hurwitzian. Moreover, the noncon-
stant polynomials in the quasi-periods of x and h(x) have the same degrees
(see [10]).

Denote by R the set of all irrational real numbers x whose continued
fraction expansion has the form

x = [c0; c1, . . . , cn−1, C1(k), . . . , Cp(k)]∞k=0

where the Np-valued sequence k 7→ (C1(k), . . . , Cp(k)) satisfies a linear ho-
mogeneous recurrence relation with constant coefficients in Z, i.e., there
exists a given p× p matrix M with integer entries such that
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Cp(k + 1)
Cp−1(k + 1)

...
C1(k + 1)


 = M




Cp(k)
Cp−1(k)

...
C1(k)




for all integers k ≥ 0.
The Ci are “generalized power sums” (the restriction of exponential poly-

nomials to the nonnegative integers) and (C1, . . . , Cp) will be called a quasi-
period of x (it is not unique). Irrational quadratic numbers and Hurwitzian
numbers form subsets of R. This result can be easily derived from the iden-
tity

r∑

i=0

(−1)i
(
r

i

)
Q(x+ i) = 0

for all real polynomials Q of degree ≤ r − 1. Unfortunately, a recognizable
number in R which is not in these subsets is still unknown.

Perron’s proof is based on congruences and successive derivations of poly-
nomials. In this paper, we generalize the result of Perron by means of a
transducer: for all homographies h with integral coefficients, h(R) ⊂ R.

2. Image by a Möbius transformation. Let ξ be an irrational real
number and h : x 7→ (ax+b)/(cx+d) a Möbius transformation where a, b, c, d
are integers. The continued fraction expansion of h(ξ) has been studied by
Raney [9], van der Poorten [8], Liardet and Stambul [5].

We recall basic definitions and facts given in [5], following [9]. A matrix
M =

(
α β
γ δ

)
where α, β, γ, δ are nonnegative integers and (α− γ)(β − δ) < 0

is said to be row-balanced . All computations for the continued fraction
expansion of h(ξ) can be reduced to the case where A =

(
a b
c d

)
is row-

balanced and ξ > 1. This computation is given by a finite state transducer
TD = (C,B,A, Φ, Ψ) where

• The input alphabet is C = N \ {0}.
• The space of states B is the set of all row-balanced matrices M such

that |det(M)| = |det(A)| = D. Clearly, B is a finite set. The initial state of
the transducer is A.
• The output alphabet is A = N and the monoid generated by A is

denoted by A∗.
It is well known that every 2 × 2 matrix M of rank 2 with nonnegative

entries that is not row-balanced can be written in a unique way as

(F) M =
(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
M ′

where M ′ is row-balanced, a0 ∈ N and a1, . . . , an ∈ N \ {0}.
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• Φ = {φc : c ∈ C} and Ψ = {ψc : c ∈ C} are two families of maps
(φc : B → B and ψc : B → A∗) defined as follows: for all B in B and c in
C, if B

(
c 1
1 0

)
= B′ is row-balanced, then φc(B) = B′ and ψc(B) = ∧ (the

empty word). And if B
(
c 1
1 0

)
is not row-balanced, then by (F),

B

(
c 1
1 0

)
=
(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
B′.

Then φc(B) = B′ and ψc(B) = a0a1 . . . an.
Now, with any input word c0c1 . . . ck in Ck, we associate a sequence of

states B1 = φc0(A) and Bi+1 = φci(Bi), i = 1, . . . , k, and we define

[Ψ, Φ]c0c1...ck = ψc0(A)ψc1(B1) . . . ψck(Bk),

which is a word in A∗.
Finally, let µ be the “contraction map” which transforms a word in A∗

into a word where all letters are positive integers (except maybe the first
one), replacing from left to right subwords a0b (a, b 6= 0) by the letter a+ b.
A theorem of [5] shows that if ξ = [c0; c1, . . . , ck, . . .] and µ ◦ [Ψ,Φ]c0c1...ck =
a0a1 . . . an−1an, then h(ξ) = [a0; a1, . . . , an−1, . . .] and the partial quotient
following an−1 is ≥ an.

Theorem. Let ξ be in R and h : x 7→ (ax + b)/(cx + d) be a Möbius
transformation where a, b, c, d are integers. Then h(ξ) ∈ R.

The proof requires three technical lemmas.

Lemma 1. Let a, b, c, d be integers such that |ad− bc| = D ≥ 2. Suppose
that ξ ∈ R and compute (aξ + b)/(cξ + d) with the transducer TD. Then
there exists two integers r and q such that the continued fraction expansion
of ξ has the form

ξ = [c0; c1, . . . , cr−1, A1(k), . . . , Aq(k)]∞k=0

with the following properties:

(i) Aj(k+1) = Aj(k) mod D for j = 1, . . . , q and for all integers k ≥ 0.
(ii) Either Aj(k) > D for every integer k ≥ 0, or the sequence Aj(k)k∈N

is constant.
(iii) By applying the transducer TD, the sequence of states (Bm)m∈N sat-

isfies Br = Br+q.

P r o o f. It is well known that every sequence of integers given by a linear
recurrence relation with coefficients in Z is ultimately periodic modulo D
for all positive integers D. Hence (i) is obvious. Moreover, by the Skolem–
Mahler theorem, the set of zeros of a linear recursive sequence (un)n∈N with
integral coefficients is equal to the union of a finite set and a finite number of
arithmetical progressions. Clearly, the set of all integers n such that un = c
for a given integer c has the same property.
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Thus every number ξ in R can be defined by a continued fraction
expansion [c0; c1, . . . , cn−1, C1(k), . . . , Cp(k)]∞k=0 where all the sequences
(Ci(k))k∈N are either ultimately periodic or > D for k sufficiently large.
Replacing p by p1 = sp (s is a common multiple of all periods of peri-
odic sequences Ci(k)), ξ has a continued fraction expansion of the form
[c0; c1, . . . , cn′ , A′1(k), . . . , A′p1

(k)]∞k=0 with a quasi-period which satisfies (i)
and (ii). Finally, by applying the transducer TD, let us consider the se-
quence of states (Bn′+mp1)m∈N. As B is a finite set, there exist two nonneg-
ative integers m1 and m2 (m1 < m2) such that Bn′+m1p1 = Bn′+m2p1 . Put
q = (m2 −m1)p1; then ξ is defined by a quasi-period of length q which has
the three properties.

Lemma 2. Let B be a row-balanced matrix such that |det(B)| = D, c
be a given integer > D and (fk)k≥0 be a sequence of nonnegative integers.
Then, for all integers k ≥ 0, by applying (F),

B

(
c+Dfk 1

1 0

)
= C

(
f ′k 1
1 0

)
B′

with the following properties:

• C and B′ are independent of fk.
• det(C) = ±1, i.e. either C is the identity and has to be cancelled , or

C can be written in a unique way as

C =
(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
an 1
1 0

)
with a0 ∈ N, a1, . . . , an ∈ N \ {0}.

• f ′k is the image of c + Dfk by a map x 7→ (ux + v)/w with integral
coefficients which depend on B,D and c.
• B′ is a row-balanced matrix and det(B′) = D.

P r o o f. We distinguish four cases for the matrix B =
(
α β
γ δ

)
.

1. α = 0. Then βγ = D, β > δ and(
0 β
γ δ

)(
c+Dfk 1

1 0

)
=
(

0 1
1 0

)(
f ′k 1
1 0

)(
β 0
φ γ

)

with

f ′k = γ2fk +
[
γc+ δ

β

]
and φ = γc+ δ − β

[
γc+ δ

β

]
.

Then 0 ≤ φ < β, which implies that the matrix B′ =
(
β 0
φ γ

)
is row-balanced.

Moreover, det(B′) = D.
2. γ = 0. Since (

α β
0 δ

)
=
(

0 1
1 0

)(
0 δ
α β

)
,
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we have (
α β
0 δ

)(
c+Dfk 1

1 0

)
=
(
f ′k 1
1 0

)(
δ 0
φ′ α

)

with

f ′k = α2fk +
[
αc+ β

δ

]
and φ′ = αc+ β − δ

[
αc+ β

δ

]
.

Then B′ =
(
δ 0
φ′ α

)
is row-balanced and det(B′) = D.

3. (α, γ) = 1. It is well known that α/γ has two continued fraction
expansions: one ends with a partial quotient a ≥ 2 and the other one is
obtained by replacing a by a−1, 1. Consider the continued fraction expansion
of α/γ of even length if αδ − βγ = D or of odd length if αδ − βγ = −D.
The product of matrices of the form

(
ai 1
1 0

)
corresponding to this continued

fraction expansion is equal to
(
α α′

γ γ′
)
. Therefore, there exist two positive

integers α′ and γ′ such that

α′ < α, γ′ < γ and αγ′ − α′γ =
αδ − βγ

D
= u = ±1.

Hence(
α β
γ δ

)(
c+Dfk 1

1 0

)
=
(
α α′

γ γ′

)(
fk + c′ 1

1 0

)(
D 0
ε 1

)
.

c′ and ε are defined as follows: since αγ′ − α′γ = u, one has

α′δ − βγ′ = α′δ − β u+ α′γ
α

=
α′(αδ − βγ)− uβ

α
,

which implies that |α′δ − βγ′| ≤ D < c. Then c′ and ε are given by the
Euclidean division

c− u(α′δ − βγ′) = Dc′ + ε with 0 ≤ ε < D.

Therefore, the matrix B′ =
(
D 0
ε 1

)
is row-balanced and det(B′) = D.

4. Finally, suppose that (α, γ) = m > 1. Put α = mα1 and γ = mγ1.
Then (

α β
γ δ

)
=
(
α1 β
γ1 δ

)(
m 0
0 1

)
.

The transformation of (
α β
γ δ

)(
c+Dfk 1

1 0

)

is given by two successive transformations described in 2 and 3.
In all cases f ′k is the image of c+Dfk by a map of the form x 7→ (ux+v)/w

with integral coefficients (u,w 6= 0).
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Lemma 3. Let ξ = [c0; c1, . . . , cn−1, C1(k), . . . , Cp(k)]∞k=0 be in R with
the relation 



Cp(k + 1)
Cp−1(k + 1)

...
C1(k + 1)


 = M




Cp(k)
Cp−1(k)

...
C1(k)




for all integers k ≥ 0. Let g1, . . . , gp be p maps of the form gj : x 7→
(ujx + vj)/wj with integral coefficients such that C ′j(k) = gj(Cj(k)) is a
positive integer for all integers j (1 ≤ j ≤ p) and all integers k ≥ 0. Then
ξ′ = [c′0; c′1, . . . , c

′
n′−1, C

′
1(k), . . . , C ′p(k)]∞k=0 ∈ R.

P r o o f. Let P defined by

P (x) = xp
′ −

p′−1∑

i=0

αix
i

be the minimal polynomial of M . Then

Cj(k + p′) =
p′−1∑

i=0

αiCj(k + i) for all integers j (0 ≤ j ≤ p′ − 1).

Therefore, there exists an integer βj such that

C ′j(k + p′) =
p−1∑

i=0

αiC
′
j(k + i) + βj .

Hence

C ′j(k + 2p′) = C ′j(k + p′) +
p′−1∑

i=0

αi(C ′j(k + p′ + i)− C ′j(k + i))

and ξ′ ∈ R.

Now, we are ready to give the proof of Theorem 2. Let ξ be defined as
in Lemma 1 and compute ξ′ = (aξ + b)/(cξ + d) with the transducer TD.
Denote B = Br = Br+q. If A1(0) = A1(1) = c, then of course in both cases
we obtain the same results φc(B) and ψc(B). If A1(0) 6= A1(1), then there
exists an integer c > D and two nonnegative integers f0 and f1 such that
A1(0) = c + Df0 and A1(1) = c + Df1. Then by Lemma 2, φA1(0)(B) =
φA1(1)(B). Now, ψA1(0)(B) and ψA1(1)(B) are composed of two subwords.
The first subwords are the same (and are possibly empty). They correspond
to the matrix C of Lemma 2. The last subwords contain only one letter.
There exists a map g : x 7→ (ux+ v)/w (u,w 6= 0) with integral coefficients
such that the last letter of ψA1(0)(B) is g(A1(0)) (respectively ψA1(1)(B)
and g(A1(1))).



Hurwitzian numbers 147

By iteration, φAi(0)(Br+i−1) = φAi(1)(Br+i−1) for i = 1, . . . , q and
the sequence of states (Bm)m∈N is ultimately periodic. Before cancelling
the “zeros” with the contraction map µ, we obtain ξ′ = [c′0; c′1, . . . , c

′
n′−1,

A′1(k), . . . , A′q′(k)]∞k=0: if A′j′(k) is not a constant sequence, then there ex-
ists an index j and three integers uj , vj and wj (uj , wj 6= 0) such that
A′j′(k) = (ujAj(k) + vj)/wj for all integers k ≥ 0. By Lemma 3, ξ′ ∈ R.

Notice that in case ξ is Hurwitzian, ξ′ is also Hurwitzian and the noncon-
stant polynomials in the quasi-periods of ξ and ξ′ have the same degrees.

3. Example. Let (Fn)n∈N be the Fibonacci sequence which can be de-
fined by (

Fn+1 Fn
Fn Fn−1

)
=
(

1 1
1 0

)n
.

Denote by ξ the real number ξ = [Fn]∞n=1 which is in R. Now compute the
continued fraction expansion of 2ξ, using the transducer of the multiplication
by 2 (see [5]) which contains five states.

The initial state of the transducer is B0 = A =
( 2 0

0 1

)
. The continued

fraction expansion of ξ can be written

ξ = [1; 1, 2, 3, F6k+5, F6k+6, F6k+7, F6k+8, F6k+9, F6k+10]∞k=0.

A simple computation leads to B10 = B4 =
( 2 0

0 1

)
, Fn ≥ 2 for n ≥ 3 and

Fn = Fn+6 mod 2 for all integers n.
Hence, by applying the transducer T2 and the contraction map µ, one

has:

Proposition.

2ξ =
[
3; 2, 1, 1,

2F6k+5,
F6k+6

2
, 2F6k+7,

F6k+8 − 1
2

, 1, 1,
F6k+9

2
− 1, 1, 1,

F6k+10 − 1
2

]∞

k=0
.

It is clear that 2ξ ∈ R.
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