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Averages of twisted elliptic L-functions

by

A. Perelli (Genova) and J. Pomykała (Warszawa)

1. Introduction. Let E be a modular elliptic curve over Q with conduc-
tor N defined by the Weierstrass equation y2 = ω(x), d be a fundamental
discriminant with (d,N) = 1 and Ed be the twisted elliptic curve defined by
dy2 = ω(x). Let L(s,E) and L(s,Ed) denote the Hasse–Weil L-functions as-
sociated with E and Ed, respectively. Then L(s,Ed) is obtained from L(s,E)
by twisting by a real primitive character χd (mod d), and both L(s,E) and
L(s,Ed) are entire functions with good analytic properties (see Section 2).

It is well known that many interesting arithmetical problems about el-
liptic curves can be translated, at least conjecturally, into analytic prob-
lems about the associated L-functions. In particular, due to the Birch and
Swinnerton-Dyer conjecture and to Kolyvagin’s theorem, the order of van-
ishing of L(s,E) at s = 1, called the analytic rank of E and denoted by
rank(E), and the non-vanishing of L′(s,Ed) at s = 1 have attracted much
attention in recent years. In this context, the techniques from analytic num-
ber theory have been proved to be particularly effective when dealing with
averaging problems over suitable families of elliptic curves. In this paper we
consider two such problems.

Let

N(D) = #{d ≤ D : d fundamental discriminant with (d,N) = 1

and L′(1, Ed) 6= 0}.
Our first result is

Theorem 1. Let ε > 0. Then N(D)�ε D
1−ε.

This improves on Iwaniec’s N(D)�ε D
2/3−ε in [8]. The second result is

Theorem 2.
∑∗
d≤D rank(Ed) = o(D logD).
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Throughout the paper ∗ means that the summation is over fundamental
discriminants with (d,N) = 1. Theorem 2 is only slightly better than the
trivial bound ∑

d≤D

∗
rank(Ed)� D logD.

Stronger results can be obtained under the assumption of the Riemann
Hypothesis for the functions L(s,Ed) (see, e.g., Goldfeld [5], Mestre [10],
Brumer [1], Fouvry–Pomykała [4], Duke [2], Murty [13], Michel [11] and
Fermigier [3] for related results). These results should be compared with the
remark after Theorem 5 in Section 2.

Our results are based on the recent large sieve type estimates over fun-
damental discriminants obtained by Heath-Brown [6]. The quality of such
estimates determines the quality of our results above. In particular, if the
factor Dε appearing in Theorems 3 and 4 below, which comes from the ap-
plication of Heath-Brown’s estimates, could be replaced by some power of
logD, then we would get a corresponding improvement of the type

N(D)� D log−cD with some c ≥ 0

and ∑

d≤D

∗
rank(Ed)� D log logD,

as will be clear from the arguments in Section 2.

2. Outline of the proofs. In this section we outline the basic ingredi-
ents of the proofs. The main tool is

Theorem 3. Let ε > 0 and τ = |t|+ 1. Then
∑

d≤D

∗ |L′(1, Ed)|2 �ε D
1+ε

and ∑

d≤D

∗ |L(σ + it, Ed)|2 �ε (D + (Dτ)3−2σ)(Dτ)ε

uniformly for 1 ≤ σ ≤ 3/2 and t ∈ R.

The proof of Theorem 3, which follows the proof of Theorem 2 of [6],
will be sketched in Section 3.

Assume, more generally, that

(1)
∑

d≤D

∗ |L′(1, Ed)|2 � DG(D)



Averages of twisted elliptic L-functions 151

with a non-decreasing function G(D) � log2D. By a slight variant of the
arguments in Jutila [9] and Murty–Murty [14] we can get

(2)
∑

d≤D

∗
L′(1, Ed) ∼ CD logD

with a certain constant C 6= 0. Hence from (1), (2) and the Cauchy–Schwarz
inequality we deduce that

N(D)� D
log2D

G(D)
,

and hence Theorem 1 follows at once from the first estimate of Theorem 3.
The proof of Theorem 2 is based on the use of Weil’s explicit formula and

of a suitable average density estimate for the zeros of the functions L(s,Ed).
Writing

N(σ, T, d) = #{% = β + iγ : L(%,Ed) = 0, β ≥ σ and |γ| ≤ T}
we have

Theorem 4. Let ε > 0. Then∑

d≤D

∗
N(σ, T, d)�ε D

(3−2σ)/(2−σ)(T + 1)(7−4σ)/(4−2σ)(DT )ε

uniformly for 1 ≤ σ ≤ 3/2.

The proof of Theorem 4, which is based on Theorem 3 and on Heath-
Brown’s estimates, follows the lines of Montgomery’s zero-detecting method
and will be sketched in Section 4.

In Section 5 we will use the method of Weil’s explicit formula together
with Theorem 4 to prove Theorem 2. In fact, we will prove the following
general result:

Theorem 5. Assume that there exist constants c, A > 0 and a non-
decreasing function L(D) ≥ 2 such that

∑

d≤D

∗
N(1 + δ, T, d)� (T + 1)AD1−cδL(D)

uniformly for 1/ logD ≤ δ ≤ 1/2. Then
∑

d≤D

∗
rank(Ed)�c,A D logL(D).

Theorem 5 appears to be the limit of our method, and Theorem 2 follows
at once from Theorems 4 and 5, since we can choose L(D) = Dε. Observe
that the Riemann Hypothesis for the functions L(s,Ed) allows, in particular,
the choice L(D) = 2.
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We recall here some basic facts about the functions L(s,Ed) which will
be needed later on (see, e.g., [8]). For σ > 3/2, L(s,Ed) has an Euler product
expansion of degree 2 satisfying the Ramanujan conjecture and

L(s,Ed) =
∞∑
n=1

a(n)χd(n)n−s,
1

L(s, Ed)
=
∞∑
n=1

b(n)χd(n)n−s,

L′

L
(s,Ed) =

∞∑
n=1

ed(n)n−s

with |a(n)|, |b(n)| ≤ n1/2τ(n) and |ed(n)| ≤ n1/2Λ(n)τ(n), where τ is the
divisor function. Moreover, the functions L(s,Ed) are entire, of finite order
on every right half-plane and satisfy the functional equation

Λ(s,Ed) = wdΛ(2− s,Ed)
where

Λ(s,Ed) =
(
d
√
N

2π

)s
Γ (s)L(s,Ed) and |wd| = 1.

We finally remark that all the constants may depend on the data of the
fixed elliptic curve E.

3. Proof of Theorem 3. We first state the basic tool of our paper,
i.e., Corollary 3 of Heath-Brown [6]. Denoting by S(Q) the set of all real
primitive characters of modulus at most Q, we state Corollary 3 of [6] as

Proposition 1. Let Q,N be positive integers and a1, . . . , aN ∈ C. Then
for every ε > 0,

∑

χ∈S(Q)

∣∣∣
∑

n≤N
anχ(n)

∣∣∣
2
�ε Q

εN1+ε(Q+N) max
n≤N

|an|2.

As we have already remarked, we follow the proof of Theorem 2 of [6],
due to the similarity between L(s,Ed) and L(s, χd)2, where L(s, χ) denotes
the Dirichlet L-series formed with the character χ. Write

S(D, s) =
∑

D<d≤2D

∗ |L(s,Ed)|2

and denote by ν(σ) the infimum of the ν ∈ R for which

(3) S(D, s)� (D + (Dτ)3−2σ)(Dτ)ν

uniformly in D and t.



Averages of twisted elliptic L-functions 153

Using the Mellin transform and the properties of the Γ -function as on
p. 268 of [6], we see that for 1/2 ≤ α < σ and X > 1,

S(D, s)�
∑

D<d≤2D

∗ ∣∣∣
∞∑
n=1

a(n)χd(n)n−se−n/X
∣∣∣
2

+X2(α−σ)
∞\
−∞

S(D,α+ iu)e−|u−t| du.

From the functional equation of the functions L(s,Ed) and (3) we get

S(D,α+ iu)� (D(|u|+1))4(1−α)(D+(D(|u|+1))2α−1)(D(|u|+1))ν(2−α)+ε

and hence

S(D, s)�
∑

D<d≤2D

∗ ∣∣∣
∞∑
n=1

a(n)χd(n)n−se−n/X
∣∣∣
2

(4)

+X2(α−σ)(Dτ)4(1−α)(D + (Dτ)2α−1)(Dτ)ν(2−α)+ε.

Due to the decay of e−n/X and the bound for the coefficients a(n), we see
that the contribution of the terms with n > X log2Dτ in the inner sum on
the right hand side of (4) is negligible. We split the remaining part of that
sum into sub-sums where n runs over intervals of the type M < n ≤ 2M ,
and applying Proposition 1 to each sub-sum we see that

(5)
∑

D<d≤2D

∗ ∣∣∣
∞∑
n=1

a(n)χd(n)n−se−n/X
∣∣∣
2
� (D +X3−2σ)(DτX)ε.

Let δ > 0 be sufficiently small. If 1 + δ ≤ σ ≤ 3/2 we choose α = 2− σ
and X = (Dτ)1+δ. Then 1/2 ≤ α < σ, and from (4) and (5) we get

S(D, s)� (D + (Dτ)3−2σ)(Dτ)ε(2+δ)+δ

+ (D + (Dτ)3−2σ)(Dτ)−4δ(σ−1)+ν(σ)+ε

� (D + (Dτ)3−2σ)(Dτ)3ε{(Dτ)δ + (Dτ)ν(σ)−4δ(σ−1)}.
Hence

ν(σ) ≤ max(δ, ν(σ)− 4δ(σ − 1)) + 3ε,
and choosing δ =

√
ε we see that this implies that ν(σ) ≤ δ+3ε in this case.

If 1 ≤ σ ≤ 1 + δ, where δ =
√
ε, we choose α = 1 − δ and still X =

(Dτ)1+δ. Then 1/2 ≤ α < σ, and from (4) and (5) we get

S(D, s)� (D + (Dτ)3−2σ)(Dτ)(2+δ)ε+δ

+ (Dτ)2(1+δ)(1−δ−σ)+4δ(D + (Dτ)1−2δ)(Dτ)ν(1+δ)+ε

� (D + (Dτ)3−2σ){(Dτ)3ε+δ + (Dτ)ν(1+δ)+4δ+ε},
since δ ≥ σ − 1 and 2(1 + δ)(1 − δ − σ) < 0. But ν(1 + δ) ≤ δ + 3ε, hence
ν(σ) ≤ 5δ + 4ε in this case.
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Since ε is arbitrarily small and δ =
√
ε, the second assertion of Theorem 3

follows. Moreover, using in addition the functional equation of the functions
L(s,Ed), we see that

(6)
∑

d≤D

∗ |L(s,Ed)|2 � D1+ε

uniformly for |s − 1| ≤ 2(logD)−1. Hence the first assertion of Theorem 3
follows from (6), using Cauchy’s integral formula and choosing the circle
|s− 1| = (logD)−1 as path of integration.

4. Proof of Theorem 4. Here we follow the zero-detecting method of
Chapter 12 of Montgomery [12], as presented in the proof of Theorem 3 of [6].
Let R = R(D,T, σ, t) be the number of d ≤ D, d fundamental discriminant
with (d,N) = 1, for which L(s,Ed) has a zero in the square

(7) σ ≤ Re s < σ + (logDT )−1, t ≤ Im s < t+ (logDT )−1

with 1 ≤ σ ≤ 3/2 and |t| ≤ T , and let Y � X � 1, T ≥ 2,

MX(s,Ed) =
∑

n≤X
b(n)χd(n)n−s

and, for σ > 3/2,

L(s,Ed)MX(s, Ed) =
∑

n>X

c(n)χd(n)n−s.

Following the procedure in Chapter 12 of [12], two cases arise:

(i) there are � R values of d as above, with corresponding zeros % =
β + iγ in the square (7), for which

∣∣∣
c1 logDT\
−c1 logDT

L(1 + iγ + iu, Ed)MX(1 + iγ + iu, Ed)Y 1−β+iu

×Γ (1− β + iu) du
∣∣∣� 1

where c1 > 0 is a suitable constant, and
(ii) there are U ∈ [X,Y 2] and � R(log Y )−1 values of d as above, with

corresponding zeros % = β + iγ in the square (7), for which∣∣∣
∑

U<n≤2U

c(n)χd(n)n−%e−n/Y
∣∣∣� (log Y )−1.

In the first case we have
t+1+c1 logDT\
t−c1 logDT

|L(1 + iu, Ed)MX(1 + iu, Ed)| du� Y σ−1(logDT )−1.
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Summing over d and applying twice the Cauchy–Schwarz inequality we get

RY σ−1(logDT )−1 �
( t+1+c1 logDT\

t−c1 logDT

∑

d≤D

∗ |L(1 + iu, Ed)|2 du
)1/2

(8)

×
( t+1+c1 logDT\

t−c1 logDT

∑

d≤D

∗ |MX(1 + iu, Ed)|2 du
)1/2

.

The second factor in (8) can be dealt with by means of Proposition 1. Split-
ting the interval [1, X] into ranges of the form V < n ≤ 2V we get

(9)
t+1+c1 logDT\
t−c1 logDT

∑

d≤D

∗ |MX(1 + iu, Ed)|2 du

� logDT logX

× max
t−c1 logDT≤u≤t+1+c1 logDT

∑

V

∑

d≤D

∗ ∣∣∣
∑

V <n≤2V

b(n)χd(n)n−1−iu
∣∣∣
2

� (D +X)(DX)ε log T.

From Theorem 3 we get

(10)
t+1+c1 logDT\
t−c1 logDT

∑

d≤D

∗ |L(1 + iu, Ed)|2 du� (DT )1+ε

and hence from (8)–(10) we obtain

(11) R� Y 1−σ(DT )1/2(D +X)1/2(DTX)ε

in the first case.
Consider now the second case. Assume that Y ≤ (DT )c2 for some con-

stant c2 and write s = σ + it. Since % is in the square (7), by partial sum-
mation and the Cauchy–Schwarz inequality we get

(logDT )−2 �
∣∣∣
∑

U<n≤2U

c(n)χd(n)n−%e−n/Y
∣∣∣
2

�
∣∣∣
∑

U<n≤2U

c(n)χd(n)n−se−n/Y
∣∣∣
2

+
2U\
U

∣∣∣
∑

U<n≤V
c(n)χd(n)n−se−n/Y

∣∣∣
2 dV

V

for � R(logDT )−1 values of d. Since |c(n)| ≤ n1/2τ4(n), summing over d
and using Proposition 1 we obtain

R� (DTU)ε(D + U)U2(1−σ)e−U/Y
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for some U ∈ [X,Y 2], and hence

(12) R� (DTY )ε(DX2(1−σ) + Y 3−2σ)

in the second case.
A comparison of (11) and (12) together with the choice

X = D and Y = (DT 1/2)1/(2−σ)

shows that the conditions on X and Y are satisfied and

(13) R� (DT 1/2)(3−2σ)/(2−σ)(DT )ε,

uniformly for 1 ≤ σ ≤ 3/2 and |t| ≤ T . Since the exponent in (13) is a
decreasing function of σ and the number of zeros of each function L(s,Ed)
in the square (7) is uniformly � logDT , Theorem 4 follows at once by
summation over squares of the type (7).

5. Proof of Theorem 5. Let us first establish some notation. Given an
integrable function f : R→ C with compact support, define

F (s) =
∞\
−∞

f(x)esx dx

to be its Laplace transform. For a function f of real or complex variable and
for λ > 1 we define fλ(z) = f(z/λ). Moreover,

log+ x =
{

log x if x ≥ e,
1 if 0 ≤ x ≤ e.

In our application of Weil’s explicit formula, we will need to use a
test function φλ(s) satisfying (14)–(16) below. These requirements prevent
us from using the classical test functions (see, e.g., Mestre [10] and Fer-
migier [3]). We summarize the properties of our test function in the following
Proposition 2, which will be proved at the end of the paper.

Proposition 2. There exists an even, non-negative function f ∈ C∞(R)
with f(0) = 1 and support contained in [−B,B] for some B ≥ 2 such that

(14) F (s)� exp(c3|σ| − c4|s|3/4)
and
(15) ReF (s) ≥ 0 if |σ| < 1,

where c3, c4 > 0 are certain constants.

For λ > 1 we consider the test function
φλ(s) = Fλ(s− 1),

where Fλ is the Laplace transform of fλ and f is as in Proposition 2, which
satisfies

(16) φλ(s) = λF (λ(s− 1)) and φλ(s) = φλ(2− s).
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Weil’s explicit formula. We follow the approach by Mestre [10], based
on Weil [16]. Let R(α, T ) denote the rectangle with vertices α− iT, α+ iT,
2−α− iT and 2−α+ iT . Choose α ∈ (3/2, 7/4) and, for each fundamental
discriminant d with (d,N) = 1, a real number Td ≥ 2 such that the bound-
ary ∂R(α, Td) of R(α, Td) omits the poles of Λ′

Λ (s, Ed), and such that the
estimate

(17)
Λ′

Λ
(s,Ed)� log2(dTd)

holds for s ∈ ∂R(α, Td). Moreover, given T = T (D) ≥ 2 to be determined
later on, the Td’s can be chosen to satisfy T − 1 ≤ Td ≤ T . This is easily
done by adapting a classical argument in the theory of Dirichlet L-series.

Choosing φλ(s) as above, by Cauchy’s theorem we have

(18)
1

2πi

\
∂R(α,Td)

Λ′

Λ
(s,Ed)φλ(s) ds =

∑

|γ|≤Td
φλ(%)

where % = β + iγ runs over the non-trivial zeros of L(s,Ed), counted with
multiplicity. Due to the functional equation

Λ′

Λ
(s,Ed) = −Λ

′

Λ
(2− s,Ed)

and (16), the contribution to (18) of the vertical sides of R(α, Td) is

1
πi

α+iTd\
α−iTd

Λ′

Λ
(s,Ed)φλ(s) ds.

From (14), (16) and (17) we see that the contribution to (18) of the hori-
zontal sides is � λ log2(dT ) exp

(
1
2c5λ− c6(λT )1/2

)
and

1
πi

α+iTd\
α−iTd

Λ′

Λ
(s,Ed)φλ(s) ds =

1
πi

α+i∞\
α−i∞

Λ′

Λ
(s,Ed)φλ(s) ds

+O
(
λ log2(dT ) exp

(
1
2c5λ− c6(λT )1/2))

with suitable constants c5, c6 > 0. Hence (18) becomes

(19)
∑

|γ|≤Td
φλ(%)

=
1
πi

α+i∞\
α−i∞

Λ′

Λ
(s,Ed)φλ(s) ds+O(λ log2(DT ) exp(c5λ− c6(λT )1/2))

uniformly for d ≤ D.
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We evaluate the integral in (19) following Mestre [10]. We get

(20)
1
πi

α+i∞\
α−i∞

Λ′

Λ
(s,Ed)φλ(s) ds = 2 log d− 2I(λ)− 2S(λ, d) +O(1)

where

I(λ) =
∞\
0

(
fλ(x)e−x

1− e−x −
e−x

x

)
dx

and

S(λ, d) =
∑

p,m≥1

ed(pm)
log p
pm

fλ(log pm).

Observe that the integral I(λ) is uniformly bounded for λ > 1, since

I(λ)� 1
λ

max
0≤x≤2/λ

|f ′(x)|+ 1.

Summing over d, from (19) and (20) we get
∑

d≤D

∗ ∑

|γ|≤Td
φλ(%) = 2

∑

d≤D

∗
log d− 2

∑

d≤D

∗
S(λ, d) +O(D)(21)

+O(D log2(TD) exp(c5λ− c6(λT )1/2)).

Estimation of
∑∗
d≤D S(λ, d). From the bound for the coefficients ed(n)

we immediately get

(22)
∑

d≤D

∗ ∑

p,m≥2

ed(pm)
log p
pm

fλ(log pm)� λD.

In order to deal with the remaining part of S(λ, d) we recall that

ed(p) =
{
e(p)

(
d
p

)
if p - dN ,

O(1) otherwise,

where e(p) = e1(p) and
(
d
p

)
is the Legendre symbol. Hence

(23)
∑

d≤D

∗∑
p

ed(p)
log p
p

fλ(log p)

=
∑

p - 2N
e(p)

log p
p

fλ(log p)
∑

d≤D
(d,p)=1

∗
(
d

p

)
+O(D).

We treat the inner sum on right hand side of (23) by means of the
Pólya–Vinogradov inequality. Since the summation is not over consecutive
integers, we use the arithmetic structure of fundamental discriminants to
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transform it in a suitable way. Writing d = ed′ with

e =
{

1 if d ≡ 1 (mod 4),
4 if d ≡ 0 (mod 4)

and d′ square-free, from the characterization of the fundamental discrimi-
nants we see that

(24)
∑

d≤D
(d,p)=1

∗
(
d

p

)
=
∑
e=1,4

∑

l|N
(l,p)=1

∑

a≤
√
D/e

(a,p)=1

µ(l)µ(a)
∑

d′≡0 (mod [a2,l])
(d′,p)=1

∗∗
(
d′

p

)
,

where [a2, l] is the least common multiple of a2 and l, and ∗∗ means that
the summation is over d′ ≤ D/e with d′ ≡ 1 (mod 4) if e = 1 and d′ ≡ 2 or
3 (mod 4) if e = 4. Recalling that p > 2 and using the characters to detect
the progressions (mod 4), from the Pólya–Vinogradov inequality and (24)
we get

(25)
∑

d≤D
(d,p)=1

∗
(
d

p

)
� D1/2p1/2+ε.

Hence from (22)–(25) we obtain

(26)
∑

d≤D

∗
S(λ, d)� λD +D1/2 exp(2Bλ).

Application of the density estimate. From (15), (16), (21) and (26), taking
real parts we deduce that

λ
∑

d≤D

∗
rank(Ed)� D logD + λD +D1/2 exp(2Bλ)

+D log2(DT ) exp(c5λ− c6(λT )1/2)

+
∑

d≤D

∗ ∑

|γ|≤T
|β−1|≥1/λ

|φλ(%)|.

From now on we assume that 2 < λ ≤ c7 logD with a suitably small constant
c7 > 0, and choose, e.g., T = log3D. Hence

(27) λ
∑

d≤D

∗
rank(Ed)� D logD +

∑

d≤D

∗ ∑

|γ|≤T
|β−1|≥1/λ

|φλ(%)|.

We split the region
[

1
λ ,

1
2

]× [0, T ] into rectangles of the type
[
m
λ ,

m+1
λ

]×
[n, n + 1] with 1 ≤ m ≤ λ and 0 ≤ n ≤ T , and analogously for the other
similar regions where the zeros counted in (27) lie. Hence from (14), (16)
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and the assumption of Theorem 5 we get, for suitable constants ci > 0 with
i = 8, 9, 10, 11,

(28)
∑

d≤D

∗ ∑

|γ|≤T
|β−1|≥1/λ

|φλ(%)|

� λD
∑

1≤m≤λ

∑

0≤n≤T
exp(c8m− c9(λn)3/4)D−cm/λ(n+ 1)AL(D)

� λD
∑

1≤m≤λ
exp

(
c8m− cm

λ
logD + logL(D)

)

×
∑

0≤n≤T
(n+ 1)A exp(−c9n3/4)

� λD
∑

1≤m≤λ
exp(−c10m) max

1≤m≤λ
exp

(
logL(D)− c11

m

λ
logD

)

� λD exp
(

logL(D)− c11
logD
λ

)
.

We choose

(29) λ = c11
logD

logL(D)

and the result follows at once from (27)–(29).

Proof of Proposition 2. Here we give a sketch of the proof of Proposi-
tion 2. Let ω ∈ (1, 2] and

ϕ(x) =
{

1− |x| if x ∈ [−1, 1],
0 otherwise.

Note that the Fourier transform ϕ̂ of ϕ is non-negative on the real axis. For
any integer n ≥ 1 we define

gn(x) = anϕ(xan) with an = n(log+ n)ω,

we consider the convolution ψn = g1 ∗ g2 ∗ . . . ∗ gn and let ψ(x) =
limn→∞ ψn(x). An argument similar to the one used in the proof of The-
orem 1.3.5 of Hörmander [7] shows that ψ is the uniform limit of the ψn,
ψ ∈ C∞(R) and has support contained in [−B,B], with B =

∑∞
n=1 a

−1
n .

It is easy to see that ψ is even, non-negative, ψ̂ is positive on the real axis
and ψ(0) 6= 0. By an obvious normalization we may assume that ψ(0) = 1.
Taking the Fourier transform, from the properties of the convolution we
see that ψ̂(0) = 1.
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For any integer k > 1 we have, taking the kth derivative,

(30) |ψ(k)(x)| ≤ 8kk!(log k)kω.

In fact, for n > k we see that

|ψ(k)
n (x)| ≤

∞\
−∞
|ψ(k+1)
n (t)| dt ≤

∏

1≤j≤k+1

∞\
−∞
|g′j(t)| dt

∏

k+2≤j≤n

∞\
−∞

gj(t) dt

≤
∏

j≤k+1

∞\
−∞
|g′j(t)| dt.

But g′j(x) ≤ a2
j almost everywhere and the support of g′j is contained in

[−a−1
j , a−1

j ], hence

|ψ(k)
n (x)| ≤

∏

j≤k+1

a2
j2a
−1
j ≤ 2k(k + 1)!(log(k + 1))kω ≤ 8kk!(log k)kω,

and (30) follows by uniform convergence.
From (30) we deduce that the Laplace transform Ψ of ψ satisfies

(31) Ψ(s)� exp
(
c12|Re s| − c13

∣∣∣∣
s

8

∣∣∣∣
(

log+
∣∣∣∣
s

8

∣∣∣∣
)−ω)

,

where c12 = c12(ω). In fact, for any integer k > 1 we get

(32) |skΨ(s)| =
∣∣∣
∞\
−∞

ψ(k)(x)esx dx
∣∣∣ ≤ 2B8kk!(log k)kω exp(2B|Re s|),

and (31) follows by a simple computation based on a suitable choice of k
which minimizes (32), i.e., k = [C|s/8|(log+ |s/8|)−ω] with a suitable con-
stant C.

Let now

h(s) = ch(s)−1 =
(
es + e−s

2

)−1

and, finally, write
f(x) = ψ(x)h(x).

Hence f is even, non-negative, f(0) = 1, f ∈ C∞(R) and its support is
contained in [−B,B]. It remains to prove (14) and (15). By Cauchy’s integral
formula we see that

|h(k)(x)| ≤ ck14k!
with some constant c14 > 0, hence (30) holds for h with ω = 0 and c14 in
place of 8. Hence (14) follows, in an even stronger form, from Leibniz’s rule
and the same argument leading to (31).

Let H denote the Laplace transform of h. It is well known that H(s) =
πh
(
πs
2i

)
. Moreover, by Proposition 3 on p. 59 of Szmydt–Ziemian [15] we
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find that F can be expressed as convolution of Ψ and H,

F (σ + it) = 2π
∞\
−∞

ψ̂(t− x)H(σ + ix) dx(33)

= 2π2
∞\
−∞

ψ̂(t− x)h
(
π

2i
(σ + ix)

)
dx

where |σ| < 1. Writing sh(s) = (es − e−s)/2, we have

Reh(s) = Re(ch(s))/|ch(s)|2

and

ch(s) = cos(Im s)ch(Re s) + i sin(Im s)sh(Re s).

Hence, since ψ̂ is positive on the real axis, (15) follows from (33), and Propo-
sition 2 is proved.
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[7] L. Hörmander, The Analysis of Linear Partial Differential Operators I , Springer,
1983.

[8] H. Iwaniec, On the order of vanishing of modular L-functions at the critical point ,
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