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On the diophantine equation x2 − pm = ±yn
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Yann Bugeaud (Strasbourg)

1. Introduction. In all what follows, we denote by N the set of strictly
positive integers. Let p be an odd prime number, and let D be a non-power
integer with D > 1 and gcd(p,D) = 1. Toyoizumi [16] and Maohua Le [10]
(see also [11]) studied the number of solutions of the diophantine equation

(1) x2 +Dn = pm, x,m, n ∈ N.
More precisely, Maohua Le [10] proved that if max{p,D} is larger than
an explicit constant, then equation (1) has at most two solutions, except
when, for a positive integer a, we have D = 3a2 + 1 and p = 4a2 + 1.
In the latter case, there are at most three solutions, including the trivial
one (x,m, n) = (a, 1, 1). Further, he gave [9] an analogous result for the
diophantine equation x2−Dn = pm. His method being essentially ineffective,
Maohua Le does not obtain computable upper bounds for the solutions of
equation (1).

In this work, we deal with a generalization of equation (1), namely, we
study the diophantine equation

(2) x2 ± yn = pm, x, y,m, n ∈ N, gcd(p, y) = 1.

We show that, under some not very restrictive conditions, (2) has only
finitely many solutions (x, y,m, n), and we provide a small explicit upper
bound for n which only depends on p.

As in [1], where the author investigated the diophantine equation x2 −
2m = ±yn (see also the work of Yongdong Guo & Maohua Le [4]), the proofs
mainly depend on the sharp estimates for linear forms in two logarithms in
archimedean and non-archimedean metrics, due to Laurent, Mignotte &
Nesterenko [8] and Bugeaud & Laurent [2], respectively.

2. Statement of the results. Let p be an odd prime number. In this
work, we consider the diophantine equations

(3) x2 − pm = yn, x, y,m, n ∈ N, gcd(x, y) = 1, n ≥ 3,
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and

(4) x2 + yn = pm, x, y,m, n ∈ N, gcd(x, y) = 1, n ≥ 3.

We state our main result, depending only on the value of p modulo 4, in
the following two theorems.

Theorem 1. If p ≡ 3 mod 4, then (3) and (4) have only finitely many
solutions (x, y,m, n). Moreover , those solutions satisfy

n ≤ 4.5 · 106p2 log2 p and n ≤ 5.6 · 105p2 log2 p,

respectively.

Theorem 2. If p ≡ 1 mod 4, then (3) and (4) have only finitely many
solutions (x, y,m, n) with even m or odd y. Moreover , those solutions satisfy

n ≤ 4.5 · 106p2 log2 p and n ≤ 5.6 · 105p2 log2 p,

respectively.

R e m a r k s. The main interest of Theorems 1 and 2 is the small size
of the upper bound for n. Indeed, if we apply a theorem of Shorey, Van
der Poorten, Tijdeman & Schinzel [15, Theorem 2], we can also show that
there exists some effective constant c0(p), depending only on p, such that
n < c0(p) for any solution (x, y,m, n) of (3) or (4). However, their result
does not provide an explicit value for c0(p), which has to be very large, in
view of the method of proof.

The hypothesis n ≥ 3 in the statement of equations (3) and (4) cannot
be replaced by n ≥ 2. Indeed, ((pm + 1)/2)2 − pm = ((pm − 1)/2)2 for any
positive integer m, and, furthermore, it is well known (see e.g. Hardy &
Wright [5, Theorem 366]) that pm (resp. p2m) is the sum of two squares if
p ≡ 1 mod 4 (resp. p ≡ 3 mod 4).

In the course of the proof of Theorems 1 and 2, we need some information
about prime powers in binary recurrence sequences with integer roots. To
this end, we state the following result.

Theorem 3. Let p be a prime number. Let a := a1/a2 and b := b1/b2
be two irreducible rational numbers satisfying vp(a) = vp(b) = 0 and put
A := max{a1, a2, b1, b2, 3}. Consider the diophantine equation

(5) pm = axn + byn, x, y,m, n ∈ N, gcd(x, y) = 1, n ≥ 2.

Then n ≤ 34000p log p logA.

3. Auxiliary results

Lemma 1. The equation x2 − yn = ±1 has no solution with y > 2 and
n ≥ 2.

P r o o f. See Chao Ko [6].
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For any integer x, we denote by P [x] the greatest prime factor of x.

Lemma 2. Let a, b, x and y be non-zero integers with gcd(x, y) = 1. Put
X = max{|x|, |y|}. For any integer n ≥ 3, there exist effectively computable
constants c1 and X1 such that

P [ax2 + byn] ≥ c1(log logX log log logX)1/2 whenever X ≥ X1.

P r o o f. This is a particular case of a theorem due to Kotov [7].

The next lemma is very closed to Lemma 6 of Maohua Le [12]. For similar
results, we refer the reader to [14].

Lemma 3. Let d > 1 be a squarefree integer , and let k be a positive odd
integer , coprime to d. Denote by % > 1 the fundamental unit of the field
Q(
√
d). If X, Y and Z are three positive integers satisfying

X2 − dY 2 = ±kZ ,
then there exist positive integers a, b, t and v, with a ≡ b mod 2 and a and
b even if d 6≡ 1 mod 4, such that

X + Y
√
d = %−t

(
a+ b

√
d

2

)v
.

Moreover , 0 < t ≤ v and the integer Z/v divides hd, the class number of the
field Q(

√
d).

P r o o f. For any α in Q(
√
d) =: K, we denote by [α] the principal ideal

of K generated by α. We infer from gcd(k, d) = 1 that gcd([X −Y
√
d], [X +

Y
√
d]) divides [2]. Moreover, gcd([X − Y

√
d], [X + Y

√
d ]) = [1], since k is

assumed to be odd. Working in K, we have the following equalities between
ideals:

[X − Y
√
d] · [X + Y

√
d] = [k]Z = (aa)Z ,

where a is an integer ideal in K and · denotes the Galois transformation
σ :
√
d → −

√
d. There exist Z1 and an algebraic integer α in K such that

Z1 |hd and aZ1 is the principal ideal generated by α. Thus, putting v = Z/Z1,
we have

X + Y
√
d = ηαv and X − Y

√
d = η αv,

where η is a unit in K.
Put ω =

√
d if d 6≡ 1 mod 4 and ω = (1+

√
d)/2 otherwise and recall that

Z[ω] is the ring of integers of K. Modifying α if necessary, we can assume
that η = %−t, with 0 < t ≤ v. Thus we get

X + Y
√
d = %−t

(
a+ b

√
d

2

)v
,
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where a and b are two integers satisfying a ≡ b mod 2 and a and b are even
if d 6≡ 1 mod 4. From X + Y

√
d > |X − Y

√
d| and %−1 < %, we infer that

a+b
√
d > |a−b

√
d|. Hence a and b are positive, and the lemma is proved.

Lemma 4. Let p be an odd prime. Denote by hp and Rp the class number
and the regulator of the quadratic field Q(

√
p). Then we have the upper

bounds

hp ≤ 0.5p1/2 and 0.4812 < Rp ≤ hpRp ≤ p1/2 log(4p).

P r o o f. We refer respectively to Maohua Le [13] and to Faisant [3],
p. 199.

The next two propositions deal with lower bounds for linear forms in
two logarithms. Let α = α1 be a non-zero algebraic number with minimal
defining polynomial a0(X −α1) . . . (X −αn) over Z. The logarithmic height
of α, denoted by h(α), is defined by

h(α) =
1
n

log
(
a0

n∏

i=1

max{1, |αi|}
)
.

For any prime number p, let Qp be an algebraic closure of the field Qp of
p-adic numbers. We denote by vp the unique extension to Qp of the standard
p-adic valuation over Qp, normalized by vp(p) = 1.

Proposition 1. Let p be a prime number. Let α1 and α2 be two alge-
braic numbers which are p-adic units. Denote by f the residual degree of the
extension Qp ↪→ Qp(α1, α2) and put D = [Q(α1, α2) : Q]/f . Let b1 and b2
be two positive integers and put

Λu = αb11 − αb22 .

Denote by A1 > 1 and A2 > 1 two real numbers such that

logAi ≥ max{h(αi), (log p)/D}, i = 1, 2,

and put

b′ =
b1

D logA2
+

b2
D logA1

.

If α1 and α2 are multiplicatively independent , then we have the lower bound

vp(Λu) ≤ 24p(pf − 1)
(p− 1)(log p)4D

4
(

max
{

log b′ + log log p+ 0.4,
10 log p
D

, 5
})2

× logA1 logA2.

P r o o f. This is Théorème 4 of [2] with the choice (µ, ν) = (10, 5).

Proposition 2. Let α1 ≥ 1 and α2 ≥ 1 be two real algebraic numbers.
Let b1 and b2 be two positive integers and put

Λa = b1 logα1 − b2 logα2.
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Set D = [Q(α1, α2) : Q] and denote by A1 > 1 and A2 > 1 two real numbers
satisfying

logAi ≥ max{h(αi), 1/D}, i = 1, 2.

Finally , put

b′ =
b1

D logA2
+

b2
D logA1

.

If α1 and α2 are multiplicatively independent , then we have the lower bound

log |Λa| ≥ −32.31D4(max{log b′ + 0.18, 0.5, 10/D})2 logA1 logA2.

P r o o f. This is Corollaire 2 of [8], where the numerical constants are
given in Tableau 2 and correspond to the choice h2 = 10. Notice that the
hypotheses of the proposition imply that h(αi) ≤ |logαi|/D.

4. Proof of Theorem 3. Let (x, y,m, n) be a solution of (5). Without
loss of generality, we may suppose that |y| ≥ |x| and we set Y := |y|.

First, we make the assumption pm ≥ Y n/1.4, whence

(6) 1.4m log p ≥ n log Y.

Putting

(7) Λu :=
pm

ayn
=
(
x

y

)n
− −b

a
,

we have vp(Λu) = m. In order to bound m, we apply Proposition 1 to (7)
with the parameters

α1 = x/y, α2 = −b/a, b1 = n, b2 = 1, f = D = 1.

Since p ≥ 2 and Y ≥ 2 we see that we can take

logA1 =
log Y
log 2

log p, logA2 = 2
log p
log 2

logA,

and we have

b′ ≤ e−0.4n/(log p logA)

provided that

(8) n ≥ 4 logA.

Assuming that α1 and α2 are multiplicatively independent, we get

m ≤ 100p(log p)−2 log Y logAmax
{

10 log p, log
n

logA

}2

,

whence, by (6),

(9)
n

logA
≤ 140

p

log p
max

{
10 log p, log

n

logA

}2

.
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From (9), we deduce the upper bound

(10) n ≤ 34000p log p logA.

The estimate (10) remains true if α1 and α2 are multiplicatively dependent.
Indeed, in the latter case, there exist rational integers x′ > 0, y′ > 0, u > 0
and v such that x = x′u, y = y′u and −b/a = (x′/y′)v. Hence, we infer from
(5) that

pm

ax′vy′un−v
=
(
x′

y′

)un−v
− 1,

and we conclude as before, using Proposition 1 together with 1.4m log p ≥
nu log |y′|.

We now make the assumptions pm ≤ Y n/1.4 and

(11) n ≥ 500 logA.

Putting

(12) Λa :=
pm

byn
=
a

b

(
x

y

)n
+ 1,

we have

(13) log |Λa| ≤ −(2n/7) log Y − log |b| ≤ −(2n/7) log Y + logA

and we deduce from (11) that |Λa| ≤ 1/2000. Hence, by (12), we get

(14)
∣∣∣∣n log

∣∣∣∣
y

x

∣∣∣∣− log
∣∣∣∣
−b
a

∣∣∣∣
∣∣∣∣ ≤ |log(1− Λa)| ≤ 1.001|Λa|.

Applying Proposition 2 to the left-hand side of (14) with the parameters

α1 = |y/x|, α2 = |−a/b|, b1 = n, b2 = 1,

logA1 = log Y, logA2 = 2 logA, b′ =
n

2 logA
+

1
log Y

≤ n

logA
,

we obtain

(15) log |Λa| ≥ −0.002− 32.31 max
{

log
n

logA
+ 0.18, 10

}2

logA2 log Y,

provided that α1 and α2 are multiplicatively independent and |α2| ≥ 1.
However, it is easily seen that (15) remains true if one of the latter conditions
is not fulfilled. Consequently, subject to the condition (11), we use (13) to
get

n ≤ 227 max
{

log
n

logA
+ 0.18, 10

}2

logA+ 7 logA,

hence

(16) n ≤ 24000 logA.
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Finally, by (8), (10), (11) and (16), we obtain n ≤ 34000p log p logA, as
claimed.

5. Proof of Theorems 1 and 2. The proofs of both Theorems 1 and
2 run parallel. Lemma 1 shows that equations (3) and (4) have no solution
(x, y,m, n) with y = 1. Thus, in all this section, we assume that y is at
least 2.

? The case m even. Let (x, y,m, n) be a solution of (3) or (4) with m
even. Thus we have

(x+ pm/2)(x− pm/2) = ±yn,
and, since gcd(x+ pm/2, x− pm/2) divides 2, we get

(17)
{
x+ pm/2 = a1d

n
1 ,

x− pm/2 = a2d
n
2 ,

where a1, a2, d1 and d2 are rational numbers satisfying |a1|, |a2| ∈ {1/2, 1, 2},
|a1a2| = 1 and gcd(d1, d2) = 1. From (17) we deduce that

pm/2 =
a1

2
dn1 −

a2

2
dn2 ,

and, applying Theorem 2 with A = 4, we get the bound n ≤ 48000p log p,
which proves the last parts of Theorems 1 and 2 when m is even.

? The case m odd . Observe that if p ≡ 3 mod 4 and if (x, y,m, n) is a
solution of equation (3) or (4), then x2 − pm is equal to 1 or 2 modulo 4.
Hence, y cannot be even, and, in order to complete the proof of Theorems 1
and 2, we may assume that y is an odd integer.

• An upper bound for m valid for the solutions of (3) and (4). Let
(x, y,m, n) be a solution of (3) or (4) with odd m. Denote by % (> 1)
the fundamental unit of the field Q(

√
p) and by hp and Rp := log % its class

number and regulator, respectively. By Lemma 3, there exist an algebraic
integer ε := a + b

√
p in Q(

√
p) and positive integers t and v such that

0 < t ≤ v and

(18)
{
x+ p(m−1)/2√p = εv%−t,
x− p(m−1)/2√p = εv(τ%)t,

where ε denotes the conjugate of ε over Q and τ ∈ {±1} is the norm of %.
Moreover,

(19) v divides n and n divides hpv.

From the system (18) we deduce the equation

(20) 2p(m−1)/2√p = εv%−t − εv(τ%)t,
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and we put

(21) Λu := (ε/ε)v − (τ%2)t.

Since ε/ε is a root of the irreducible polynomial εεX2− (ε2 + ε2)X + εε, we
have h(ε/ε) = log ε and ε/ε is not a unit. Thus ε/ε and τ%2 are multiplica-
tively independent algebraic numbers, which, moreover, are p-adic units,
since gcd(x, y) = 1. By (20), we have vp(Λu) = m/2. In order to bound m,
we apply Proposition 1 to (21) with the following parameters:

α1 = ε/ε, α2 = τ%2, b1 = v, b2 = t, p = 2, D = 2, f = 1.

Using Lemma 4 and the upper bound log
√
p ≤ 1.54 log ε deduced from

Lemma 3 (the worst case occurs for p = 13 and ε = (1 +
√

13)/2), we see
that we can set

logA1 = 1.54 log ε, logA2 =
Rp log p

0.96
and b′ =

t

3.08 log ε
+

0.48v
Rp log p

.

Thus, by Proposition 1 and the estimate b′ ≤ 2v/ log p, we get

(22) m ≤ 1232p(log p)−3Rp max{log v + 1.1, 5 log p}2 log ε.

• The case of equation (4). The result is clearly true if m = 1, thus we
assume m ≥ 3. From (18), we infer that εv%−t ≤ 2pm/2, whence

2v log ε ≤ 2t log %+ log 4 +m log p.

Together with (22), it yields

2vm ≤ 1232p(log p)−3Rp(m log p+ log 4 + 2tRp)(23)

×max{log v + 1.1, 5 log p}2.
From pm > yn ≥ 2n and (19), we deduce that

t

m
≤ v

m
≤ n

m
≤ log p

log 2
,

hence, using (23) and m ≥ 3, we get

v ≤ 616p(log p)−3Rp

(
log p+

log 4
3

+
2

log 2
Rp log p

)
max{log v+1.1, 5 log p}2

and

(24) v ≤ 1778p(log p)−2Rp(Rp + 0.5) max{log v + 1.1, 5 log p}2.
Assume first that max{log v + 1.1, 5 log p} = 5 log p. Then we infer from

(19) and (24) that
n ≤ 44450phpRp(Rp + 0.5),

and, using p ≥ 3 and the upper bounds for Rp and hpRp given by Lemma 4,
we obtain

(25) n ≤ 2.6 · 105p2 log2 p.
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Assume now that max{log v+1.1, 5 log p} = log v+1.1. In order to get a
better bound for n, we treat separately the smallest two values of p. Hence,
suppose that p 6∈ {3, 5}, and search an upper bound for v of the shape
v ≤ γpRp(Rp + 0.5), with a suitable constant γ. Since p ≥ 7, we see that
γ must satisfy the inequality γ ≥ 470(log γ + 7.46)2. Thus, we may choose
γ = 1.8 · 105 and, using (19) and the upper bounds for Rp and hpRp given
by Lemma 4, we get

(26) n ≤ 5.6 · 105p2 log2 p.

Finally, we easily see that (26) remains true for p ∈ {3, 5} and it follows
from (25) and (26) that (24) leads to the bound

n ≤ 5.6 · 105p2 log2 p,

as claimed.

• The case of equation (3). Dividing (19) by εv%−t, we obtain

(27)
2p(m−1)/2√p

εv%−t
=

2p(m−1)/2√p
x+ p(m−1)/2√p = 1−

(ε
ε

)v
(τ%2)t =: Λa.

If Λa ≥ 1/2, then we have 4p(m−1)/2√p ≥ εv%−t and

(28) 2v log ε− 2t log % ≤ m log p+ log 16.

Otherwise Λa < 1/2 and we get

(29) |log(1− Λa)| ≤ 2Λa.

We apply Proposition 2 to the linear form∣∣∣∣v log
∣∣∣∣
ε

ε

∣∣∣∣− t log(%2)
∣∣∣∣ ≤

∣∣∣∣v log
(
ε

ε

)
− t log(τ%2)

∣∣∣∣ ≤ |log(1− Λa)|

with the following parameters:

α1 = |ε/ε|, α2 = %2, b1 = v, b2 = t, D = 2,

logA1 = log ε, logA2 = log % = Rp, b′ =
t

2 log ε
+

v

2Rp
.

It follows from Lemma 4 and ε ≥ (1 +
√

13)/2 that b′ ≤ 1.64v, and, using
(29), we obtain

log 2 + logΛa ≥ −517Rp max{log v + 0.68, 5}2 log ε,

hence, by (27),

(30) v log ε−t log % ≤ log 4+(m log p)/2+517Rp max{log v+0.68, 5}2 log ε.

From (22), (28) and (30) we infer that

v log ε− tRp ≤ log 4 + 517Rp max{log v + 0.68, 5}2 log ε(31)

+ 616p(log p)−2Rp max{log v + 1.1, 5 log p}2 log ε.
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First, assume that ε < exp{2Rp}. From (18), we get εv%−t > yn/2, hence

(32) v log ε− t log % > (n log y)/2.

However, we have

(33)
log ε
log y

≤ 2Rp
log 3

,

since y > 1 is odd, and we deduce from (31), (32) and (33) that

n ≤ 2.6 + 1883R2
p max{logn+ 0.68, 5}2

+ 2243p(log p)−2R2
p max{logn+ 1.1, 5 log p}2.

As before, we search an upper bound for n of the shape n ≤ γp2 log2 p. Using
Lemma 4 and a few calculation, we show that it suffices that γ satisfies

γ ≥ 0.3 + 3214{log γ + 3.1}2 + 9508{log γ + 3.5}2.
Thus, we can choose γ = 4.5 · 106, which gives the bound

(34) n ≤ 4.5 · 106p2 log2 p.

Assume now that ε ≥ exp{2Rp}. Then we have

(35) v log ε− tRp ≥ (v log ε)/2,

since t ≤ v. Using (31), (35) and the lower bound ε ≥ (1 +
√

13)/2, we get

v ≤ 3.4 + 1034Rp max{log v + 0.68, 5}2
+ 1232p(log p)−2Rp max{log v + 1.1, 5 log p}2,

hence, by (19),

n ≤ 3.4hp + 1034(hpRp) max{logn+ 0.68, 5}2
+ 1232p(log p)−2(hpRp) max{logn+ 1.1, 5 log p}2

and it is easy to show that (34) also holds in this case. Hence, the last
statements of Theorems 1 and 2 are proved.

Now, in order to complete the proofs of Theorems 1 and 2, it suffices to
apply Lemma 2 to the polynomials x2± yn, where 3≤n≤4.5 · 106p2 log2 p.
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