# On the diophantine equation $x^{2}-p^{m}= \pm y^{n}$ 

by<br>Yann Bugeaud (Strasbourg)

1. Introduction. In all what follows, we denote by $\mathbb{N}$ the set of strictly positive integers. Let $p$ be an odd prime number, and let $D$ be a non-power integer with $D>1$ and $\operatorname{gcd}(p, D)=1$. Toyoizumi [16] and Maohua Le [10] (see also [11]) studied the number of solutions of the diophantine equation

$$
\begin{equation*}
x^{2}+D^{n}=p^{m}, \quad x, m, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

More precisely, Maohua Le [10] proved that if $\max \{p, D\}$ is larger than an explicit constant, then equation (1) has at most two solutions, except when, for a positive integer $a$, we have $D=3 a^{2}+1$ and $p=4 a^{2}+1$. In the latter case, there are at most three solutions, including the trivial one $(x, m, n)=(a, 1,1)$. Further, he gave [9] an analogous result for the diophantine equation $x^{2}-D^{n}=p^{m}$. His method being essentially ineffective, Maohua Le does not obtain computable upper bounds for the solutions of equation (1).

In this work, we deal with a generalization of equation (1), namely, we study the diophantine equation

$$
\begin{equation*}
x^{2} \pm y^{n}=p^{m}, \quad x, y, m, n \in \mathbb{N}, \operatorname{gcd}(p, y)=1 \tag{2}
\end{equation*}
$$

We show that, under some not very restrictive conditions, (2) has only finitely many solutions $(x, y, m, n)$, and we provide a small explicit upper bound for $n$ which only depends on $p$.

As in [1], where the author investigated the diophantine equation $x^{2}-$ $2^{m}= \pm y^{n}$ (see also the work of Yongdong Guo \& Maohua Le [4]), the proofs mainly depend on the sharp estimates for linear forms in two logarithms in archimedean and non-archimedean metrics, due to Laurent, Mignotte \& Nesterenko [8] and Bugeaud \& Laurent [2], respectively.
2. Statement of the results. Let $p$ be an odd prime number. In this work, we consider the diophantine equations

$$
\begin{equation*}
x^{2}-p^{m}=y^{n}, \quad x, y, m, n \in \mathbb{N}, \operatorname{gcd}(x, y)=1, n \geq 3 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+y^{n}=p^{m}, \quad x, y, m, n \in \mathbb{N}, \operatorname{gcd}(x, y)=1, n \geq 3 \tag{4}
\end{equation*}
$$

We state our main result, depending only on the value of $p$ modulo 4 , in the following two theorems.

Theorem 1. If $p \equiv 3 \bmod 4$, then (3) and (4) have only finitely many solutions $(x, y, m, n)$. Moreover, those solutions satisfy

$$
n \leq 4.5 \cdot 10^{6} p^{2} \log ^{2} p \quad \text { and } \quad n \leq 5.6 \cdot 10^{5} p^{2} \log ^{2} p
$$

respectively.
THEOREM 2. If $p \equiv 1 \bmod 4$, then (3) and (4) have only finitely many solutions ( $x, y, m, n$ ) with even $m$ or odd $y$. Moreover, those solutions satisfy

$$
n \leq 4.5 \cdot 10^{6} p^{2} \log ^{2} p \quad \text { and } \quad n \leq 5.6 \cdot 10^{5} p^{2} \log ^{2} p
$$

respectively.
Remarks. The main interest of Theorems 1 and 2 is the small size of the upper bound for $n$. Indeed, if we apply a theorem of Shorey, Van der Poorten, Tijdeman \& Schinzel [15, Theorem 2], we can also show that there exists some effective constant $c_{0}(p)$, depending only on $p$, such that $n<c_{0}(p)$ for any solution $(x, y, m, n)$ of (3) or (4). However, their result does not provide an explicit value for $c_{0}(p)$, which has to be very large, in view of the method of proof.

The hypothesis $n \geq 3$ in the statement of equations (3) and (4) cannot be replaced by $n \geq 2$. Indeed, $\left(\left(p^{m}+1\right) / 2\right)^{2}-p^{m}=\left(\left(p^{m}-1\right) / 2\right)^{2}$ for any positive integer $m$, and, furthermore, it is well known (see e.g. Hardy \& Wright [5, Theorem 366]) that $p^{m}$ (resp. $p^{2 m}$ ) is the sum of two squares if $p \equiv 1 \bmod 4($ resp. $p \equiv 3 \bmod 4)$ 。

In the course of the proof of Theorems 1 and 2, we need some information about prime powers in binary recurrence sequences with integer roots. To this end, we state the following result.

THEOREM 3. Let $p$ be a prime number. Let $a:=a_{1} / a_{2}$ and $b:=b_{1} / b_{2}$ be two irreducible rational numbers satisfying $v_{p}(a)=v_{p}(b)=0$ and put $A:=\max \left\{a_{1}, a_{2}, b_{1}, b_{2}, 3\right\}$. Consider the diophantine equation

$$
\begin{equation*}
p^{m}=a x^{n}+b y^{n}, \quad x, y, m, n \in \mathbb{N}, \operatorname{gcd}(x, y)=1, n \geq 2 \tag{5}
\end{equation*}
$$

Then $n \leq 34000 p \log p \log A$.

## 3. Auxiliary results

Lemma 1. The equation $x^{2}-y^{n}= \pm 1$ has no solution with $y>2$ and $n \geq 2$.

Proof. See Chao Ko [6].

For any integer $x$, we denote by $P[x]$ the greatest prime factor of $x$.
Lemma 2. Let $a, b, x$ and $y$ be non-zero integers with $\operatorname{gcd}(x, y)=1$. Put $X=\max \{|x|,|y|\}$. For any integer $n \geq 3$, there exist effectively computable constants $c_{1}$ and $X_{1}$ such that

$$
P\left[a x^{2}+b y^{n}\right] \geq c_{1}(\log \log X \log \log \log X)^{1 / 2} \quad \text { whenever } X \geq X_{1}
$$

Proof. This is a particular case of a theorem due to Kotov [7].
The next lemma is very closed to Lemma 6 of Maohua Le [12]. For similar results, we refer the reader to [14].

LEMMA 3. Let $d>1$ be a squarefree integer, and let $k$ be a positive odd integer, coprime to $d$. Denote by $\varrho>1$ the fundamental unit of the field $\mathbb{Q}(\sqrt{d})$. If $X, Y$ and $Z$ are three positive integers satisfying

$$
X^{2}-d Y^{2}= \pm k^{Z}
$$

then there exist positive integers $a, b, t$ and $v$, with $a \equiv b \bmod 2$ and $a$ and $b$ even if $d \not \equiv 1 \bmod 4$, such that

$$
X+Y \sqrt{d}=\varrho^{-t}\left(\frac{a+b \sqrt{d}}{2}\right)^{v}
$$

Moreover, $0<t \leq v$ and the integer $Z / v$ divides $h_{d}$, the class number of the field $\mathbb{Q}(\sqrt{d})$.

Proof. For any $\alpha$ in $\mathbb{Q}(\sqrt{d})=: \mathbb{K}$, we denote by $[\alpha]$ the principal ideal of $\mathbb{K}$ generated by $\alpha$. We infer from $\operatorname{gcd}(k, d)=1$ that $\operatorname{gcd}([X-Y \sqrt{d}],[X+$ $Y \sqrt{d}])$ divides $[2]$. Moreover, $\operatorname{gcd}([X-Y \sqrt{d}],[X+Y \sqrt{d}])=[1]$, since $k$ is assumed to be odd. Working in $\mathbb{K}$, we have the following equalities between ideals:

$$
[X-Y \sqrt{d}] \cdot[X+Y \sqrt{d}]=[k]^{Z}=(\mathfrak{a} \overline{\mathfrak{a}})^{Z}
$$

where $\mathfrak{a}$ is an integer ideal in $\mathbb{K}$ and ${ }^{-}$denotes the Galois transformation $\sigma: \sqrt{d} \rightarrow-\sqrt{d}$. There exist $Z_{1}$ and an algebraic integer $\alpha$ in $\mathbb{K}$ such that $Z_{1} \mid h_{d}$ and $\mathfrak{a}^{Z_{1}}$ is the principal ideal generated by $\alpha$. Thus, putting $v=Z / Z_{1}$, we have

$$
X+Y \sqrt{d}=\eta \alpha^{v} \quad \text { and } \quad X-Y \sqrt{d}=\bar{\eta} \bar{\alpha}^{v}
$$

where $\eta$ is a unit in $\mathbb{K}$.
Put $\omega=\sqrt{d}$ if $d \not \equiv 1 \bmod 4$ and $\omega=(1+\sqrt{d}) / 2$ otherwise and recall that $\mathbb{Z}[\omega]$ is the ring of integers of $\mathbb{K}$. Modifying $\alpha$ if necessary, we can assume that $\eta=\varrho^{-t}$, with $0<t \leq v$. Thus we get

$$
X+Y \sqrt{d}=\varrho^{-t}\left(\frac{a+b \sqrt{d}}{2}\right)^{v}
$$

where $a$ and $b$ are two integers satisfying $a \equiv b \bmod 2$ and $a$ and $b$ are even if $d \not \equiv 1 \bmod 4$. From $X+Y \sqrt{d}>|X-Y \sqrt{d}|$ and $\varrho^{-1}<\varrho$, we infer that $a+b \sqrt{d}>|a-b \sqrt{d}|$. Hence $a$ and $b$ are positive, and the lemma is proved.

Lemma 4. Let $p$ be an odd prime. Denote by $h_{p}$ and $R_{p}$ the class number and the regulator of the quadratic field $\mathbb{Q}(\sqrt{p})$. Then we have the upper bounds

$$
h_{p} \leq 0.5 p^{1 / 2} \quad \text { and } \quad 0.4812<R_{p} \leq h_{p} R_{p} \leq p^{1 / 2} \log (4 p)
$$

Proof. We refer respectively to Maohua Le [13] and to Faisant [3], p. 199.

The next two propositions deal with lower bounds for linear forms in two logarithms. Let $\alpha=\alpha_{1}$ be a non-zero algebraic number with minimal defining polynomial $a_{0}\left(X-\alpha_{1}\right) \ldots\left(X-\alpha_{n}\right)$ over $\mathbb{Z}$. The logarithmic height of $\alpha$, denoted by $\mathrm{h}(\alpha)$, is defined by

$$
\mathrm{h}(\alpha)=\frac{1}{n} \log \left(a_{0} \prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}\right)
$$

For any prime number $p$, let $\overline{\mathbb{Q}}_{p}$ be an algebraic closure of the field $\mathbb{Q}_{p}$ of $p$-adic numbers. We denote by $v_{p}$ the unique extension to $\overline{\mathbb{Q}}_{p}$ of the standard $p$-adic valuation over $\mathbb{Q}_{p}$, normalized by $v_{p}(p)=1$.

Proposition 1. Let $p$ be a prime number. Let $\alpha_{1}$ and $\alpha_{2}$ be two algebraic numbers which are p-adic units. Denote by $f$ the residual degree of the extension $\mathbb{Q}_{p} \hookrightarrow \mathbb{Q}_{p}\left(\alpha_{1}, \alpha_{2}\right)$ and put $D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right] / f$. Let $b_{1}$ and $b_{2}$ be two positive integers and put

$$
\Lambda_{u}=\alpha_{1}^{b_{1}}-\alpha_{2}^{b_{2}}
$$

Denote by $A_{1}>1$ and $A_{2}>1$ two real numbers such that

$$
\log A_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right),(\log p) / D\right\}, \quad i=1,2
$$

and put

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

If $\alpha_{1}$ and $\alpha_{2}$ are multiplicatively independent, then we have the lower bound

$$
\begin{aligned}
v_{p}\left(\Lambda_{u}\right) \leq & \frac{24 p\left(p^{f}-1\right)}{(p-1)(\log p)^{4}} D^{4}\left(\max \left\{\log b^{\prime}+\log \log p+0.4, \frac{10 \log p}{D}, 5\right\}\right)^{2} \\
& \times \log A_{1} \log A_{2}
\end{aligned}
$$

Proof. This is Théorème 4 of $[2]$ with the choice $(\mu, \nu)=(10,5)$.
Proposition 2. Let $\alpha_{1} \geq 1$ and $\alpha_{2} \geq 1$ be two real algebraic numbers. Let $b_{1}$ and $b_{2}$ be two positive integers and put

$$
\Lambda_{a}=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}
$$

Set $D=\left[\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbb{Q}\right]$ and denote by $A_{1}>1$ and $A_{2}>1$ two real numbers satisfying

$$
\log A_{i} \geq \max \left\{\mathrm{h}\left(\alpha_{i}\right), 1 / D\right\}, \quad i=1,2
$$

Finally, put

$$
b^{\prime}=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

If $\alpha_{1}$ and $\alpha_{2}$ are multiplicatively independent, then we have the lower bound

$$
\log \left|\Lambda_{a}\right| \geq-32.31 D^{4}\left(\max \left\{\log b^{\prime}+0.18,0.5,10 / D\right\}\right)^{2} \log A_{1} \log A_{2}
$$

Proof. This is Corollaire 2 of [8], where the numerical constants are given in Tableau 2 and correspond to the choice $h_{2}=10$. Notice that the hypotheses of the proposition imply that $\mathrm{h}\left(\alpha_{i}\right) \leq\left|\log \alpha_{i}\right| / D$.
4. Proof of Theorem 3. Let $(x, y, m, n)$ be a solution of (5). Without loss of generality, we may suppose that $|y| \geq|x|$ and we set $Y:=|y|$.

First, we make the assumption $p^{m} \geq Y^{n / 1.4}$, whence

$$
\begin{equation*}
1.4 m \log p \geq n \log Y \tag{6}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\Lambda_{u}:=\frac{p^{m}}{a y^{n}}=\left(\frac{x}{y}\right)^{n}-\frac{-b}{a} \tag{7}
\end{equation*}
$$

we have $v_{p}\left(\Lambda_{u}\right)=m$. In order to bound $m$, we apply Proposition 1 to (7) with the parameters

$$
\alpha_{1}=x / y, \quad \alpha_{2}=-b / a, \quad b_{1}=n, \quad b_{2}=1, \quad f=D=1
$$

Since $p \geq 2$ and $Y \geq 2$ we see that we can take

$$
\log A_{1}=\frac{\log Y}{\log 2} \log p, \quad \log A_{2}=2 \frac{\log p}{\log 2} \log A
$$

and we have

$$
b^{\prime} \leq e^{-0.4} n /(\log p \log A)
$$

provided that

$$
\begin{equation*}
n \geq 4 \log A \tag{8}
\end{equation*}
$$

Assuming that $\alpha_{1}$ and $\alpha_{2}$ are multiplicatively independent, we get

$$
m \leq 100 p(\log p)^{-2} \log Y \log A \max \left\{10 \log p, \log \frac{n}{\log A}\right\}^{2}
$$

whence, by (6),

$$
\begin{equation*}
\frac{n}{\log A} \leq 140 \frac{p}{\log p} \max \left\{10 \log p, \log \frac{n}{\log A}\right\}^{2} \tag{9}
\end{equation*}
$$

From (9), we deduce the upper bound

$$
\begin{equation*}
n \leq 34000 p \log p \log A \tag{10}
\end{equation*}
$$

The estimate (10) remains true if $\alpha_{1}$ and $\alpha_{2}$ are multiplicatively dependent. Indeed, in the latter case, there exist rational integers $x^{\prime}>0, y^{\prime}>0, u>0$ and $v$ such that $x=x^{\prime u}, y=y^{\prime u}$ and $-b / a=\left(x^{\prime} / y^{\prime}\right)^{v}$. Hence, we infer from (5) that

$$
\frac{p^{m}}{a x^{\prime} v y^{\prime u n-v}}=\left(\frac{x^{\prime}}{y^{\prime}}\right)^{u n-v}-1,
$$

and we conclude as before, using Proposition 1 together with $1.4 m \log p \geq$ $n u \log \left|y^{\prime}\right|$.

We now make the assumptions $p^{m} \leq Y^{n / 1.4}$ and

$$
\begin{equation*}
n \geq 500 \log A \tag{11}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\Lambda_{a}:=\frac{p^{m}}{b y^{n}}=\frac{a}{b}\left(\frac{x}{y}\right)^{n}+1, \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
\log \left|\Lambda_{a}\right| \leq-(2 n / 7) \log Y-\log |b| \leq-(2 n / 7) \log Y+\log A \tag{13}
\end{equation*}
$$

and we deduce from (11) that $\left|\Lambda_{a}\right| \leq 1 / 2000$. Hence, by (12), we get

$$
\begin{equation*}
|n \log | \frac{y}{x}|-\log | \frac{-b}{a}\left|\left|\leq\left|\log \left(1-\Lambda_{a}\right)\right| \leq 1.001\right| \Lambda_{a}\right| . \tag{14}
\end{equation*}
$$

Applying Proposition 2 to the left-hand side of (14) with the parameters

$$
\begin{gathered}
\alpha_{1}=|y / x|, \quad \alpha_{2}=|-a / b|, \quad b_{1}=n, \quad b_{2}=1, \\
\log A_{1}=\log Y, \quad \log A_{2}=2 \log A, \quad b^{\prime}=\frac{n}{2 \log A}+\frac{1}{\log Y} \leq \frac{n}{\log A},
\end{gathered}
$$

we obtain
(15) $\log \left|\Lambda_{a}\right| \geq-0.002-32.31 \max \left\{\log \frac{n}{\log A}+0.18,10\right\}^{2} \log A^{2} \log Y$,
provided that $\alpha_{1}$ and $\alpha_{2}$ are multiplicatively independent and $\left|\alpha_{2}\right| \geq 1$. However, it is easily seen that (15) remains true if one of the latter conditions is not fulfilled. Consequently, subject to the condition (11), we use (13) to get

$$
n \leq 227 \max \left\{\log \frac{n}{\log A}+0.18,10\right\}^{2} \log A+7 \log A
$$

hence

$$
\begin{equation*}
n \leq 24000 \log A \text {. } \tag{16}
\end{equation*}
$$

Finally, by (8), (10), (11) and (16), we obtain $n \leq 34000 p \log p \log A$, as claimed.
5. Proof of Theorems 1 and 2. The proofs of both Theorems 1 and 2 run parallel. Lemma 1 shows that equations (3) and (4) have no solution $(x, y, m, n)$ with $y=1$. Thus, in all this section, we assume that $y$ is at least 2.

* The case $m$ even. Let $(x, y, m, n)$ be a solution of (3) or (4) with $m$ even. Thus we have

$$
\left(x+p^{m / 2}\right)\left(x-p^{m / 2}\right)= \pm y^{n},
$$

and, since $\operatorname{gcd}\left(x+p^{m / 2}, x-p^{m / 2}\right)$ divides 2 , we get

$$
\left\{\begin{array}{l}
x+p^{m / 2}=a_{1} d_{1}^{n},  \tag{17}\\
x-p^{m / 2}=a_{2} d_{2}^{n},
\end{array}\right.
$$

where $a_{1}, a_{2}, d_{1}$ and $d_{2}$ are rational numbers satisfying $\left|a_{1}\right|,\left|a_{2}\right| \in\{1 / 2,1,2\}$, $\left|a_{1} a_{2}\right|=1$ and $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. From (17) we deduce that

$$
p^{m / 2}=\frac{a_{1}}{2} d_{1}^{n}-\frac{a_{2}}{2} d_{2}^{n},
$$

and, applying Theorem 2 with $A=4$, we get the bound $n \leq 48000 p \log p$, which proves the last parts of Theorems 1 and 2 when $m$ is even.
$\star$ The case $m$ odd. Observe that if $p \equiv 3 \bmod 4$ and if $(x, y, m, n)$ is a solution of equation (3) or (4), then $x^{2}-p^{m}$ is equal to 1 or 2 modulo 4 . Hence, $y$ cannot be even, and, in order to complete the proof of Theorems 1 and 2 , we may assume that $y$ is an odd integer.

- An upper bound for $m$ valid for the solutions of (3) and (4). Let $(x, y, m, n)$ be a solution of (3) or (4) with odd $m$. Denote by $\varrho(>1)$ the fundamental unit of the field $\mathbb{Q}(\sqrt{p})$ and by $h_{p}$ and $R_{p}:=\log \varrho$ its class number and regulator, respectively. By Lemma 3, there exist an algebraic integer $\varepsilon:=a+b \sqrt{p}$ in $\mathbb{Q}(\sqrt{p})$ and positive integers $t$ and $v$ such that $0<t \leq v$ and

$$
\left\{\begin{array}{l}
x+p^{(m-1) / 2} \sqrt{p}=\varepsilon^{v} \varrho^{-t}  \tag{18}\\
x-p^{(m-1) / 2} \sqrt{p}=\bar{\varepsilon}^{v}(\tau \varrho)^{t}
\end{array}\right.
$$

where $\bar{\varepsilon}$ denotes the conjugate of $\varepsilon$ over $\mathbb{Q}$ and $\tau \in\{ \pm 1\}$ is the norm of $\varrho$. Moreover,

$$
\begin{equation*}
v \text { divides } n \quad \text { and } \quad n \text { divides } h_{p} v . \tag{19}
\end{equation*}
$$

From the system (18) we deduce the equation

$$
\begin{equation*}
2 p^{(m-1) / 2} \sqrt{p}=\varepsilon^{v} \varrho^{-t}-\bar{\varepsilon}^{v}(\tau \varrho)^{t} \tag{20}
\end{equation*}
$$

and we put

$$
\begin{equation*}
\Lambda_{u}:=(\varepsilon / \bar{\varepsilon})^{v}-\left(\tau \varrho^{2}\right)^{t} . \tag{21}
\end{equation*}
$$

Since $\varepsilon / \bar{\varepsilon}$ is a root of the irreducible polynomial $\varepsilon \bar{\varepsilon} X^{2}-\left(\varepsilon^{2}+\bar{\varepsilon}^{2}\right) X+\varepsilon \bar{\varepsilon}$, we have $\mathrm{h}(\varepsilon / \bar{\varepsilon})=\log \varepsilon$ and $\varepsilon / \bar{\varepsilon}$ is not a unit. Thus $\varepsilon / \bar{\varepsilon}$ and $\tau \varrho^{2}$ are multiplicatively independent algebraic numbers, which, moreover, are $p$-adic units, since $\operatorname{gcd}(x, y)=1$. By (20), we have $v_{p}\left(\Lambda_{u}\right)=m / 2$. In order to bound $m$, we apply Proposition 1 to (21) with the following parameters:

$$
\alpha_{1}=\varepsilon / \bar{\varepsilon}, \quad \alpha_{2}=\tau \varrho^{2}, \quad b_{1}=v, \quad b_{2}=t, \quad p=2, \quad D=2, \quad f=1 .
$$

Using Lemma 4 and the upper bound $\log \sqrt{p} \leq 1.54 \log \varepsilon$ deduced from Lemma 3 (the worst case occurs for $p=13$ and $\varepsilon=(1+\sqrt{13}) / 2)$, we see that we can set

$$
\log A_{1}=1.54 \log \varepsilon, \quad \log A_{2}=\frac{R_{p} \log p}{0.96} \quad \text { and } \quad b^{\prime}=\frac{t}{3.08 \log \varepsilon}+\frac{0.48 v}{R_{p} \log p} .
$$

Thus, by Proposition 1 and the estimate $b^{\prime} \leq 2 v / \log p$, we get

$$
\begin{equation*}
m \leq 1232 p(\log p)^{-3} R_{p} \max \{\log v+1.1,5 \log p\}^{2} \log \varepsilon \tag{22}
\end{equation*}
$$

- The case of equation (4). The result is clearly true if $m=1$, thus we assume $m \geq 3$. From (18), we infer that $\varepsilon^{v} \varrho^{-t} \leq 2 p^{m / 2}$, whence

$$
2 v \log \varepsilon \leq 2 t \log \varrho+\log 4+m \log p .
$$

Together with (22), it yields

$$
\begin{align*}
2 v m \leq & 1232 p(\log p)^{-3} R_{p}\left(m \log p+\log 4+2 t R_{p}\right)  \tag{23}\\
& \times \max \{\log v+1.1,5 \log p\}^{2}
\end{align*}
$$

From $p^{m}>y^{n} \geq 2^{n}$ and (19), we deduce that

$$
\frac{t}{m} \leq \frac{v}{m} \leq \frac{n}{m} \leq \frac{\log p}{\log 2}
$$

hence, using (23) and $m \geq 3$, we get
$v \leq 616 p(\log p)^{-3} R_{p}\left(\log p+\frac{\log 4}{3}+\frac{2}{\log 2} R_{p} \log p\right) \max \{\log v+1.1,5 \log p\}^{2}$ and

$$
\begin{equation*}
v \leq 1778 p(\log p)^{-2} R_{p}\left(R_{p}+0.5\right) \max \{\log v+1.1,5 \log p\}^{2} . \tag{24}
\end{equation*}
$$

Assume first that $\max \{\log v+1.1,5 \log p\}=5 \log p$. Then we infer from (19) and (24) that

$$
n \leq 44450 p h_{p} R_{p}\left(R_{p}+0.5\right),
$$

and, using $p \geq 3$ and the upper bounds for $R_{p}$ and $h_{p} R_{p}$ given by Lemma 4, we obtain

$$
\begin{equation*}
n \leq 2.6 \cdot 10^{5} p^{2} \log ^{2} p \tag{25}
\end{equation*}
$$

Assume now that $\max \{\log v+1.1,5 \log p\}=\log v+1.1$. In order to get a better bound for $n$, we treat separately the smallest two values of $p$. Hence, suppose that $p \notin\{3,5\}$, and search an upper bound for $v$ of the shape $v \leq \gamma p R_{p}\left(R_{p}+0.5\right)$, with a suitable constant $\gamma$. Since $p \geq 7$, we see that $\gamma$ must satisfy the inequality $\gamma \geq 470(\log \gamma+7.46)^{2}$. Thus, we may choose $\gamma=1.8 \cdot 10^{5}$ and, using (19) and the upper bounds for $R_{p}$ and $h_{p} R_{p}$ given by Lemma 4, we get

$$
\begin{equation*}
n \leq 5.6 \cdot 10^{5} p^{2} \log ^{2} p \tag{26}
\end{equation*}
$$

Finally, we easily see that (26) remains true for $p \in\{3,5\}$ and it follows from (25) and (26) that (24) leads to the bound

$$
n \leq 5.6 \cdot 10^{5} p^{2} \log ^{2} p
$$

as claimed.

- The case of equation (3). Dividing (19) by $\varepsilon^{v} \varrho^{-t}$, we obtain

$$
\begin{equation*}
\frac{2 p^{(m-1) / 2} \sqrt{p}}{\varepsilon^{v} \varrho^{-t}}=\frac{2 p^{(m-1) / 2} \sqrt{p}}{x+p^{(m-1) / 2} \sqrt{p}}=1-\left(\frac{\bar{\varepsilon}}{\varepsilon}\right)^{v}\left(\tau \varrho^{2}\right)^{t}=: \Lambda_{a} \tag{27}
\end{equation*}
$$

If $\Lambda_{a} \geq 1 / 2$, then we have $4 p^{(m-1) / 2} \sqrt{p} \geq \varepsilon^{v} \varrho^{-t}$ and

$$
\begin{equation*}
2 v \log \varepsilon-2 t \log \varrho \leq m \log p+\log 16 \tag{28}
\end{equation*}
$$

Otherwise $\Lambda_{a}<1 / 2$ and we get

$$
\begin{equation*}
\left|\log \left(1-\Lambda_{a}\right)\right| \leq 2 \Lambda_{a} \tag{29}
\end{equation*}
$$

We apply Proposition 2 to the linear form

$$
|v \log | \frac{\varepsilon}{\bar{\varepsilon}}\left|-t \log \left(\varrho^{2}\right)\right| \leq\left|v \log \left(\frac{\varepsilon}{\bar{\varepsilon}}\right)-t \log \left(\tau \varrho^{2}\right)\right| \leq\left|\log \left(1-\Lambda_{a}\right)\right|
$$

with the following parameters:

$$
\begin{gathered}
\alpha_{1}=|\varepsilon / \bar{\varepsilon}|, \quad \alpha_{2}=\varrho^{2}, \quad b_{1}=v, \quad b_{2}=t, \quad D=2 \\
\log A_{1}=\log \varepsilon, \quad \log A_{2}=\log \varrho=R_{p}, \quad b^{\prime}=\frac{t}{2 \log \varepsilon}+\frac{v}{2 R_{p}}
\end{gathered}
$$

It follows from Lemma 4 and $\varepsilon \geq(1+\sqrt{13}) / 2$ that $b^{\prime} \leq 1.64 v$, and, using (29), we obtain

$$
\log 2+\log \Lambda_{a} \geq-517 R_{p} \max \{\log v+0.68,5\}^{2} \log \varepsilon
$$

hence, by (27),
(30) $v \log \varepsilon-t \log \varrho \leq \log 4+(m \log p) / 2+517 R_{p} \max \{\log v+0.68,5\}^{2} \log \varepsilon$.

From (22), (28) and (30) we infer that

$$
\begin{align*}
v \log \varepsilon-t R_{p} \leq & \log 4+517 R_{p} \max \{\log v+0.68,5\}^{2} \log \varepsilon  \tag{31}\\
& +616 p(\log p)^{-2} R_{p} \max \{\log v+1.1,5 \log p\}^{2} \log \varepsilon
\end{align*}
$$

First, assume that $\varepsilon<\exp \left\{2 R_{p}\right\}$. From (18), we get $\varepsilon^{v} \varrho^{-t}>y^{n / 2}$, hence

$$
\begin{equation*}
v \log \varepsilon-t \log \varrho>(n \log y) / 2 \tag{32}
\end{equation*}
$$

However, we have

$$
\begin{equation*}
\frac{\log \varepsilon}{\log y} \leq \frac{2 R_{p}}{\log 3} \tag{33}
\end{equation*}
$$

since $y>1$ is odd, and we deduce from (31), (32) and (33) that

$$
\begin{aligned}
n \leq & 2.6+1883 R_{p}^{2} \max \{\log n+0.68,5\}^{2} \\
& +2243 p(\log p)^{-2} R_{p}^{2} \max \{\log n+1.1,5 \log p\}^{2}
\end{aligned}
$$

As before, we search an upper bound for $n$ of the shape $n \leq \gamma p^{2} \log ^{2} p$. Using Lemma 4 and a few calculation, we show that it suffices that $\gamma$ satisfies

$$
\gamma \geq 0.3+3214\{\log \gamma+3.1\}^{2}+9508\{\log \gamma+3.5\}^{2} .
$$

Thus, we can choose $\gamma=4.5 \cdot 10^{6}$, which gives the bound

$$
\begin{equation*}
n \leq 4.5 \cdot 10^{6} p^{2} \log ^{2} p \tag{34}
\end{equation*}
$$

Assume now that $\varepsilon \geq \exp \left\{2 R_{p}\right\}$. Then we have

$$
\begin{equation*}
v \log \varepsilon-t R_{p} \geq(v \log \varepsilon) / 2 \tag{35}
\end{equation*}
$$

since $t \leq v$. Using (31), (35) and the lower bound $\varepsilon \geq(1+\sqrt{13}) / 2$, we get

$$
\begin{aligned}
v \leq & 3.4+1034 R_{p} \max \{\log v+0.68,5\}^{2} \\
& +1232 p(\log p)^{-2} R_{p} \max \{\log v+1.1,5 \log p\}^{2}
\end{aligned}
$$

hence, by (19),

$$
\begin{aligned}
n \leq & 3.4 h_{p}+1034\left(h_{p} R_{p}\right) \max \{\log n+0.68,5\}^{2} \\
& +1232 p(\log p)^{-2}\left(h_{p} R_{p}\right) \max \{\log n+1.1,5 \log p\}^{2}
\end{aligned}
$$

and it is easy to show that (34) also holds in this case. Hence, the last statements of Theorems 1 and 2 are proved.

Now, in order to complete the proofs of Theorems 1 and 2, it suffices to apply Lemma 2 to the polynomials $x^{2} \pm y^{n}$, where $3 \leq n \leq 4.5 \cdot 10^{6} p^{2} \log ^{2} p$.

## References

[1] Y. Bugeaud, On the diophantine equation $x^{2}-2^{m}= \pm y^{n}$, Proc. Amer. Math. Soc., to appear.
[2] Y. Bugeaud et M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
[3] A. Faisant, L'équation diophantienne du second degré, Hermann, Paris, 1991.
[4] Y. D. Guo and M. H. Le, $A$ note on the exponential diophantine equation $x^{2}-2^{m}=$ $y^{n}$, Proc. Amer. Math. Soc. 123 (1995), 3627-3629.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1990.
[6] C. Ko, On the diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica 14 (1965), 457-460.
[7] S. V. Kotov, Über die maximale Norm der Idealteiler des Polynoms ax ${ }^{m}+b y^{n}$ mit den algebraischen Koeffizienten, Acta Arith. 31 (1976), 219-230.
[8] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[9] M. H. Le, On the generalized Ramanujan-Nagell equation, III, Dongbei Shuxue 4 (1988), 180-184.
[10] -, The diophantine equation $x^{2}+D^{m}=p^{n}$, Acta Arith. 52 (1989), 255-265.
[11] -, Applications of Baker's method, IV, J. Changsha Railway Inst. 9 (1991), no. 2, 87-92.
[12] -, A note on the diophantine equation $\left(x^{m}-1\right) /(x-1)=y^{n}$, Acta Arith. 64 (1993), 19-28.
[13] -, Upper bounds for class number of real quadratic fields, ibid. 68 (1994), 141-144.
[14] -, Some exponential diophantine equations, I, J. Number Theory 55 (1995), 209221.
[15] T. N. Shorey, A. J. Van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 59-78.
[16] M. Toyoizumi, On the diophantine equation $x^{2}+D^{m}=p^{n}$, Acta Arith. 42 (1983), 303-309.
U.F.R. de mathématiques

Université Louis Pasteur
7, rue René Descartes
67084 Strasbourg, France
E-mail: bugeaud@pari.u-strasbg.fr

