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On the diophantine equation =z — p™ = +y"
by

YANN BUGEAUD (Strasbourg)

1. Introduction. In all what follows, we denote by N the set of strictly
positive integers. Let p be an odd prime number, and let D be a non-power
integer with D > 1 and ged(p, D) = 1. Toyoizumi [16] and Maohua Le [10]
(see also [11]) studied the number of solutions of the diophantine equation

(1) 2+ D" =p™,  z,m,neN.

More precisely, Maohua Le [10] proved that if max{p, D} is larger than
an explicit constant, then equation (1) has at most two solutions, except
when, for a positive integer a, we have D = 3a® + 1 and p = 4a? + 1.
In the latter case, there are at most three solutions, including the trivial
one (z,m,n) = (a,1,1). Further, he gave [9] an analogous result for the
diophantine equation 22 — D™ = p™. His method being essentially ineffective,
Maohua Le does not obtain computable upper bounds for the solutions of
equation (1).

In this work, we deal with a generalization of equation (1), namely, we
study the diophantine equation

(2) 2?£y" =p",  a,y,mneN, ged(p,y) = 1.

We show that, under some not very restrictive conditions, (2) has only
finitely many solutions (x,y,m,n), and we provide a small explicit upper
bound for n which only depends on p.

As in [1], where the author investigated the diophantine equation x? —
2" = +y™ (see also the work of Yongdong Guo & Maohua Le [4]), the proofs
mainly depend on the sharp estimates for linear forms in two logarithms in
archimedean and non-archimedean metrics, due to Laurent, Mignotte &
Nesterenko [8] and Bugeaud & Laurent [2], respectively.

2. Statement of the results. Let p be an odd prime number. In this
work, we consider the diophantine equations

(3) @ —p"=y", xymmneN, ged(z,y) =1, n>3,
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and
(4) 22 +y"=p™, z,y,mneN, ged(z,y) =1, n> 3.

We state our main result, depending only on the value of p modulo 4, in
the following two theorems.

THEOREM 1. If p = 3 mod 4, then (3) and (4) have only finitely many
solutions (x,y, m,n). Moreover, those solutions satisfy

n < 4.5-10%? logzp and n <5.6-10%p? log2 P,
respectively.

THEOREM 2. If p = 1 mod 4, then (3) and (4) have only finitely many
solutions (x,y, m,n) with even m or odd y. Moreover, those solutions satisfy

n<4.5-10%?log?p and n <5.6-10°p?log? p,
respectively.

Remarks. The main interest of Theorems 1 and 2 is the small size
of the upper bound for n. Indeed, if we apply a theorem of Shorey, Van
der Poorten, Tijdeman & Schinzel [15, Theorem 2], we can also show that
there exists some effective constant cy(p), depending only on p, such that
n < co(p) for any solution (z,y,m,n) of (3) or (4). However, their result
does not provide an explicit value for ¢o(p), which has to be very large, in
view of the method of proof.

The hypothesis n > 3 in the statement of equations (3) and (4) cannot
be replaced by n > 2. Indeed, ((p™ + 1)/2)% — p™ = ((p™ — 1)/2)?* for any
positive integer m, and, furthermore, it is well known (see e.g. Hardy &
Wright [5, Theorem 366]) that p™ (resp. p*>™) is the sum of two squares if
p=1mod 4 (resp. p =3 mod 4).

In the course of the proof of Theorems 1 and 2, we need some information
about prime powers in binary recurrence sequences with integer roots. To
this end, we state the following result.

THEOREM 3. Let p be a prime number. Let a := ay/as and b := by /bs
be two irreducible rational numbers satisfying vy(a) = vp(b) = 0 and put
A :=max{ay, as, by, b2, 3}. Consider the diophantine equation

(5) p" =azx™ +by", z,y,mmneN, ged(z,y)=1, n>2.
Then n < 34000plogplog A.

3. Auxiliary results

LEMMA 1. The equation x*> — y™ = £1 has no solution with y > 2 and
n > 2.

Proof. See Chao Ko [6]. =
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For any integer z, we denote by P[z] the greatest prime factor of x.

LEMMA 2. Let a, b, x and y be non-zero integers with ged(x,y) = 1. Put
X = max{|z|, |y|}. For any integer n > 3, there exist effectively computable
constants ¢; and X1 such that

Plaz?® 4+ by™] > ¢, (loglog X logloglog X)*/?  whenever X > X.
Proof. This is a particular case of a theorem due to Kotov [7]. =

The next lemma is very closed to Lemma 6 of Maohua Le [12]. For similar
results, we refer the reader to [14].

LEMMA 3. Let d > 1 be a squarefree integer, and let k be a positive odd
integer, coprime to d. Denote by o > 1 the fundamental unit of the field
Q(Vd). If X, Y and Z are three positive integers satisfying

X? —dY? = £k7,

then there exist positive integers a, b, t and v, with a = b mod 2 and a and
b even if d Z 1 mod 4, such that

X +YVd= Q_t<a+b\/E>U
5 .

Moreover, 0 < t < v and the integer Z/v divides hq, the class number of the

field Q(V/d).

Proof. For any a in Q(v/d) =: K, we denote by [a] the principal ideal
of K generated by a. We infer from ged(k,d) = 1 that ged([X — Y Vd], [X +
Y/d)) divides [2]. Moreover, ged([X — YVd|, [X + YV/d]) = [1], since k is
assumed to be odd. Working in K, we have the following equalities between
ideals:

(X —YVd] - [X +YVd = [k]? = (aa)?,
where a is an integer ideal in K and - denotes the Galois transformation
o : V/d — —/d. There exist Z; and an algebraic integer o in K such that
Z1 | hg and a?* is the principal ideal generated by a. Thus, puttingv = Z/Z;,
we have
X+YVd=na’ and X -YVd=7a",

where 7 is a unit in K.

Put w = Vdif d # 1 mod 4 and w = (1++/d) /2 otherwise and recall that

Z]w] is the ring of integers of K. Modifying « if necessary, we can assume
that n = o7 %, with 0 <t < v. Thus we get

X +YVd= g‘t<a+b\/a>v
2 )
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where a and b are two integers satisfying a = b mod 2 and a and b are even
if d # 1mod 4. From X +YVd > |X — YVd| and o~ < g, we infer that
a+bv/d > |a—bv/d|. Hence a and b are positive, and the lemma is proved. m

LEMMA 4. Let p be an odd prime. Denote by h,, and R, the class number

and the regulator of the quadratic field Q(,/p). Then we have the upper
bounds

h, <0.5p'? and 0.4812 < R, < h,R, < p'/?log(4p).
Proof. We refer respectively to Maohua Le [13] and to Faisant [3],
p. 199. m

The next two propositions deal with lower bounds for linear forms in
two logarithms. Let @ = a3 be a non-zero algebraic number with minimal
defining polynomial ag(X —ay) ... (X — ) over Z. The logarithmic height
of a, denoted by h(«), is defined by

h(a) = %log (ag ﬁ max{1, |a1|})
i=1

For any prime number p, let @p be an algebraic closure of the field Q, of
p-adic numbers. We denote by v, the unique extension to @p of the standard
p-adic valuation over Q,, normalized by v,(p) = 1.

PROPOSITION 1. Let p be a prime number. Let cy and ag be two alge-
braic numbers which are p-adic units. Denote by f the residual degree of the
extension Q, — Qp(a1,a2) and put D = [Q(a1,a2) : Q]/f. Let by and by
be two positive integers and put

A, = alil — agz.
Denote by A1 > 1 and Ay > 1 two real numbers such that

log A; > max{h(«;), (logp)/D}, i=1,2,
and put
b b
Y = ! b2

DlogA;  Dlog Ay

If a; and ag are multiplicatively independent, then we have the lower bound

2p(p’ —1) , 0logp 1)
A,) < =P 72 _p log b’ + log1 4, 08P 5
vp(Ay) < = 1){ozp)? max 4 logb” 4 loglogp + 0 i)

x log A1 log As.
Proof. This is Théoréme 4 of [2] with the choice (u,v) = (10,5). m

PROPOSITION 2. Let vy > 1 and ag > 1 be two real algebraic numbers.
Let by and by be two positive integers and put

Aa = b1 log a1 — bg IOg Q9.
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Set D = [Q(a1,a2) : Q] and denote by A1 > 1 and Ay > 1 two real numbers
satisfying
log A; > max{h(«;),1/D}, i=1,2.
Finally, put
by b2
- Dlog A, + Dlog Ay’
If ay and ag are multiplicatively independent, then we have the lower bound
log |Aq| > —32.31D*(max{log ¥’ + 0.18,0.5,10/D})?log A; log As.

Proof. This is Corollaire 2 of [8], where the numerical constants are
given in Tableau 2 and correspond to the choice hy = 10. Notice that the
hypotheses of the proposition imply that h(c;) < [loga;|/D. =

bl

4. Proof of Theorem 3. Let (x,y, m,n) be a solution of (5). Without
loss of generality, we may suppose that |y| > || and we set Y := |y|.
First, we make the assumption p™ > Y™/1-4  whence

(6) 1.4mlogp > nlogY.
Putting

m n —b
(7) Ay =L = <$) ——

ay™ Y a
we have v,(A,) = m. In order to bound m, we apply Proposition 1 to (7)
with the parameters
ag=2xz/y, as=-bla, by=mn, bo=1 f=D=1

Since p > 2 and Y > 2 we see that we can take

log A; = log ¥ logp, logAs = 210ﬂ log A,
log 2 log 2
and we have
v <e %n/(logplog A)
provided that
(8) n > 4log A.

Assuming that a; and s are multiplicatively independent, we get

2
m < 100p(log p) 2 logY]ogAmax{lOlogp,log n } ,
log A

whence, by (6),

2

n P n
— < 140—— 101 1 .

(9) g d = Ologpmax{ 0log p, log 10gA}
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From (9), we deduce the upper bound
(10) n < 34000p log plog A.

The estimate (10) remains true if o; and g are multiplicatively dependent.
Indeed, in the latter case, there exist rational integers =’ > 0, v’ > 0, u > 0
and v such that z = 2™, y = ¢y and —b/a = (2'/y")". Hence, we infer from

(5) that
pm ' un—v
aaj/vy/un—v = <y/> o 1’

and we conclude as before, using Proposition 1 together with 1.4mlogp >
nulog |y'|.
We now make the assumptions p™ < Y"/14 and

(11) n > 500log A.
Putting

p™ a/xz\"
12 Npi=7—=-|— 1
(12) = =3(2)
we have

(13) log [Ag] < —(2n/7)1logY —log|b| < —(2n/7)logY + log A
and we deduce from (11) that |A4,| < 1/2000. Hence, by (12), we get

(14) nlog < |log(1 — Ag)| < 1.001|A,].

y‘ — log|—

x a

Applying Proposition 2 to the left-hand side of (14) with the parameters
ar = y/zl, az=|-a/bl, bi=mn, by=1,

n 1 n

logA; =logV, logAs=2logA, b = <
cgfr=logd, 08 08 210gA+logY_logA’

we obtain

n
log A

provided that «; and ap are multiplicatively independent and |as| > 1.
However, it is easily seen that (15) remains true if one of the latter conditions
is not fulfilled. Consequently, subject to the condition (11), we use (13) to
get

2
(15) log|A.| > —0.002 — 32.31 max{log +0.18, 10} log A%log Y,

n
log A

2
n <227 max{log + 0.18, 10} log A+ Tlog A,

hence

(16) n < 240001og A.
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Finally, by (8), (10), (11) and (16), we obtain n < 34000plogplog A, as
claimed. m

5. Proof of Theorems 1 and 2. The proofs of both Theorems 1 and
2 run parallel. Lemma 1 shows that equations (3) and (4) have no solution
(z,y,m,n) with y = 1. Thus, in all this section, we assume that y is at
least 2.

*x The case m even. Let (z,y,m,n) be a solution of (3) or (4) with m
even. Thus we have

(@ +p™?)(x —p™?) = £y7,

and, since ged(z + p™/2, x — p™/?) divides 2, we get
+pm/2 = a;d"
17 £ 15
(17) {rrraznd

where a1, ag, dy and ds are rational numbers satisfying |a1], az| € {1/2, 1, 2},
|aras| = 1 and ged(dy,d2) = 1. From (17) we deduce that

ai as
p"? = Ed? - 3d§,

and, applying Theorem 2 with A = 4, we get the bound n < 48000p log p,
which proves the last parts of Theorems 1 and 2 when m is even.

*x The case m odd. Observe that if p = 3 mod 4 and if (z,y,m,n) is a
solution of equation (3) or (4), then z? — p™ is equal to 1 or 2 modulo 4.
Hence, y cannot be even, and, in order to complete the proof of Theorems 1
and 2, we may assume that y is an odd integer.

e An upper bound for m walid for the solutions of (3) and (4). Let
(z,y,m,n) be a solution of (3) or (4) with odd m. Denote by o (> 1)
the fundamental unit of the field Q(,/p) and by h, and R, := log g its class
number and regulator, respectively. By Lemma 3, there exist an algebraic
integer ¢ := a + by/p in Q(y/p) and positive integers ¢ and v such that
O0<t<wand

(18) {Hp(m_l)/z\/ﬁ: o™,
P/ = 2(ro)'

where £ denotes the conjugate of € over Q and 7 € {1} is the norm of p.
Moreover,

(19) v divides n and n divides h,v.
From the system (18) we deduce the equation
(20) 2p(m—1)/2\/ﬁ — Evg—t _ gv(TQ)t,
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and we put

(21) Ay = (e/8)" — (10*)".

Since €/ is a root of the irreducible polynomial X2 — (¢2 +&2) X + €&, we
have h(e/g) = loge and €/% is not a unit. Thus €/ and 79? are multiplica-
tively independent algebraic numbers, which, moreover, are p-adic units,

since ged(x,y) = 1. By (20), we have v,(A,) = m/2. In order to bound m,
we apply Proposition 1 to (21) with the following parameters:

041:€/g, a2:TQ27 b1:7}, b2:ta p=2, D=2, f:].
Using Lemma 4 and the upper bound log,/p < 1.54loge deduced from

Lemma 3 (the worst case occurs for p = 13 and € = (1 + /13)/2), we see
that we can set

R,logp t 0.48v
log A; = 1.541 logAy = —2—== and ¥ = :
8 08, 084 096 ™ 3.08loge + R,logp

Thus, by Proposition 1 and the estimate b’ < 2v/logp, we get
(22) m < 1232p(log p) >R, max{logv + 1.1,5log p}* loge.

e The case of equation (4). The result is clearly true if m = 1, thus we
assume m > 3. From (18), we infer that e”p~* < 2p™/2, whence

2vloge < 2tlog o + log4 + mlogp.
Together with (22), it yields
(23) 2um < 1232p(log p) " R,(mlogp + log4 + 2tR,)
x max{logv + 1.1, 5log p}.
From p™ > y™ > 2" and (19), we deduce that

i<£§ <logp

n
m~- m -~ m ~ log2’

hence, using (23) and m > 3, we get

v < 616p(logp) >R, <logp+ 5 i

log4 2
o8 +—2Rp 10gp> max{logv+1.1,5log p}?
0g

and
(24) v < 1778p(logp) 2R, (R, + 0.5) max{logv + 1.1, 5log p}>.
Assume first that max{logv + 1.1,5logp} = 5logp. Then we infer from
(19) and (24) that
n < 44450ph, R, (R, + 0.5),

and, using p > 3 and the upper bounds for R, and h, R, given by Lemma 4,
we obtain

(25) n < 2.6-10°p? log? p.
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Assume now that max{logv+1.1,5logp} = logv+1.1. In order to get a
better bound for n, we treat separately the smallest two values of p. Hence,
suppose that p ¢ {3,5}, and search an upper bound for v of the shape
v < vpR,(R, + 0.5), with a suitable constant . Since p > 7, we see that
v must satisfy the inequality v > 470(log~ + 7.46)2. Thus, we may choose
v = 1.8-10° and, using (19) and the upper bounds for R, and h,R, given
by Lemma 4, we get

(26) n < 5.6 -10°p? log? p.

Finally, we easily see that (26) remains true for p € {3,5} and it follows
from (25) and (26) that (24) leads to the bound

n < 5.6-10°p? log? p,
as claimed.

e The case of equation (3). Dividing (19) by €0~ !, we obtain

m—1)/2 m—1)/2 S
(27) za 5”9)_/15 = - me(p(m—)l/)/\Q/ZB - <§) (r*)" =: da.
If A, > 1/2, then we have 4p(™~1/2 /5 > o~ and
(28) 2vloge — 2tlog o < mlogp + log 16.
Otherwise A, < 1/2 and we get
(29) llog(1 — A,)| < 24,.

We apply Proposition 2 to the linear form

vlog < vlog(i) — tlog(10%)| < |log(1 — Ay,)|

g
| — tlog(o?
6‘ og(0”)

with the following parameters:

051:|€/g|, a2:é)27 blZU, b2:‘[;’ D:Q’

__ ¢ LY
~ 2loge 2R,

It follows from Lemma 4 and € > (1 + v/13)/2 that &’ < 1.64v, and, using
(29), we obtain

log2 + log A, > —517R, max{logv + 0.68,5}*log e,
hence, by (27),
(30) vloge—tlogp < log4+(mlogp)/2+517R, max{logv+0.68,5}loge.
From (22), (28) and (30) we infer that
(31)  wloge —tR, < log4 + 517R, max{logv + 0.68,5}*log ¢
+ 616p(log p) ~? R, max{logv + 1.1,5log p}* log .

log Ay =loge, logAs=logop=R,, V
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First, assume that ¢ < exp{2R,}. From (18), we get eVo~* > y"/2, hence

(32) vloge —tlog o > (nlogy)/2.
However, we have
(33) loge < 2Rp7

logy — log3

since y > 1 is odd, and we deduce from (31), (32) and (33) that
n < 2.6 + 1883R2 max{logn + 0.68,5}*
+ 2243p(logp)_2R12) max{logn + 1.1,5log p}>.

As before, we search an upper bound for n of the shape n < yp? log? p. Using
Lemma 4 and a few calculation, we show that it suffices that ~ satisfies

v > 0.3 4 3214{log v + 3.1} 4 9508{log v + 3.5}.
Thus, we can choose v = 4.5 - 10°, which gives the bound
(34) n < 4.5-10%p? log? p.
Assume now that ¢ > exp{2R,}. Then we have
(35) vloge —tR, > (vloge)/2,
since ¢ < v. Using (31), (35) and the lower bound € > (1 + v/13)/2, we get
v < 3.4 + 1034R, max{log v + 0.68, 5}
+ 1232p(log p) "2 R, max{logv + 1.1, 5log p}?,
hence, by (19),
n < 3.4h, + 1034(h,R,) max{logn + 0.68, 5}*
+ 1232p(log p) ~2(h, R,) max{logn + 1.1, 5log p}*

and it is easy to show that (34) also holds in this case. Hence, the last
statements of Theorems 1 and 2 are proved.

Now, in order to complete the proofs of Theorems 1 and 2, it suffices to
apply Lemma 2 to the polynomials 2 + 4™, where 3<n<4.5-10%p?log®p. m
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