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1. Introduction. As a natural continuation of the results of Hardy,
Littlewood and Vinogradov, much attention has been paid in the last 60
years to the Waring–Goldbach problem, the problem of representing natural
numbers as a sum of prime powers. This is the main subject of Hua’s book
[7]. Stronger results can be drawn if one restricts to almost prime powers
only. For example, by results of Brüdern and Fouvry, every sufficiently large
integer in some congruence class can be represented as a sum of four squares
all having at most 34 prime factors [3] and as a sum of seven cubes all having
at most 69 prime factors [2].

However, it is plausible to expect similar results if other multiplica-
tive constraints are imposed on the variables. In the light of the Waring–
Goldbach problem it is reasonable to study Waring’s problem in variables
which have relatively small prime factors (such numbers are often called
smooth by a terminology of Pomerance). This problem has been studied
only in the case of first powers so far (Balog and Sárközy [1]), this special
case arising from a conjecture of Erdős.

The present paper tries to fill this gap by solving the general Waring
problem in smooth numbers. While the main goal of this paper was to
guarantee solutions with prime factors as small as possible and the number
of summands s was only of a secondary importance in this work, it turned
out that even with the best result for the prime factors yielded by the
method, one can bound s in the same way, at least when k is large, as
available in the classical Waring problem at present [10]. More precisely,
using the notations of Wooley [10, Theorem 1.2] and writing P (n) for the
greatest prime factor of a number n we shall prove

Theorem. For any positive integer k there exist a positive integer s and
positive constants c1, c2 such that every sufficiently large integer N has at
least

Ns/k−1 exp(−c1(logN log logN)1/2)

[165]
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representations of the form

nk1 + nk2 + . . .+ nks = N

where

P (n1n2 . . . ns) ≤ exp(c2(logN log logN)1/2).

Moreover , the least such s satisfies s ≤ F (k) where F (1) = 3, F (2) = 5,
F (3) = 9, F (4) = 17, F (5) = 21, F (6) = 29, F (7) = 39, F (8) = 49 and , for
k ≥ 9,

F (k) = 3 + 2 min
v≥k+1

(
v +

[
∆(v)

2%

])
.

In particular , as k tends to infinity ,

F (k) ≤ k(log k + log log k +O(1)).

R e m a r k 1. The results are probably not the best ones. However, qual-
itatively they are as sharp as is known in the special case of the first powers
[1]. To indicate the strength of the Theorem we note that among the first N
positive integers the proportion of the numbers composed of prime factors
not exceeding exp((logN)1/2+o(1)) is exp(−(logN)1/2+o(1)), as follows from
the work of de Bruijn [4] and Hildebrand [5] (cf. [6, Corollary 1.3]). The
bound for the size of the prime factors cannot be replaced with any function
of order of magnitude (logN)1+o(1) in our Theorem. In fact, in this case [4]
would yield that we had only a set of cardinality No(1) to choose the kth
powers from in order to represent all sufficiently large positive integers n up
to N , contradicting the consequence of a simple counting argument, namely
that, given s, at least N1/s−o(1) kth powers are needed.

R e m a r k 2. Observe that for k ≥ 21, F (k) is the best known bound for
s in the classical Waring problem due to Wooley [10]. The first 20 values of
F (k) are listed in the following table.

k 1 2 3 4 5 6 7 8 9 10

F (k) 3 5 9 17 21 29 39 49 57 65

k 11 12 13 14 15 16 17 18 19 20

F (k) 73 81 89 97 105 115 123 131 139 149

R e m a r k 3. The proof yields effectively computable good values of c1, c2
in terms of s and k. For example, (1, 3, 2/9, 15) or (2, 5, 2/9, 24) are admis-
sible as (k, s, c1, c2). Also, a similar result could be shown for any s ≥ F (k).

Acknowledgements. I would like to thank Professor A. Sárközy for
calling my attention to this problem, his encouragement and valuable sug-
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gestions during the work. I am grateful to Professor A. Balog, who believed
at an early stage of the results that they might well be improved signif-
icantly. Let me express my gratitude also to the anonymous referee, who
pointed out that smooth numbers might provide a better version of my
original Lemma 11. This comment led to the present good bound on s.

2. Notations and preliminary remarks. In order to prove our The-
orem, we use the Hardy–Littlewood method combining with other ideas
similar to those of [1], some strong results of [9] and [10] on the classical
Waring problem and a new inequality concerning the number of a certain
type of divisors of a number. If k ≥ 9 then we define the ∆(v)’s and %
in terms of k as in [10, Theorem 1.2]. We record for later reference that
% < 1/(2k) follows at once from these definitions. F (k) is the function in
our Theorem.

We write ex = exp(x) and e2πiα = e(α). The distance from x to the
nearest integer is denoted by ‖x‖. We define the empty sum to be 0 and
the empty product to be 1. We put min

(
A, 1

0

)
= A. We denote the least

prime factor of n by p(n), while the greatest prime factor of n is denoted
by P (n). τ(n) denotes the divisor function

∑
m|n 1, and Ω(n) =

∑
pα‖n α

counts the number of prime factors of n with multiplicity. The Vinogradov
symbols �, � have their usual meaning, namely that for functions f and g
with g taking non-negative values f � g and g � f means |f | ≤ Cg where
C is a constant. The dependence of the implicit constants in the O, � and
� notations, if any, will be indicated explicitly in the subscripts of these
symbols.

We shall always assume, without any remark, that N is sufficiently large
to fit in our statements. Whenever we use the o-symbol without any com-
ment, we understand it as N → ∞. Let s be a positive integer depending
only on k which we specify later. Define w = exp((logN1/k log logN1/k)1/2),
and put y = wc3 and z = y2/9 where c3 is a positive constant to be chosen
later in terms of k and s. Let

Q =
N

z1/4
, U =

[
2k
N

y

]
+ 1,

L =
{
l : λ

N1/k

y
≤ l ≤ N1/k

y
and z < p(l) ≤ P (l) ≤ y

}

with an appropriate 0 < λ < 1 to be determined later in terms of k. Note
that L is not empty, since y = o(N1/k). We write

L =
∑

l∈L
1, dn =

∑

ml=n
m≤y
l∈L

1 (for 1 ≤ n ≤ N1/k),
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f(α) =
∑

1≤n≤N1/k

dne(nkα), u(α) =
1
U

U−1∑
n=0

e(nα)

and

h(α) = f(α)u(α) =
N+U−1∑
n=1

hne(nα)

so that

hn =
1
U

∑

n−U<jk≤n
dj .

We shall study the integral

J =
1\
0

f(α)se(−Nα) dα =
∑

nk1+...+nks=N

dn1 . . . dns

by comparing it to

I =
1\
0

h(α)se(−Nα) dα =
∑

n1+...+ns=N

hn1 . . . hns .

The integrals provide weighted enumerations of representations of N as a
sum of s positive integers. The main feature of the weights dn is that dn > 0
implies P (n) ≤ y, while the advantage of the averaged weights hn lies in
the expectation that their discrepancies are smaller than those of the dn’s.
In fact, it is quite straightforward to give a lower estimation for hn and the
integral I. However, to treat J and I properly we need an upper estimate
for the quantities dn. We note that the weights dn were invented by Balog
and Sárközy [1], who later derived several theorems using them. Almost all
of these results become stronger when the new inequality, our Lemma 3, is
taken into account.

To prove our Theorem, we shall need several lemmata which we collect
in the next section. It will be convenient to work on the unit interval U =
[1/Q, 1+1/Q] instead of [0, 1]. Note that the generating functions e(α), f(α),
u(α) and h(α) appearing here are all periodic modulo 1, hence they depend
only on the fractional part of α. For any 1 ≤ a ≤ q ≤ z and (a, q) = 1
introduce the intervals

M(q, a) =
{
α :
∣∣∣∣α−

a

q

∣∣∣∣ ≤
1
Q

}
,

which are pairwise disjoint and lie in U. Hence if we define the major arcs
M as the union of these intervals and the minor arcs as m = U \M, then
clearly U is the disjoint union of M and m.
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In accordance with [9] and [10], for any 2 ≤ R ≤ P define

A(P,R) = {n : n ≤ P and P (n) ≤ R}.
Then, evidently, L ⊆ A(N1/k/y, y). Let St(P,R) denote the number of
solutions of

xk1 + . . .+ xkt = yk1 + . . .+ ykt

with

x1, . . . , xt, y1, . . . , yt ∈ A(P,R).

Finally, we define the broadly used exponential sums

S(q, a) =
q∑
r=1

e

(
rk
a

q

)
.

3. Preliminary lemmata. First of all let us formulate a simple lemma
for further reference and also recall some classical estimates for the divisor
function τ .

Lemma 1. If a, b are real numbers and m is a positive integer then

|am − bm| ≤ m|a− b|max(|a|m−1, |b|m−1).

P r o o f. The equality

|am − bm| = |a− b|
∣∣∣
m−1∑

j=0

ajbm−1−j
∣∣∣

yields the result.

Lemma 2. We have, for every positive integer m,
∑

1≤u≤P
τ(u)m ≤ P (log 3P )2m−1,

and , as P →∞,

max
1≤u≤P

τ(u) ≤ P o(1).

P r o o f. The first part is an explicit version of [7, Hilfssatz 2.5] admitting
the same proof. The second part is an immediate consequence of the first
part.

The following lemma is an essential tool in the paper.

Lemma 3. We have

max
1≤n≤N1/k

dn ≤ wo(1).
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P r o o f. For all n define n− and n+ as

n− =
∏

pα‖n
p≤z

pα and n+ =
∏

pα‖n
p>z

pα.

It is clear that n = n−n+ and m |n if and only if m− |n− and m+ |n+.
Take any 1 ≤ n ≤ N1/k with dn > 0. Then n can be written as m0l0

where m0 ≤ y and l0 ∈ L. Fix n, m0, l0 for the rest of the proof. The
definitions of n+ and L show that l0 |n+, therefore n− |m0 at the same
time. In particular, n− ≤ y. Any representation n = ml contributing to
dn is determined by the divisor m |n satisfying m ≤ y. This m in turn is
determined by the pair of divisors m− |n− and m+ |n+. The number of
choices for m− is

τ(n−) ≤ max
1≤u≤y

τ(u).

Now consider m+. By definition, we know that

z < p(n+) ≤ p(m+) ≤ m+ ≤ m ≤ y < z5

from which it follows that m+ has at most 4 prime factors. These prime
factors are among those of n+, therefore the number of choices for m+ is at
most

4∑
r=0

(
Ω(n+)
r

)
� Ω(n+)4 ≤

(
log n+

log 2

)4

� (logn+)4 ≤ (logN)4.

Combining our results with the second part of Lemma 2 we can see that

max
1≤n≤N1/k

dn � (logN)4 max
1≤u≤y

τ(u) ≤ wo(1)yo(1) = wo(1).

As a counterpart to the previous lemma, we state

Lemma 4. We have

min
U≤n≤λkN

hn ≥ L/U.

P r o o f. Let U ≤ n ≤ λkN . Then

Uhn =
∑

n−U<jk≤n
dj =

∑

n−U<jk≤n

∑

ml=j
m≤y
l∈L

1

=
∑

n−U<mklk≤n
m≤y
l∈L

1 =
∑

l∈L

∑

(n−U)/lk<mk≤n/lk
m≤y

1.
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As λN1/k/y ≤ l holds for every l ∈ L, also

n

lk
≤ λkN

λkN/yk
= yk.

This means that we can drop the condition m ≤ y in the inner sum, i.e.,
using also Lemma 1,

Uhn =
∑

l∈L

∑

(n−U)/lk<mk≤n/lk
1

≥
∑

l∈L

(
k
√
n− k
√
n− U

l
− 1
)
≥
∑

l∈L

(
U

kn1−1/kl
− 1
)

≥
∑

l∈L

(
U

kn1−1/kl
− U

2kN/y

)
≥
∑

l∈L

(
U

kn1−1/kl
− U

2kn1−1/kl

)

=
∑

l∈L

U

2kn1−1/kl
≥
∑

l∈L

2kN/y
2kn1−1/kN1/k/y

= L

(
N

n

)1−1/k

≥ L.

In order to use this lemma, we need a lower estimate for L.

Lemma 5. We have

L ≥ N1/k

y
w−1/c3−o(1).

P r o o f. Since z ≤ 1
2y

1/2, we can follow the proof of [1, Lemmata 13 and
14] step by step to deduce that

L ≥ N1/k

y
exp

(
− (1 + o(1))

logN1/k log logN1/k

log y

)

which is the same as the statement of the lemma, since

logN1/k log logN1/k

log y
=

(logw)2

log y
=

(logw)2

c3 logw
=

1
c3

logw.

For studying the generating functions f and h on the major arcs we shall
need

Lemma 6. Let a, q, M be positive integers, β an arbitrary real number
and v a polynomial with positive integer coefficients. If

gm(α) =
m∑
n=1

e(v(n)α) and g(α) = gM (α)

then

g

(
a

q
+ β

)
=
(

1
q

q∑
r=1

e

(
v(r)

a

q

))
g(β) +O(q(1 + |β|v(M))).
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P r o o f. For simplicity put S =
∑q
r=1 e

(
v(r)aq

)
. For any integer 1 ≤ m ≤

M we have

gm

(
a

q

)
=

m∑
n=1

e

(
v(n)

a

q

)
=

[m/q]−1∑

j=0

q∑
r=1

e

(
v(jq + r)

a

q

)
+O(q)

where v(jq + r) ≡ v(r) (mod q), i.e.,

gm

(
a

q

)
=
[
m

q

] q∑
r=1

e

(
v(r)

a

q

)
+O(q) =

m

q
S +O(q).

Using this result we get

g

(
a

q
+ β

)
=

M∑
m=1

e

(
v(m)

a

q

)
e(v(m)β)

=
M∑
m=1

(
gm

(
a

q

)
− gm−1

(
a

q

))
e(v(m)β)

= gM

(
a

q

)
e(v(M)β) +

M−1∑
m=1

gm

(
a

q

)
(e(v(m)β)− e(v(m+ 1)β))

=
(
M

q
S +O(q)

)
e(v(M)β)

+
M−1∑
m=1

(
m

q
S +O(q)

)
(e(v(m)β)− e(v(m+ 1)β))

=
M∑
m=1

(
m

q
S − m− 1

q
S

)
e(v(m)β)

+O(q)
{

1 + |β|
M−1∑
m=1

|v(m)− v(m+ 1)|
}

=
1
q
Sg(β) +O(q(1 + |β|v(M))),

since v is an increasing function on the positive integers.

The treatment of the minor arcs will require the use of the following
well-known result.

Lemma 7. If α, M , V are real numbers and a, q are integers such that
M ≥ 1, q > 0, (a, q) = 1 and |α− a/q| ≤ 1/q2 then

∑

1≤m≤M
min

(
V,

1
2‖mα‖

)
≤
(
M

q
+ 1
)

(6V + q log q).
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P r o o f. This follows at once from [7, Hilfssatz 3.5], as any interval of
length M can be covered by [M/q] + 1 intervals of length q.

4. Estimating the generating functions

Lemma 8. We have, for all α,

|f(α)| ≤ Ly and |u(α)| ≤ 1.

P r o o f. This is obvious by estimating the terms in f(α) and u(α) triv-
ially.

Lemma 9. We have, for all α,

|u(α)− 1| ≤ π|α|U.
P r o o f. This follows from [1, Lemma 1].

The behaviour of the generating functions f and h on the major arcs is
described by

Lemma 10. If α ∈M, e.g. α ∈M(q, a) then

f(α) = q−1S(q, a)f(β) +O(Lz2), h(α) = δqh(β) +O(Lz2)

where β = α− a/q and δq = 1 or 0 according as q = 1 or q > 1.

P r o o f. By the definition of M we have 1 ≤ a ≤ q ≤ z, (a, q) = 1 and
|β| ≤ 1/Q. Now the proof is based on the fact that q is relatively prime to
all elements l of L, since q ≤ z < p(l). Therefore, applying Lemma 6,

f(α) =
∑

m≤y
l∈L

e(mklkα) =
∑

l∈L

∑

m≤y
e(mklkα)

=
∑

l∈L

{
q−1S(q, lka)

∑

m≤y
e(mklkβ) +O(q(1 + |lkβ|yk))

}
.

In the inner expression we have, for all l ∈ L,

S(q, lka) =
q∑
r=1

e

(
(rl)k

a

q

)
= S(q, a),

while in the error term

q(1 + |lkβ|yk) ≤ z
(

1 +
N

yk
· 1
Q
yk
)
< z(1 + z) ≤ 2z2.

This implies that

f(α) = q−1S(q, a)
∑

l∈L

∑

m≤y
e(mklkβ) +O(Lz2)

= q−1S(q, a)f(β) +O(Lz2),
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the first part of the lemma. As to the other part, we use Lemma 6 once more
to deduce

u(α) = δqu(β) +O

(
1
U
q(1 + |β|U)

)

where δq = 1 or 0 according as q = 1 or q > 1 and

1
U
q(1 + |β|U) ≤ 1

U
z

(
1 +

U

Q

)
<

2z
U
,

i.e.,

u(α) = δqu(β) +O

(
z

U

)
.

Putting this result together with the one we obtained for f(α) gives

h(α) = f(α)u(α)

= δqq
−1S(q, a)f(β)u(β) +O

(
|f(β)| z

U

)
+O(|u(β)|Lz2) +O

(
Lz2 z

U

)

where we used the trivial estimate |q−1S(q, a)| ≤ 1. Now observe that

δqq
−1S(q, a) = δq

and the error terms sum up to O(Lz2) by Lemma 8 in this expression. Hence

h(α) = δqh(β) +O(Lz2)

which is the second part of the lemma.

In order to estimate the generating functions on the minor arcs m and
to derive the upper bound s ≤ F (k) we need the following mean value
inequality.

Lemma 11. For any positive constant c4 there exist a positive integer t
depending only on k and a positive constant c5 depending only on k and c4
such that

St(P,R) ≤ P 2t−k(log 2P )c5

holds for all P ≥ 2 with R = exp(c4(logP log logP )1/2). Moreover , if t
satisfies this property then so does t + 1, and the least such t satisfies 2t ≤
F (k)− 1.

P r o o f. Introduce the generating functions

l(α) =
∑

n∈A(P,R)

e(nkα), k(α) =
∑

1≤n≤P
e(nkα).

The inequality in the lemma can be written as
1\
0

|l(α)2t| dα ≤ P 2t−k(log 2P )c5 ,
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from which it is clear that the inequality still holds with t+ 1 in place of t,
since

1\
0

|l(α)2t+2| dα ≤ max
[0,1]
|l(α)|2

1\
0

|l(α)2t| dα ≤ P 2
1\
0

|l(α)2t| dα.

If 1 ≤ k ≤ 4 then the existence of 2t and the inequality for it can be
simply deduced from Hua’s inequality [7, Satz 4]. If k ≥ 5 then put

L =
1\
0

|l(α)2t| dα, K =
1\
0

|k(α)2l(α)2t−2| dα.

It is clear by considering the underlying diophantine equations that

(1) L ≤ K.
If 5 ≤ k ≤ 8 and 2t = F (k) − 1 then [9, Lemma 5.2] improved by the

new estimates of [10, §5] shows that

K �k P
2t−k

(cf. also [10, §6]), hence by (1) any sufficiently large c5 > 0 (in terms of k
and c4) is admissible in the lemma.

Suppose now that k ≥ 9. For any 1 ≤ a ≤ q ≤ P and (a, q) = 1 introduce
the intervals

N(q, a) =
{
α :
∣∣∣∣α−

a

q

∣∣∣∣ ≤
P 1−k

2kq

}
,

which are pairwise disjoint and lie in the unit interval

V =
[
P 1−k

2k
, 1 +

P 1−k

2k

]
.

Hence if we define N as the union of these intervals and we put n = V \N,
then clearly V is the disjoint union of N and n, i.e.

(2) K =
\
N

|k(α)2l(α)2t−2| dα+
\
n

|k(α)2l(α)2t−2| dα.

First, by Hölder’s inequality,\
N

|k(α)2l(α)2t−2| dα ≤
( \

N

|k(α)2t| dα
)1/t( \

N

|l(α)2t| dα
)1−1/t

.

If 2t ≥ k + 2 then [9, Lemma 5.1] implies\
N

|k(α)2t| dα�k,t P
2t−k,

and (1) yields \
N

|l(α)2t| dα ≤ L ≤ K,
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therefore

(3)
\
N

|k(α)2l(α)2t−2| dα�k,t (P 2t−k)1/tK1−1/t.

Think now of t as a sum u + v of positive integers where v ≥ k + 1. Then
condition 2t ≥ k + 2 is automatically satisfied, and we also see that

\
n

|k(α)2l(α)2t−2| dα ≤ (sup
n
|l(α)|)2u

1\
0

|k(α)2l(α)2v−2| dα.

Choose any constant ε > 0. Since % < 1/(2k), and R = P o(1) as P →∞, we
can deduce from [10, Theorem 1.4] that

sup
n
|l(α)| ≤ P 1−%+ε,

while we learn from Wooley’s remark in the last paragraph of [10, p. 150]
that

1\
0

|k(α)2l(α)2v−2| dα�k,ε P
2v−k+∆(v)+ε.

As ε > 0 may be chosen arbitrarily small, we find that

(4) 2u% > ∆(v)

implies \
n

|k(α)2l(α)2t−2| dα�k,t P
2t−k.

This together with (2) and (3) gives

K �k,t (P 2t−k)1/tK1−1/t + P 2t−k,

so that, using also (1),

L ≤ K �k,t P
2t−k.

This means that for any positive integers v ≥ k + 1 and u satisfying (4)
the lemma is admissible with t = u+ v and any sufficiently large c5 > 0 (in
terms of k and c4). Choosing u optimally in (4) we conclude that

t = 1 + v +
[
∆(v)

2%

]

is admissible; finally, minimizing over v establishes the lemma.

In order to apply Lemma 11 we fix c4 such that c3 < c4, then c5 depends
only on k. In the applications P will be at least N1/k−o(1), whence y < R.
As a first corollary, we can state the following mean value estimate for f .
Note that the same result applies for h in spite of Lemma 8.
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Lemma 12. Let t be as in Lemma 11. Then we have
1\
0

|f(α)|2t dα ≤ N2t/k−1wo(1).

P r o o f. Let B denote the set of vectors n = (n1, . . . , n2t) with

nk1 + . . .+ nkt = nkt+1 + . . .+ nk2t and 1 ≤ n1, . . . , n2t ≤ N1/k.

Then
1\
0

|f(α)|2t dα =
∑

n∈B
dn1 . . . dn2t .

Since dn > 0 implies that P (n) ≤ y, we can rewrite this sum as
1\
0

|f(α)|2t dα =
∑

n∈C
dn1 . . . dn2t

where C consists of the vectors n ∈ B with

n1, . . . , n2t ∈ A(N1/k, y).

Now we can apply Lemma 3 and then Lemma 11 to deduce
1\
0

|f(α)|2t dα ≤ wo(1)
∑

n∈C
1 = wo(1)St(N1/k, y) ≤ N2t/k−1wo(1).

We need an upper estimate for |f | (and |h|) on the minor arcs m. Such
an estimate is provided by

Lemma 13. Let 1/c6 = 2k+1(F (k) + 1). Then

sup
m
|f(α)| ≤ N1/k

zc6
wo(1).

P r o o f. Let α ∈ m. Then Dirichlet’s theorem implies the existence of
integers a, q with (a, q) = 1 and 1 ≤ q ≤ Q such that∣∣∣∣α−

a

q

∣∣∣∣ ≤
1
qQ
≤ 1
q2 .

Since

m ⊆ U \M1,1 = [1/Q, 1− 1/Q),

we have 1 ≤ a ≤ q and then also q > z for otherwise α would be in M.
Let t be as in Lemma 11 and assume that t is even and minimal. Lemma

11 guarantees the existence of such a t and it also follows that

(5) 2t ≤ F (k) + 1,

since F (k) is an odd integer.
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We shall apply Hölder’s inequality several times without any reference.
We have

|f(α)| =
∣∣∣
∑

m≤y
l∈L

e(mklkα)
∣∣∣

≤
∑

m≤y

∣∣∣
∑

l∈L
e(mklkα)

∣∣∣ ≤ y1−1/t
( ∑

m≤y

∣∣∣
∑

l∈L
e(mklkα)

∣∣∣
t)1/t

= y1−1/t
( ∑

m≤y
l1,...,lt∈L

e(mk(lk1 + . . .+ lkt/2 − lkt/2+1 − . . .− lkt )α)
)1/t

.

If N0 = t
2
N
yk

, and r(n) denotes the number of representations

n = lk1 + . . .+ lkt/2 − lkt/2+1 − . . .− lkt
with

l1, . . . , lt ∈ L
for every integer n, then the last inequality implies

|f(α)| ≤ y1−1/t
( ∑

|n|≤N0

r(n)
∣∣∣
∑

m≤y
e(mknα)

∣∣∣
)1/t

(6)

≤ y1−1/t
( ∑

|n|≤N0

r(n)2
∑

|n|≤N0

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2)1/(2t)

.

We shall estimate the inner sums separately. First,
∑
|n|≤N0

r(n)2 clearly
counts the number of solutions of

lk1,1 + . . .+ lk1,t/2 − lk1,t/2+1 − . . .− lk1,t
= lk2,1 + . . .+ lk2,t/2 − lk2,t/2+1 − . . .− lk2,t

with
l1,1, . . . , l1,t, l2,1, . . . , l2,t ∈ L,

hence, using also Lemma 11,

(7)
∑

|n|≤N0

r(n)2 ≤ St
(
N1/k

y
, y

)
≤ N2t/k−1

y2t−k wo(1).

Secondly,

(8)
∑

|n|≤N0

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2

≤ N1−1/2k−2

0

( ∑

|n|≤N0

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2k−1)1/2k−2

.
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Estimate the inner sum by applying the Weyl shift k − 1 times:

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2k−1

�k y
2k−1−k ∑

|h1|,...,|hk−1|≤y
min

(
y,

1
‖k!h1 . . . hk−1nα‖

)
,

which yields that

∑

|n|≤N0

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2k−1

�k y
2k−1−k ∑

|n|≤N0
|h1|,...,|hk−1|≤y

min
(
y,

1
‖k!h1 . . . hk−1nα‖

)
.

Let R(m) denote the number of representations of m in the form

m = k!h1 . . . hk−1n (|n| ≤ N0; |h1|, . . . , |hk−1| ≤ y),

and put N1 = k!N0y
k−1 = k! t2

N
y . Then the last sum is

(9)
∑

|m|≤N1

R(m) min
(
y,

1
‖mα‖

)

where of course

R(m) = R(|m|)�k

{
N1/y if m = 0,
τ(m)k−1 if m 6= 0.

Hence (9) is, using also Lemma 2,

�k N1 +
∑

1≤m≤N1

τ(m)k−1 min
(
y,

1
‖mα‖

)

≤ N1 +
( ∑

1≤m≤N1

τ(m)2k−2
)1/2

( ∑

1≤m≤N1

min
(
y,

1
‖mα‖

)2)1/2

≤ N1 + (N1 log(3N1)22k−2−1)1/2
(
y

∑

1≤m≤N1

min
(
y,

1
‖mα‖

))1/2

.

By Lemma 7 we have

∑

1≤m≤N1

min
(
y,

1
‖mα‖

)
�
(
N1

q
+ 1
)

(y + q log q)

�k,t
N

z1/4
logN =

N

z1/4
wo(1),
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since N1 �k,t N/y and z < q ≤ N/z1/4. Therefore we see that (9) is

�k N1 + (N1w
o(1))1/2

(
y
N

z1/4
wo(1)

)1/2

�k,t
N

y
+

N

z1/8
wo(1) =

N

z1/8
wo(1).

This results in (8) as

∑

|n|≤N0

∣∣∣
∑

m≤y
e(mknα)

∣∣∣
2
≤ N1−1/2k−2

0

(
y2k−1−k N

z1/8
wo(1)

)1/2k−2

≤ N1−1/2k−2

0

(
y2k−1 N0

z1/8
wo(1)

)1/2k−2

=
N0y

2

z1/2k+1 w
o(1) =

N

yk−2z1/2k+1 w
o(1).

Putting this last inequality and (7) into (6) we get

|f(α)| ≤ y1−1/t
(
N2t/k−1

y2t−k wo(1) N

yk−2z1/2k+1 w
o(1)
)1/(2t)

=
N1/k

z1/(2k+2t)
wo(1).

Now the lemma follows by (5).

5. Proof of the Theorem. At this point we choose s, the number of
summands in the Theorem. Simply define s as F (k); then we can write it
as 2t + 1 where t has the property formulated in Lemma 11. Consider the
function

H(k) =





2k + 1 for 2 ≤ k ≤ 4,
4k for k = 2l, l ≥ 3,
5
2k otherwise.

We can make the useful observation that

(10) s = F (k) ≥ H(k).

In the only non-trivial case k ≥ 9 this can be verified by estimating the
∆(v)’s. For example, very roughly, one can start out from

∆(v) ≥ (k − 2)
(

1− 2
k

)v−2

,

which follows immediately by induction on v. Then, using 1−2/k > e−2.05/k

for k ≥ 43, one can show that

min
k+1≤v≤2k+2

∆(v) > 1
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for k ≥ 2 + e4.1. In this case % < 1/(2k) implies that

min
k+1≤v≤2k+2

[
∆(v)

2%

]
≥ k,

and finally that

F (k) ≥ 4k + 5 (k ≥ 2 + e4.1).

The remaining cases (k ≤ 62) can be checked by hand or by computer.
In order to prove the Theorem, we shall estimate the integrals

J =
\
U

f(α)se(−Nα) dα, I =
\
U

h(α)se(−Nα) dα

simultaneously. First we calculate the contributions of the major arcs M.
Let α ∈M(q, a). Then z2 ≤ y together with Lemmata 8 and 10 yields that

max(|f(α)|, |q−1S(q, a)f(β)|)� Ly and max(|h(α)|, |δqh(β)|)� Ly.

Therefore, using Lemma 1 and the trivial estimate Ly ≤ N1/k,

f(α)s = (q−1S(q, a))sf(β)s +O(Ns/ky−1z2),

h(α)s = δqh(β)s +O(Ns/ky−1z2).

By the definition of M,\
M

f(α)se(−Nα) dα =
∑

1≤a≤q≤z
(a,q)=1

\
M(q,a)

f(α)se(−Nα) dα

=
∑

1≤a≤q≤z
(a,q)=1

1/Q\
−1/Q

{(q−1S(q, a))se(−Na/q)f(β)se(−Nβ)

+O(Ns/ky−1z2)} dβ

=
{ ∑

1≤a≤q≤z
(a,q)=1

(q−1S(q, a))se(−Na/q)
} 1/Q\
−1/Q

f(β)se(−Nβ) dβ

+O(Q−1Ns/ky−1z4).

Now the sum in brackets can be approximated by the singular series

S(N) =
∞∑
q=1

∑

1≤a≤q
(a,q)=1

(q−1S(q, a))se(−Na/q)

which is well known from the theory of the classical Waring problem (cf.
[8]). We formulate two important properties of this series as
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Lemma 14. We have

(11) S(q, a)�k q
1−1/k

and

(12) 1�k S(N)�k 1.

P r o o f. For k = 1 the statement is obvious. Hence suppose that k ≥ 2.
Then (11) is identical with [8, Theorem 4.2], which also implies the up-
per bound part of (12). The lower bound in (12) follows by (10) from [8,
Theorems 2.5 and 4.6].

The inequality (11) together with (10) implies that

(q−1S(q, a))s � q−5/2,

hence ∑

1≤a≤q
(a,q)=1

(q−1S(q, a))se(−Na/q)� q−3/2

always holds, and therefore∑

1≤a≤q≤z
(a,q)=1

(q−1S(q, a))se(−Na/q) = S(N) +O(z−1/2).

Going back to the integral on M, we get

\
M

f(α)se(−Nα) dα = S(N)
1/Q\
−1/Q

f(β)se(−Nβ) dβ

+O(z−1/2Q−1Ns/k) +O(Q−1Ns/ky−1z4),

since the integral on the interval [−1/Q, 1/Q] is of magnitude O(Q−1Ns/k)
by Lemma 8. By y−1z4 = z−1/2 our formula reads

\
M

f(α)se(−Nα) dα = S(N)
1/Q\
−1/Q

f(β)se(−Nβ) dβ +O

(
Ns/k−1

z1/4

)
.

The other part of the integral J can be estimated by Lemmata 12 and 13 as
∣∣∣
\
m

f(α)se(−Nα) dα
∣∣∣ ≤ sup

m
|f(α)|

\
m

|f(α)|2t dα ≤ N1/k

zc6
wo(1)N2t/k−1wo(1).

Summarizing our results concerning J so far we get

J =
\
U

f(α)se(−Nα) dα = S(N)
1/Q\
−1/Q

f(β)se(−Nβ) dβ+O

(
Ns/k−1

zc6
wo(1)

)
,

since c6 ≤ 1/4.
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In the same way we get

I =
\
U

h(α)se(−Nα) dα =
1/Q\
−1/Q

h(β)se(−Nβ) dβ +O

(
Ns/k−1

zc6
wo(1)

)
.

Now observe that Lemmata 1, 8 and 9 together imply

∣∣∣
1/Q\
−1/Q

f(β)se(−Nβ) dβ −
1/Q\
−1/Q

h(β)se(−Nβ) dβ
∣∣∣

=
∣∣∣

1/Q\
−1/Q

f(β)s(1− u(β)s)e(−Nβ) dβ
∣∣∣ ≤ s

1/Q\
−1/Q

|f(β)|s|1− u(β)| dβ

≤ πs
1/Q\
−1/Q

|f(β)|s|β|U dβ ≤ πsN
s/kU

Q2 �k N
s/k−1 z

1/2

y
=
Ns/k−1

z4 .

The expressions obtained for J and I together with this last result
and (12) yield that

(13) |J −S(N)I| ≤ Ns/k−1

zc6
wo(1).

Using Lemmata 4, 5 and the trivial estimate hn ≥ 0 for all integers n we
are able to estimate the integral I. First of all,

I =
1\
0

h(α)se(−Nα) dα =
∑

n1+...+ns=N

hn1 . . . hns

≥
∑

n1+...+ns=N
N/(s+2)<n1,...,ns

hn1 . . . hns

≥ ( min
N/(s+2)<n<3N/(s+2)

hn)s
∑

n1+...+ns=N
N/(s+2)<n1,...,ns

1.

At this point we choose 0 < λ < 1 such that 3/(s+ 2) ≤ λk, then Lemma 4
implies that

I ≥
(
L

U

)s ∑

n1+...+ns=N
N/(s+2)<n1,...,ns

1.

In order to estimate the last sum, we put

mi = ni −
[
N

s+ 2

]
for i = 1, . . . , s.
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Then we get
∑

n1+...+ns=N
N/(s+2)<n1,...,ns

1 =
∑

m1+...+ms=N−s[N/(s+2)]
0<m1,...,ms

1 =
(
N − s[N/(s+ 2)]

s− 1

)

≥ 1
(s− 1)!

(
N

s+ 2

)s−1

�k N
s−1.

Hence, by Lemma 5

I �k

(
L

U

)s
Ns−1 �k N

s/k−1w−s/c3−o(1),

so that, using (12), we have

(14) |S(N)I| > Ns/k−1w−s/c3−o(1).

If s/c3 < (2/9)c3c6, that is, when

(15) c23 > 2k9(F (k) + 1)s = 2k9(s+ 1)s,

then (13) and (14) together yield that

J ≥ |S(N)I| − |J −S(N)I| ≥ Ns/k−1w−s/c3−o(1).

Now we recall the definition of J and apply Lemma 3 once more. Since
dn > 0 implies that P (n) ≤ y, our inequality for J transforms into

∑

nk1+...+nks=N
P (n1...ns)≤y

1 ≥ Ns/k−1w−s/c3−o(1).

This shows that the Theorem holds with any constants

c1 >
√
ks/c3, c2 ≥ c3/

√
k.

If we take into account the condition (15) on c3, we see that the positive
constants c1, c2 are admissible whenever

c1c2 > s, c2 >

√
2k9(s+ 1)s

k
.

Note that s = F (k) in these inequalities.

References
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Théor. Nombres Bordeaux 5 (1993), 411–484.

[7] L.-K. Hua, Additive Primzahltheorie, Teubner, Leipzig, 1959; English transl.: Ad-
ditive Theory of Prime Numbers, Amer. Math. Soc., Providence, 1965.

[8] R. C. Vaughan, The Hardy–Littlewood Method , Cambridge Tracts in Math. 80,
Cambridge University Press, 1981.

[9] —, A new iterative method in Waring’s problem, Acta Math. 162 (1989), 1–71.
[10] T. D. Wooley, Large improvements in Waring’s problem, Ann. of Math. 135 (1992),

131–164.
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