On the diophantine equation $x^2 - p^m = \pm y^n$

by

YANN BUGEAUD (Strasbourg)

1. Introduction. In all what follows, we denote by \mathbb{N} the set of strictly positive integers. Let p be an odd prime number, and let D be a non-power integer with D > 1 and gcd(p, D) = 1. Toyoizumi [16] and Maohua Le [10] (see also [11]) studied the number of solutions of the diophantine equation

(1)
$$x^2 + D^n = p^m, \quad x, m, n \in \mathbb{N}$$

More precisely, Maohua Le [10] proved that if $\max\{p, D\}$ is larger than an explicit constant, then equation (1) has at most two solutions, except when, for a positive integer a, we have $D = 3a^2 + 1$ and $p = 4a^2 + 1$. In the latter case, there are at most three solutions, including the trivial one (x, m, n) = (a, 1, 1). Further, he gave [9] an analogous result for the diophantine equation $x^2 - D^n = p^m$. His method being essentially ineffective, Maohua Le does not obtain computable upper bounds for the solutions of equation (1).

In this work, we deal with a generalization of equation (1), namely, we study the diophantine equation

(2)
$$x^2 \pm y^n = p^m, \quad x, y, m, n \in \mathbb{N}, \ \gcd(p, y) = 1.$$

We show that, under some not very restrictive conditions, (2) has only finitely many solutions (x, y, m, n), and we provide a small explicit upper bound for n which only depends on p.

As in [1], where the author investigated the diophantine equation $x^2 - 2^m = \pm y^n$ (see also the work of Yongdong Guo & Maohua Le [4]), the proofs mainly depend on the sharp estimates for linear forms in two logarithms in archimedean and non-archimedean metrics, due to Laurent, Mignotte & Nesterenko [8] and Bugeaud & Laurent [2], respectively.

2. Statement of the results. Let p be an odd prime number. In this work, we consider the diophantine equations

(3)
$$x^2 - p^m = y^n, \quad x, y, m, n \in \mathbb{N}, \ \gcd(x, y) = 1, \ n \ge 3,$$

Y. Bugeaud

and

(4)
$$x^2 + y^n = p^m, \quad x, y, m, n \in \mathbb{N}, \ \gcd(x, y) = 1, \ n \ge 3$$

We state our main result, depending only on the value of p modulo 4, in the following two theorems.

THEOREM 1. If $p \equiv 3 \mod 4$, then (3) and (4) have only finitely many solutions (x, y, m, n). Moreover, those solutions satisfy

$$n \le 4.5 \cdot 10^6 p^2 \log^2 p$$
 and $n \le 5.6 \cdot 10^5 p^2 \log^2 p$,

respectively.

THEOREM 2. If $p \equiv 1 \mod 4$, then (3) and (4) have only finitely many solutions (x, y, m, n) with even m or odd y. Moreover, those solutions satisfy

$$n \le 4.5 \cdot 10^6 p^2 \log^2 p$$
 and $n \le 5.6 \cdot 10^5 p^2 \log^2 p$,

respectively.

Remarks. The main interest of Theorems 1 and 2 is the small size of the upper bound for n. Indeed, if we apply a theorem of Shorey, Van der Poorten, Tijdeman & Schinzel [15, Theorem 2], we can also show that there exists some effective constant $c_0(p)$, depending only on p, such that $n < c_0(p)$ for any solution (x, y, m, n) of (3) or (4). However, their result does not provide an explicit value for $c_0(p)$, which has to be very large, in view of the method of proof.

The hypothesis $n \ge 3$ in the statement of equations (3) and (4) cannot be replaced by $n \ge 2$. Indeed, $((p^m + 1)/2)^2 - p^m = ((p^m - 1)/2)^2$ for any positive integer m, and, furthermore, it is well known (see e.g. Hardy & Wright [5, Theorem 366]) that p^m (resp. p^{2m}) is the sum of two squares if $p \equiv 1 \mod 4$ (resp. $p \equiv 3 \mod 4$).

In the course of the proof of Theorems 1 and 2, we need some information about prime powers in binary recurrence sequences with integer roots. To this end, we state the following result.

THEOREM 3. Let p be a prime number. Let $a := a_1/a_2$ and $b := b_1/b_2$ be two irreducible rational numbers satisfying $v_p(a) = v_p(b) = 0$ and put $A := \max\{a_1, a_2, b_1, b_2, 3\}$. Consider the diophantine equation

(5) $p^m = ax^n + by^n, \quad x, y, m, n \in \mathbb{N}, \ \gcd(x, y) = 1, \ n \ge 2.$

Then $n \leq 34000p \log p \log A$.

3. Auxiliary results

LEMMA 1. The equation $x^2 - y^n = \pm 1$ has no solution with y > 2 and $n \ge 2$.

Proof. See Chao Ko [6].

For any integer x, we denote by P[x] the greatest prime factor of x.

LEMMA 2. Let a, b, x and y be non-zero integers with gcd(x, y) = 1. Put $X = max\{|x|, |y|\}$. For any integer $n \ge 3$, there exist effectively computable constants c_1 and X_1 such that

$$P[ax^{2} + by^{n}] \ge c_{1}(\log \log X \log \log \log X)^{1/2} \quad whenever \ X \ge X_{1}.$$

Proof. This is a particular case of a theorem due to Kotov [7]. ■

The next lemma is very closed to Lemma 6 of Maohua Le [12]. For similar results, we refer the reader to [14].

LEMMA 3. Let d > 1 be a squarefree integer, and let k be a positive odd integer, coprime to d. Denote by $\rho > 1$ the fundamental unit of the field $\mathbb{Q}(\sqrt{d})$. If X, Y and Z are three positive integers satisfying

$$X^2 - dY^2 = \pm k^Z$$

then there exist positive integers a, b, t and v, with $a \equiv b \mod 2$ and a and b even if $d \not\equiv 1 \mod 4$, such that

$$X + Y\sqrt{d} = \varrho^{-t} \left(\frac{a + b\sqrt{d}}{2}\right)^v.$$

Moreover, $0 < t \leq v$ and the integer Z/v divides h_d , the class number of the field $\mathbb{Q}(\sqrt{d})$.

Proof. For any α in $\mathbb{Q}(\sqrt{d}) =: \mathbb{K}$, we denote by $[\alpha]$ the principal ideal of \mathbb{K} generated by α . We infer from gcd(k, d) = 1 that $gcd([X - Y\sqrt{d}], [X + Y\sqrt{d}])$ divides [2]. Moreover, $gcd([X - Y\sqrt{d}], [X + Y\sqrt{d}]) = [1]$, since k is assumed to be odd. Working in \mathbb{K} , we have the following equalities between ideals:

$$[X - Y\sqrt{d}] \cdot [X + Y\sqrt{d}] = [k]^Z = (\mathfrak{a}\overline{\mathfrak{a}})^Z$$

where \mathfrak{a} is an integer ideal in \mathbb{K} and $\overline{\cdot}$ denotes the Galois transformation $\sigma : \sqrt{d} \to -\sqrt{d}$. There exist Z_1 and an algebraic integer α in \mathbb{K} such that $Z_1 \mid h_d$ and \mathfrak{a}^{Z_1} is the principal ideal generated by α . Thus, putting $v = Z/Z_1$, we have

$$X + Y\sqrt{d} = \eta \alpha^v$$
 and $X - Y\sqrt{d} = \overline{\eta} \,\overline{\alpha}^v$,

where η is a unit in \mathbb{K} .

Put $\omega = \sqrt{d}$ if $d \neq 1 \mod 4$ and $\omega = (1 + \sqrt{d})/2$ otherwise and recall that $\mathbb{Z}[\omega]$ is the ring of integers of \mathbb{K} . Modifying α if necessary, we can assume that $\eta = \varrho^{-t}$, with $0 < t \leq v$. Thus we get

$$X + Y\sqrt{d} = \varrho^{-t} \left(\frac{a + b\sqrt{d}}{2}\right)^v,$$

where a and b are two integers satisfying $a \equiv b \mod 2$ and a and b are even if $d \not\equiv 1 \mod 4$. From $X + Y\sqrt{d} > |X - Y\sqrt{d}|$ and $\varrho^{-1} < \varrho$, we infer that $a+b\sqrt{d} > |a-b\sqrt{d}|$. Hence a and b are positive, and the lemma is proved.

LEMMA 4. Let p be an odd prime. Denote by h_p and R_p the class number and the regulator of the quadratic field $\mathbb{Q}(\sqrt{p})$. Then we have the upper bounds

$$h_p \le 0.5p^{1/2}$$
 and $0.4812 < R_p \le h_p R_p \le p^{1/2} \log(4p)$

Proof. We refer respectively to Maohua Le [13] and to Faisant [3], p. 199. \blacksquare

The next two propositions deal with lower bounds for linear forms in two logarithms. Let $\alpha = \alpha_1$ be a non-zero algebraic number with minimal defining polynomial $a_0(X - \alpha_1) \dots (X - \alpha_n)$ over \mathbb{Z} . The logarithmic height of α , denoted by $h(\alpha)$, is defined by

$$\mathbf{h}(\alpha) = \frac{1}{n} \log \left(a_0 \prod_{i=1}^n \max\{1, |\alpha_i|\} \right).$$

For any prime number p, let $\overline{\mathbb{Q}}_p$ be an algebraic closure of the field \mathbb{Q}_p of p-adic numbers. We denote by v_p the unique extension to $\overline{\mathbb{Q}}_p$ of the standard p-adic valuation over \mathbb{Q}_p , normalized by $v_p(p) = 1$.

PROPOSITION 1. Let p be a prime number. Let α_1 and α_2 be two algebraic numbers which are p-adic units. Denote by f the residual degree of the extension $\mathbb{Q}_p \hookrightarrow \mathbb{Q}_p(\alpha_1, \alpha_2)$ and put $D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}]/f$. Let b_1 and b_2 be two positive integers and put

$$\Lambda_u = \alpha_1^{b_1} - \alpha_2^{b_2}.$$

Denote by $A_1 > 1$ and $A_2 > 1$ two real numbers such that

$$\log A_i \ge \max\{\mathrm{h}(\alpha_i), (\log p)/D\}, \quad i = 1, 2,$$

and put

$$b' = \frac{b_1}{D\log A_2} + \frac{b_2}{D\log A_1}$$

If α_1 and α_2 are multiplicatively independent, then we have the lower bound

$$v_p(A_u) \le \frac{24p(p^f - 1)}{(p - 1)(\log p)^4} D^4 \left(\max\left\{ \log b' + \log \log p + 0.4, \frac{10\log p}{D}, 5 \right\} \right)^2 \times \log A_1 \log A_2.$$

Proof. This is Théorème 4 of [2] with the choice $(\mu, \nu) = (10, 5)$.

PROPOSITION 2. Let $\alpha_1 \geq 1$ and $\alpha_2 \geq 1$ be two real algebraic numbers. Let b_1 and b_2 be two positive integers and put

$$\Lambda_a = b_1 \log \alpha_1 - b_2 \log \alpha_2.$$

Set $D = [\mathbb{Q}(\alpha_1, \alpha_2) : \mathbb{Q}]$ and denote by $A_1 > 1$ and $A_2 > 1$ two real numbers satisfying

$$\log A_i \ge \max\{\mathbf{h}(\alpha_i), 1/D\}, \quad i = 1, 2.$$

Finally, put

$$b' = \frac{b_1}{D \log A_2} + \frac{b_2}{D \log A_1}.$$

If α_1 and α_2 are multiplicatively independent, then we have the lower bound

 $\log |\Lambda_a| \ge -32.31D^4 (\max\{\log b' + 0.18, 0.5, 10/D\})^2 \log A_1 \log A_2.$

Proof. This is Corollaire 2 of [8], where the numerical constants are given in Tableau 2 and correspond to the choice $h_2 = 10$. Notice that the hypotheses of the proposition imply that $h(\alpha_i) \leq |\log \alpha_i|/D$.

4. Proof of Theorem 3. Let (x, y, m, n) be a solution of (5). Without loss of generality, we may suppose that $|y| \ge |x|$ and we set Y := |y|.

First, we make the assumption $p^m \ge Y^{n/1.4}$, whence

(6)
$$1.4m\log p \ge n\log Y.$$

Putting

(7)
$$\Lambda_u := \frac{p^m}{ay^n} = \left(\frac{x}{y}\right)^n - \frac{-b}{a},$$

we have $v_p(\Lambda_u) = m$. In order to bound m, we apply Proposition 1 to (7) with the parameters

$$\alpha_1 = x/y, \quad \alpha_2 = -b/a, \quad b_1 = n, \quad b_2 = 1, \quad f = D = 1.$$

Since $p \ge 2$ and $Y \ge 2$ we see that we can take

$$\log A_1 = \frac{\log Y}{\log 2} \log p, \quad \log A_2 = 2 \frac{\log p}{\log 2} \log A,$$

and we have

$$b' \le e^{-0.4} n / (\log p \log A)$$

provided that

(8)
$$n \ge 4 \log A.$$

Assuming that α_1 and α_2 are multiplicatively independent, we get

$$m \le 100p(\log p)^{-2}\log Y \log A \max\left\{10\log p, \log \frac{n}{\log A}\right\}^2,$$

whence, by (6),

(9)
$$\frac{n}{\log A} \le 140 \frac{p}{\log p} \max\left\{10 \log p, \log \frac{n}{\log A}\right\}^2.$$

From (9), we deduce the upper bound

(10)
$$n \le 34000p \log p \log A.$$

The estimate (10) remains true if α_1 and α_2 are multiplicatively dependent. Indeed, in the latter case, there exist rational integers x' > 0, y' > 0, u > 0and v such that $x = x'^u$, $y = y'^u$ and $-b/a = (x'/y')^v$. Hence, we infer from (5) that

$$\frac{p^m}{ax'^v y'^{un-v}} = \left(\frac{x'}{y'}\right)^{un-v} - 1,$$

and we conclude as before, using Proposition 1 together with $1.4m \log p \ge nu \log |y'|$.

We now make the assumptions $p^m \leq Y^{n/1.4}$ and

(11)
$$n \ge 500 \log A$$

Putting

(12)
$$\Lambda_a := \frac{p^m}{by^n} = \frac{a}{b} \left(\frac{x}{y}\right)^n + 1,$$

we have

(13)
$$\log |\Lambda_a| \leq -(2n/7) \log Y - \log |b| \leq -(2n/7) \log Y + \log A$$

and we deduce from (11) that $|\Lambda_a| \leq 1/2000$. Hence, by (12), we get

(14)
$$\left| n \log \left| \frac{y}{x} \right| - \log \left| \frac{-b}{a} \right| \right| \le \left| \log(1 - \Lambda_a) \right| \le 1.001 |\Lambda_a|.$$

Applying Proposition 2 to the left-hand side of (14) with the parameters

$$\alpha_1 = |y/x|, \quad \alpha_2 = |-a/b|, \quad b_1 = n, \quad b_2 = 1,$$

 $\log A_1 = \log Y, \quad \log A_2 = 2\log A, \quad b' = \frac{n}{2\log A} + \frac{1}{\log Y} \le \frac{n}{\log A},$

we obtain

(15)
$$\log |\Lambda_a| \ge -0.002 - 32.31 \max \left\{ \log \frac{n}{\log A} + 0.18, 10 \right\}^2 \log A^2 \log Y,$$

provided that α_1 and α_2 are multiplicatively independent and $|\alpha_2| \geq 1$. However, it is easily seen that (15) remains true if one of the latter conditions is not fulfilled. Consequently, subject to the condition (11), we use (13) to get

$$n \le 227 \max\left\{\log \frac{n}{\log A} + 0.18, 10\right\}^2 \log A + 7\log A,$$

hence

(16)
$$n \le 24000 \log A.$$

Finally, by (8), (10), (11) and (16), we obtain $n \leq 34000p \log p \log A$, as claimed.

5. Proof of Theorems 1 and 2. The proofs of both Theorems 1 and 2 run parallel. Lemma 1 shows that equations (3) and (4) have no solution (x, y, m, n) with y = 1. Thus, in all this section, we assume that y is at least 2.

★ The case m even. Let (x, y, m, n) be a solution of (3) or (4) with m even. Thus we have

$$(x+p^{m/2})(x-p^{m/2}) = \pm y^n$$

and, since $gcd(x + p^{m/2}, x - p^{m/2})$ divides 2, we get

(17)
$$\begin{cases} x + p^{m/2} = a_1 d_1^n, \\ x - p^{m/2} = a_2 d_2^n, \end{cases}$$

where a_1, a_2, d_1 and d_2 are rational numbers satisfying $|a_1|, |a_2| \in \{1/2, 1, 2\}$, $|a_1a_2| = 1$ and $gcd(d_1, d_2) = 1$. From (17) we deduce that

$$p^{m/2} = \frac{a_1}{2}d_1^n - \frac{a_2}{2}d_2^n,$$

and, applying Theorem 2 with A = 4, we get the bound $n \leq 48000 p \log p$, which proves the last parts of Theorems 1 and 2 when m is even.

* The case m odd. Observe that if $p \equiv 3 \mod 4$ and if (x, y, m, n) is a solution of equation (3) or (4), then $x^2 - p^m$ is equal to 1 or 2 modulo 4. Hence, y cannot be even, and, in order to complete the proof of Theorems 1 and 2, we may assume that y is an odd integer.

• An upper bound for m valid for the solutions of (3) and (4). Let (x, y, m, n) be a solution of (3) or (4) with odd m. Denote by ϱ (> 1) the fundamental unit of the field $\mathbb{Q}(\sqrt{p})$ and by h_p and $R_p := \log \varrho$ its class number and regulator, respectively. By Lemma 3, there exist an algebraic integer $\varepsilon := a + b\sqrt{p}$ in $\mathbb{Q}(\sqrt{p})$ and positive integers t and v such that $0 < t \leq v$ and

(18)
$$\begin{cases} x + p^{(m-1)/2}\sqrt{p} = \varepsilon^{v}\varrho^{-t}, \\ x - p^{(m-1)/2}\sqrt{p} = \overline{\varepsilon}^{v}(\tau\varrho)^{t} \end{cases}$$

where $\overline{\varepsilon}$ denotes the conjugate of ε over \mathbb{Q} and $\tau \in \{\pm 1\}$ is the norm of ϱ . Moreover,

(19) $v \text{ divides } n \text{ and } n \text{ divides } h_p v.$

From the system (18) we deduce the equation

(20)
$$2p^{(m-1)/2}\sqrt{p} = \varepsilon^{\nu}\varrho^{-t} - \overline{\varepsilon}^{\nu}(\tau\varrho)^{t},$$

and we put

(21)
$$\Lambda_u := (\varepsilon/\overline{\varepsilon})^v - (\tau \varrho^2)^t.$$

Since $\varepsilon/\overline{\varepsilon}$ is a root of the irreducible polynomial $\varepsilon\overline{\varepsilon}X^2 - (\varepsilon^2 + \overline{\varepsilon}^2)X + \varepsilon\overline{\varepsilon}$, we have $h(\varepsilon/\overline{\varepsilon}) = \log \varepsilon$ and $\varepsilon/\overline{\varepsilon}$ is not a unit. Thus $\varepsilon/\overline{\varepsilon}$ and $\tau \varrho^2$ are multiplicatively independent algebraic numbers, which, moreover, are *p*-adic units, since gcd(x, y) = 1. By (20), we have $v_p(\Lambda_u) = m/2$. In order to bound *m*, we apply Proposition 1 to (21) with the following parameters:

$$\alpha_1 = \varepsilon/\overline{\varepsilon}, \quad \alpha_2 = \tau \varrho^2, \quad b_1 = v, \quad b_2 = t, \quad p = 2, \quad D = 2, \quad f = 1$$

Using Lemma 4 and the upper bound $\log \sqrt{p} \leq 1.54 \log \varepsilon$ deduced from Lemma 3 (the worst case occurs for p = 13 and $\varepsilon = (1 + \sqrt{13})/2$), we see that we can set

$$\log A_1 = 1.54 \log \varepsilon$$
, $\log A_2 = \frac{R_p \log p}{0.96}$ and $b' = \frac{t}{3.08 \log \varepsilon} + \frac{0.48v}{R_p \log p}$

Thus, by Proposition 1 and the estimate $b' \leq 2v/\log p$, we get

(22)
$$m \le 1232p(\log p)^{-3}R_p \max\{\log v + 1.1, 5\log p\}^2 \log \varepsilon.$$

• The case of equation (4). The result is clearly true if m = 1, thus we assume $m \ge 3$. From (18), we infer that $\varepsilon^v \varrho^{-t} \le 2p^{m/2}$, whence

$$2v\log\varepsilon \le 2t\log\varrho + \log 4 + m\log p.$$

Together with (22), it yields

(23)
$$2vm \le 1232p(\log p)^{-3}R_p(m\log p + \log 4 + 2tR_p) \times \max\{\log v + 1.1, 5\log p\}^2.$$

From $p^m > y^n \ge 2^n$ and (19), we deduce that

$$\frac{t}{m} \le \frac{v}{m} \le \frac{n}{m} \le \frac{\log p}{\log 2}$$

hence, using (23) and $m \ge 3$, we get

$$v \le 616p(\log p)^{-3}R_p\left(\log p + \frac{\log 4}{3} + \frac{2}{\log 2}R_p\log p\right)\max\{\log v + 1.1, 5\log p\}^2$$

and

(24)
$$v \le 1778p(\log p)^{-2}R_p(R_p+0.5)\max\{\log v+1.1, 5\log p\}^2.$$

Assume first that $\max\{\log v + 1.1, 5\log p\} = 5\log p$. Then we infer from (19) and (24) that

$$n \le 44450 ph_p R_p (R_p + 0.5),$$

and, using $p\geq 3$ and the upper bounds for R_p and h_pR_p given by Lemma 4, we obtain

(25)
$$n \le 2.6 \cdot 10^5 p^2 \log^2 p$$

Assume now that $\max\{\log v + 1.1, 5 \log p\} = \log v + 1.1$. In order to get a better bound for n, we treat separately the smallest two values of p. Hence, suppose that $p \notin \{3,5\}$, and search an upper bound for v of the shape $v \leq \gamma p R_p(R_p + 0.5)$, with a suitable constant γ . Since $p \geq 7$, we see that γ must satisfy the inequality $\gamma \geq 470(\log \gamma + 7.46)^2$. Thus, we may choose $\gamma = 1.8 \cdot 10^5$ and, using (19) and the upper bounds for R_p and $h_p R_p$ given by Lemma 4, we get

(26)
$$n \le 5.6 \cdot 10^5 p^2 \log^2 p$$

Finally, we easily see that (26) remains true for $p \in \{3, 5\}$ and it follows from (25) and (26) that (24) leads to the bound

$$n \le 5.6 \cdot 10^5 p^2 \log^2 p,$$

as claimed.

• The case of equation (3). Dividing (19) by $\varepsilon^{\nu} \varrho^{-t}$, we obtain

(27)
$$\frac{2p^{(m-1)/2}\sqrt{p}}{\varepsilon^{\nu}\varrho^{-t}} = \frac{2p^{(m-1)/2}\sqrt{p}}{x+p^{(m-1)/2}\sqrt{p}} = 1 - \left(\frac{\overline{\varepsilon}}{\varepsilon}\right)^{\nu} (\tau \varrho^2)^t =: \Lambda_a$$

If $\Lambda_a \ge 1/2$, then we have $4p^{(m-1)/2}\sqrt{p} \ge \varepsilon^v \varrho^{-t}$ and

28)
$$2v\log\varepsilon - 2t\log\varrho \le m\log p + \log 16.$$

Otherwise $\Lambda_a < 1/2$ and we get

$$(29) |\log(1 - \Lambda_a)| \le 2\Lambda_a.$$

We apply Proposition 2 to the linear form

$$\left| v \log \left| \frac{\varepsilon}{\overline{\varepsilon}} \right| - t \log(\varrho^2) \right| \le \left| v \log \left(\frac{\varepsilon}{\overline{\varepsilon}} \right) - t \log(\tau \varrho^2) \right| \le \left| \log(1 - \Lambda_a) \right|$$

with the following parameters:

$$\alpha_1 = |\varepsilon/\overline{\varepsilon}|, \quad \alpha_2 = \varrho^2, \quad b_1 = v, \quad b_2 = t, \quad D = 2,$$
$$\log A_1 = \log \varepsilon, \quad \log A_2 = \log \varrho = R_p, \quad b' = \frac{t}{2\log \varepsilon} + \frac{v}{2R_p}$$

It follows from Lemma 4 and $\varepsilon \ge (1 + \sqrt{13})/2$ that $b' \le 1.64v$, and, using (29), we obtain

$$\log 2 + \log \Lambda_a \ge -517R_p \max\{\log v + 0.68, 5\}^2 \log \varepsilon_{2}$$

hence, by (27),

(30) $v \log \varepsilon - t \log \varrho \le \log 4 + (m \log p)/2 + 517R_p \max\{\log v + 0.68, 5\}^2 \log \varepsilon.$

From (22), (28) and (30) we infer that

(31)
$$v \log \varepsilon - tR_p \le \log 4 + 517R_p \max\{\log v + 0.68, 5\}^2 \log \varepsilon + 616p(\log p)^{-2}R_p \max\{\log v + 1.1, 5\log p\}^2 \log \varepsilon.$$

First, assume that $\varepsilon < \exp\{2R_p\}$. From (18), we get $\varepsilon^v \varrho^{-t} > y^{n/2}$, hence

(32)
$$v \log \varepsilon - t \log \varrho > (n \log y)/2.$$

However, we have

(33)
$$\frac{\log \varepsilon}{\log y} \le \frac{2R_p}{\log 3},$$

since y > 1 is odd, and we deduce from (31), (32) and (33) that

$$n \le 2.6 + 1883 R_p^2 \max\{\log n + 0.68, 5\}^2 + 2243p(\log p)^{-2} R_p^2 \max\{\log n + 1.1, 5\log p\}^2.$$

As before, we search an upper bound for n of the shape $n \leq \gamma p^2 \log^2 p$. Using Lemma 4 and a few calculation, we show that it suffices that γ satisfies

$$\gamma \ge 0.3 + 3214 \{\log \gamma + 3.1\}^2 + 9508 \{\log \gamma + 3.5\}^2$$

Thus, we can choose $\gamma = 4.5 \cdot 10^6$, which gives the bound

(34)
$$n \le 4.5 \cdot 10^6 p^2 \log^2 p$$

Assume now that $\varepsilon \geq \exp\{2R_p\}$. Then we have

(35)
$$v \log \varepsilon - tR_p \ge (v \log \varepsilon)/2$$

since $t \leq v$. Using (31), (35) and the lower bound $\varepsilon \geq (1 + \sqrt{13})/2$, we get

$$v \le 3.4 + 1034R_p \max\{\log v + 0.68, 5\}^2 + 1232p(\log p)^{-2}R_p \max\{\log v + 1.1, 5\log p\}^2,$$

hence, by (19),

$$n \le 3.4h_p + 1034(h_p R_p) \max\{\log n + 0.68, 5\}^2 + 1232p(\log p)^{-2}(h_p R_p) \max\{\log n + 1.1, 5\log p\}^2$$

and it is easy to show that (34) also holds in this case. Hence, the last statements of Theorems 1 and 2 are proved.

Now, in order to complete the proofs of Theorems 1 and 2, it suffices to apply Lemma 2 to the polynomials $x^2 \pm y^n$, where $3 \le n \le 4.5 \cdot 10^6 p^2 \log^2 p$.

References

- [1] Y. Bugeaud, On the diophantine equation $x^2 2^m = \pm y^n$, Proc. Amer. Math. Soc., to appear.
- [2] Y. Bugeaud et M. Laurent, Minoration effective de la distance p-adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311-342.
- [3] A. Faisant, L'équation diophantienne du second degré, Hermann, Paris, 1991.
- [4] Y. D. Guo and M. H. Le, A note on the exponential diophantine equation $x^2 2^m = y^n$, Proc. Amer. Math. Soc. 123 (1995), 3627–3629.

- [5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1990.
- [6] C. Ko, On the diophantine equation $x^2 = y^n + 1$, $xy \neq 0$, Sci. Sinica 14 (1965), 457–460.
- S. V. Kotov, Über die maximale Norm der Idealteiler des Polynoms ax^m + byⁿ mit den algebraischen Koeffizienten, Acta Arith. 31 (1976), 219–230.
- [8] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
- M. H. Le, On the generalized Ramanujan-Nagell equation, III, Dongbei Shuxue 4 (1988), 180–184.
- [10] —, The diophantine equation $x^2 + D^m = p^n$, Acta Arith. 52 (1989), 255–265.
- [11] —, Applications of Baker's method, IV, J. Changsha Railway Inst. 9 (1991), no. 2, 87–92.
- [12] —, A note on the diophantine equation $(x^m 1)/(x 1) = y^n$, Acta Arith. 64 (1993), 19–28.
- [13] —, Upper bounds for class number of real quadratic fields, ibid. 68 (1994), 141–144.
- [14] —, Some exponential diophantine equations, I, J. Number Theory 55 (1995), 209– 221.
- [15] T. N. Shorey, A. J. Van der Poorten, R. Tijdeman and A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory: Advances and Applications, Academic Press, London, 1977, 59-78.
- [16] M. Toyoizumi, On the diophantine equation $x^2 + D^m = p^n$, Acta Arith. 42 (1983), 303–309.

U.F.R. de mathématiques

Université Louis Pasteur

7, rue René Descartes

67084 Strasbourg, France

E-mail: bugeaud@pari.u-strasbg.fr

Received on 28.5.1996 and in revised form on 12.9.1996

(2996)