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1. Introduction. For quadratic fields whose discriminant has few
prime divisors, there are explicit formulas for the 4-rank of K2OE . For
quadratic fields whose discriminant has arbitrarily many prime divisors, the
formulas are less explicit. In this paper we will study fields of the form
Q(

√
p1 . . . pk), where the primes pi are all congruent to 1 mod 8. We will

prove a theorem conjectured by Conner and Hurrelbrink which examines
under what conditions the 4-rank of K2OE is zero for such fields. In the
course of proving the theorem, we will see how the conditions can be easily
computed.
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2. Statement of theorem. The theorem, which was proved by Conner
and Hurrelbrink for the case k = 1 and k = 2 in [CH2] and [CH4], is:

Theorem 2.1. Let E = Q(
√

p1 . . . pk) with distinct rational primes

pi ≡ 1 mod 8 for i = 1, . . . , k and k ≥ 1. Then the 2-primary part of K2OE

is elementary abelian if and only if

(i) the 2-primary part of the ideal class group C(E) is elementary

abelian and the norm of the fundamental unit of E is −1, and

(ii) an odd number of the primes p1, . . . , pk fail to be represented over Z

by the quadratic form x2 + 32y2.

The attack will be the same as in the k = 2 case. First we show, under
the assumption 4-rkK2OE = 0, that (i) holds. Then we show, under the
assumption (i) is true, that 4-rkK2OE = 0 is equivalent to (ii). Following
the notation in [CH3]:

• S is the set of infinite and dyadic places of E,
• M = E(

√
−1),

[225]
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• GE = {cl(b) ∈ E∗/E∗2 : ordp(b) ≡ 0 mod 2 for all p 6∈ S},
• HE = {cl(b) ∈ GE : b ∈ NM/E(M∗)}.
We will make use of the maps χ, χ1, and χ2 : HE → CS(E)/CS(E)2

defined in the same paper, where CS(E) is the S-class group of E. We give
a list of the properties of these maps which we will need. The key result
relating χ to K2OE is:

(2.2) 4-rk K2OE = 0 if and only if 2-rk ker χ = 1.

The three maps satisfy the relation

(2.3) χ = χ1χ2.

For the purposes of computation, χ1 and χ2 tend to be easier to work with.
Let OS be the ring of S-integers of E. If the class of b is in HE , we can
write

bOS = B2

for some OS ideal B. By definition, we have

(2.4) χ1(cl(b)) = B.

Here we are writing B to mean the class it represents in CS(E)/CS(E)2. If
b is an S-unit, then

(2.5) χ1(cl(b)) = 1.

If b is the norm of an S-unit from M , or −1 is the norm of an S-unit from
E(

√
b), then

(2.6) χ2(cl(b)) = 1.

Details for all of these statements can be found in [CH3].

3. Part 1 of the proof. In this section we show that 4-rk K2OE = 0
implies condition (i) in Theorem 2.1.

Proposition 3.1. If 4-rk K2OE = 0, then 4-rkC(E) = 0.

P r o o f. By the Hasse norm theorem, −1 is a norm from E. From [CH1,
18.3], we have

2-rk C(E) = k − 1.

We will exhibit an elementary abelian subgroup of the 2-primary part of
C(E) which contains no nontrivial squares and show that it has 2-rank
k − 1. Let P1, . . . ,Pk be the primes lying over p1, . . . , pk in E. We will be
examining the subgroup of C(E) generated by the classes of P1, . . . ,Pk−1.
Certainly this subgroup is elementary abelian. For a nonempty subset I of
{1, . . . , k − 1}, let

pI =
∏

i∈I

pi and PI =
∏

i∈I

Pi.
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These PI are the elements of our subgroup. We will first show that none
of the PI are squares. Then, we show that they represent distinct elements
of C(E), and so P1, . . . ,Pk−1 will form a basis of the Z/2Z module they
generate.

We make use of χ to show that no PI is a square. Since 2 is an S-unit
and the image of 1 + i under NM/E , the class of 2 lies in HE . Also, since
2 is an S-unit, χ1(cl(2)) = 1 (by (2.5)) and since 2 is the norm of 1 + i,
χ2(cl(2)) = 1 (by (2.6)). So from (2.3) we conclude that the class of 2 is
in the kernel of χ. Under the assumption that 4-rkK2OE = 0, (2.2) im-
plies that the class of 2 generates the kernel of χ. Next we see how χ acts
on the class of pi. Clearly cl(pi) is in GE . Since pi ≡ 1 mod 4, pi is in
NQ (

√−1)/Q(Q(
√
−1)∗), and so pi is in NM/E(M∗). Hence, the class of pi is

in fact in HE . Let εi be the fundamental unit of Q(
√

pi). Then by [CH1,
18.4bis], NQ (

√
pi)/Q(εi) = −1 and so NE(

√
pi)/E(εi) = −1. We apply (2.6)

to get χ2(cl(pi)) = 1. From (2.4), χ1(cl(pi)) = Pi. Thus, for any nonempty
subset I of {1, . . . , k − 1}, we have shown pI ∈ HE and

χ(cl(pI)) = PI .

If PI were a square in C(E), then it would be a square in CS(E), and so
the class of pI would be in the kernel of χ. This cannot happen since the
square class of 2 generates the kernel of χ.

We have shown that PI is not a square. In particular, this means PI

is not principal. Next we check that the PI represent distinct classes in
C(E). Let I1 and I2 be distinct nonempty subsets of {1, . . . , k − 1}. If
PI1 and PI2 differ by a principal ideal, then PI1PI2 is principal. Let
I = {I1 ∪ I2}\{I1 ∩ I2}. Then

PI = PI1PI2 .

Since I1 6= I2, I is a nonempty subset of {1, . . . , k−1}. Hence, PI is not prin-
cipal, and so PI1 6= PI2 in C(E). Therefore P1, . . . ,Pk−1 do in fact form a
basis of the Z/2Z module they generate. We have shown that this group has
a 2-rank of k−1 and contains no nontrivial squares. It follows that this group
is all of the 2-primary part of C(E), and so the 4-rank of C(E) is zero.

Let C+(E) denote the narrow class group of E.

Proposition 3.2. Suppose 4-rk K2OE = 0. Then 4-rk C(E) = 0 if and

only if 4-rkC+(E) = 0.

P r o o f. Let ν : C+(E) → C(E) be the projection map. The surjectivity
of ν makes the backwards implication clear. For the other direction, suppose
a is a fractional ideal of E representing an element of order 4 in C+(E). The
kernel of ν is killed by 2 so a necessarily maps to an element of order 2 in
C(E). From the proof of Proposition 3.1, we know that the elements of
order 2 in C(E) are exactly the PI . So we must have a = xPI for some set
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I and some x in E. This means that a2 = x2pIOE . Thus a2 is generated by
a totally positive element of E, and so a has order at most 2.

Now we can finish off the first step of our proof.

Proposition 3.3. If 4-rk C+(E) = 0, then the norm of the fundamental

unit in E is −1.

P r o o f. Write C2 for Gal(E/Q). Then

H0(C2,O∗
E) = Z∗/NE/Q(O∗

E).

Thus the norm of the fundamental unit is −1 if and only if H0(C2,O∗
E) is

trivial. With notation as in [CH1], we examine

i0 : H0(C2,O∗
E) → R0(E/Q).

Recall that −1 is a norm from E. Applying [CH1, 18.1] and [CH1, 2.3], we
may conclude that i0 is the trivial map. On the other hand, from [CH1,
12.12] the kernel of i0 is isomorphic to the subgroup of elements of ker ν
which are squares in the narrow class group. Since 4-rk C+(E) = 0, the
narrow class group has no nontrivial squares. Thus i0 is also injective and
H0(C2,O∗

E) is trivial.

Putting Propositions 3.1–3.3 together, we have shown that if 4-rkK2OE

= 0, then 4-rk C(E) = 0 and the norm of the fundamental unit is −1. This
completes the first part of the proof.

R e m a r k 3.4. We have seen that if the 4-rank of the narrow class group
is zero, then condition (i) from Theorem 2.1 holds. Later we will show that
the converse is true. The condition 4-rk C+(E) = 0 can be computed by the
examination of a certain graph. With our field E, we associate a graph ΓE

whose vertices are the pi. The vertices pi and pj are linked by an edge if
and only if

(
pi

pj

)
= −1. Since all of the primes are congruent to 1 mod 4,

by quadratic reciprocity
(

pi

pj

)
=

(pj

pi

)
, and so this makes sense. An Eulerian

vertex decomposition (EVD) of ΓE is an unordered pair {V1, V2} of sets of
vertices such that

(1) V1 ∩ V2 = ∅ and V1 ∪ V2 = {p1, . . . , pk}, and
(2) every vertex in Vi is adjacent to an even number of vertices in Vj for

i 6= j, i, j = 1, 2.

We always have the trivial EVD {∅, {p1, . . . , pk}}. The Rédei–Reichardt
theorem [H, 2.6] tells us that this is the only EVD exactly when the 4-rank
of the narrow class group of E is zero.

Proposition 3.5. If 4-rkC(E) = 0 and the norm of the fundamental

unit is −1, then P1, . . . ,Pk−1 generate the 2-primary part of C(E) and

4-rkC+(E) = 0.
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P r o o f. In light of the arguments of the last paragraph in the proof of
Proposition 3.1, to prove that P1, . . . ,Pk−1 generate the 2-primary part of
C(E), we only need to show that PI is not principal for a nonempty subset
I of {1, . . . , k − 1}. Suppose PI is principal. Then by taking norms, we
would find that either pI or −pI is the norm of an element of E∗. Since −1
is a norm from E, this means that pI would be a norm from E. Thus, pI is
a local norm, and so

(pI , p1 . . . pk)p = 1

for all primes p of Q. By taking p = pj for j not in I, we have

∏

i∈I

(
pi

pj

)
= 1.

By taking p = pj for j in I, we have

∏

i 6∈I

(
pi

pj

)
= 1.

Thus {I, {i 6∈ I}} is a nontrivial EVD. From the preceding remark, the
existence of such an EVD means that 4-rkC+(E) 6= 0.

We will now see that 4-rkC+(E) = 0. Consider

ν : C+(E) → C(E).

If a is in the kernel of ν, then a = xOE for some x in E∗, which we may
take to be positive. Let ε be a positive fundamental unit of E. If x is
not totally positive, then since ε has norm −1, εx will be totally positive.
Hence a represents the identity in C+(E), and so ν is an isomorphism. Since
4-rkC(E) = 0, 4-rk C+(E) = 0.

We have now shown that condition (i) from Theorem 2.1 is equivalent
to 4-rk C+(E) = 0, which in turn is equivalent to the statement that the
only EVD of ΓE is the trivial one. This makes determining whether or not
condition (i) holds easier to compute.

In the proof of Proposition 3.1, we saw, under the assumption 4-rkK2OE

= 0, that the 2-primary part of the class group is generated by the Pi. We
used this to prove that the 4-rank of the class group is zero. Now, under the
assumption that 4-rkC(E) = 0 and the norm of the fundamental unit is −1,
we have that same description of the 2-primary part of the class group. We
will use this throughout the second part of the proof to show 4-rkK2OE = 0.

4. Part 2 of the proof. The proof can now be completed by rereading
the proof of the k = 2 case and replacing p1 and p2 by p1, . . . , pk. We
work through this argument providing some additional details. It remains
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to show, under the hypothesis that condition (i) holds, that 4-rkK2OE = 0
is equivalent to condition (ii).

We begin by trying to compute HE in order to determine the kernel
of χ. By [CH3, 2.4], GE has a 2-rank of k + 3. By Dirichlet’s unit theorem,
the S-units contribute 4 generators. The remaining classes are generated by
p1, . . . , pk−1. Let G+

E be the subgroup of GE consisting of classes represented
by totally positive elements. A norm from M is a sum of squares in E, and
so is necessarily totally positive. Hence, HE is a subgroup of G+

E . Let
US denote the group of S-units of E. Then −1, 2, and ε generate 3 distinct
classes in US/U2

S . Choose a positive S-unit π̃ to complete a basis for US/U2
S .

Assume now that ε has norm −1. Let σ be the generator for Gal(E/Q). If
σ(π̃) < 0, then set π = επ̃. Otherwise, set π = π̃. Thus π is totally positive
and {−1, 2, ε, π} is a basis for US/U2

S . Since 2, p1, . . . , pk−1 are all totally
positive, G+

E is generated by π, 2, p1, . . . , pk−1.

Proposition 4.1. Suppose 4-rk C(E) = 0 and the norm of ε is −1.
Then 4-rkK2OE = 0 if and only if π fails to be a norm from M .

P r o o f. The 2-primary part of C(E) maps onto the 2-primary part of
CS(E). Since −1 and 2 are norms from E, by [CH3, 7.1], the 2-rank of
CS(E) is k − 1. Thus

C(E)/C(E)2 ∼= CS(E)/CS(E)2.

If π is a norm from M , then G+
E = HE , and so HE has a 2-rank of k + 1.

Since CS(E)/CS(E)2 has a 2-rank of k − 1, the 2-rank of the kernel of χ is
at least 2, and so by (2.2), 4-rkK2OE 6= 0.

On the other hand, if π fails to be a norm from M , then GE is gener-
ated by 2, p1, . . . , pk−1. From Proposition 3.5, for a nonempty subset I of
{1, . . . , k − 1}, PI is not principal. Thus PI represents a nontrivial class in
C(E)/C(E)2, and hence a nontrivial class in CS(E)/CS(E)2. Recall that
χ(cl(pI)) = PI . This means that the kernel of χ is generated by the class
of 2, and so by (2.2), the 4-rank of K2OE is zero.

The following sequence of lemmas will connect the condition on π to
condition (ii) in the statement of Theorem 2.1.

Lemma 4.2. Suppose 4-rkC(E) = 0 and the norm of ε is −1. Let D1

be a dyadic prime of E. Then π fails to be a norm from M if and only if

(π,−1)D1
= −1.

P r o o f. By the Hasse norm theorem, π is a norm from M if and only if
(π,−1)P = 1 for every prime P of E. Since π and −1 are S-units and π is
totally positive, this can only fail to happen when P is a dyadic prime. If
D1 and D2 are the dyadic primes of E, then by reciprocity

(π,−1)D1
= (π,−1)D2

.
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Thus, in order to check whether π is a norm from M or not, it is enough to
check whether (π,−1)D1

is equal to 1 or not.

Lemma 4.3. If 4-rkC(E) = 0 and the norm of ε is −1, then (π,−1)D1

= (2, ε)D1
.

P r o o f. We know that π is divisible by a dyadic prime, which we may
assume to be D1. Let

π′ = π2−ordD2
(π).

Since (2,−1)D1
= 1, by the bilinearity of the Hilbert symbol we have

(π′,−1)D1
= (π,−1)D1

.

By the definition of the Hilbert symbol, we have (π′, σ(ε))D1
= (σ(π′), ε)D2

.
Since we are assuming that the norm of ε is −1, it follows from bilinearity
and the previous statement that

(π′,−1)D1
= (π′, ε)D1

(σ(π′), ε)D2
.

Another application of bilinearity and reciprocity gives

(π′,−1)D1
= (π′σ(π′), ε)D1

.

The ideal generated by π′ is a power of D1. Thus the ideal generated by
π′σ(π′) is a power of the ideal generated by 2. Since π′σ(π′) and 2 are both
positive rational numbers, we actually have π′σ(π′) = 2r as elements of E
for some integer r. We now have

(π′,−1)D1
= ((2, ε)D1

)r.

It remains to show that r is odd. First we show that D1 has odd order in
the class group of E. Let s be the order of D1 in C(E). If s were even, then

D
s/2
1 would have order 2, and so by Proposition 3.5, the class of D

s/2
1 in

C(E) would be represented by some PI . This would give rise to an element
x from E such that

xD
s/2
1 = PI .

On taking norms we see that pI/2
s/2 is in NE/Q(E∗). From the Hasse norm

theorem and the fact that the primes are congruent to 1 mod 8, 2 is also a
norm, and so pI must also be a norm. As in the proof of Proposition 3.5,
this will lead to a nontrivial EVD, meaning that 4-rk C+(E) 6= 0. In light
of Proposition 3.5, we have a contradiction.

Choose a positive generator d for Ds
1. Since π′OE = Dr

1, r must divide
s and π′ = εndr/s for some integer n. If r were even, then since s is odd,
r/s would have to be even. Thus, dr/s is totally positive and so n must
be even. However, since π represents a square class different from the ones
represented by 1 and 2, it follows that π′ is not a square. Thus r must be
odd.
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Lemma 4.4. Let D be the prime of M lying over D1. Then (2, ε)D1
=

(1 + i, ε)D.

P r o o f. First, if (1 + i, ε)D = 1, then 1 + i is in the image of the local
norm map N : MD(

√
ε) → MD where MD is the local field of M at D. Thus

2 is in the image of the local norm map N : MD(
√

ε) → ED1
, and therefore

in the image of N : ED1
(
√

ε) → ED1
. Hence (2, ε)D1

= 1. Now consider the
commutative diagram

M∗
D/N(MD(

√
ε)∗) Gal(MD(

√
ε)/MD)

E∗
D1

/N(MD(
√

ε)∗) Gal(MD(
√

ε)/ED1
)

rec //

N
��

inc

��
rec //

where rec is the map induced by the local Artin map, N is the map induced
by the norm map, and inc is the inclusion map. Since the rec maps are
isomorphisms, N is necessarily injective. We know that 2 is in the image
of the local norm map N : MD → ED1

. If 2 is also in the image of N :
ED1

(
√

ε) → ED1
, then by local class field theory, it is also in the image of

N : MD(
√

ε) → ED1
. Since NMD/ED1

(1 + i) = 2, 1 + i is the kernel of the

left vertical map. Hence, 1 + i is in the image of N : MD(
√

ε) → MD.

The next lemma will allow us to translate the condition into a statement
about Q(

√
−1).

Lemma 4.5. Suppose the norm of ε is −1. Then there exists an element

δ ∈ Q(
√
−1) such that

(1) δ ≡ ε mod M∗2, and

(2) NQ (
√−1)/Q(δ) ≡ p1 . . . pk mod Q∗2.

P r o o f. Recall that σ is the generator of Gal(E/Q). The condition that
NE/Q(ε) = −1 can be rewritten as

εσ(ε) = −1.

We will also use σ to mean the element of Gal(M/Q) which fixes Q(
√
−1)

and acts as the generator of Gal(E/Q) on E. Let τ be the element of
Gal(M/Q) which fixes E and acts as the generator of Gal(Q(

√
−1)/Q) on

Q(
√
−1). We have

NM/Q (
√
−1)(iε) = (iε)σ(iε).

Since σ fixes i, and εσ(ε) = −1, we have

NM/Q (
√−1)(iε) = 1.

Thus, by Hilbert’s Theorem 90, there exists an element m in M∗ such that

σ(m)

m
= εi.



2-primary part of K2OE 233

Let δ = m2ε. We check that δ lies in Q(
√
−1):

σ(δ) = (σ(m))2σ(ε) = m2(εi)2σ(ε) = (m2ε)(−εσ(ε)).

Since εσ(ε) = −1, σ does indeed fix δ. Clearly condition (1) is satisfied. For
condition (2) we compute:

NQ (
√
−1)/Q(δ) = (m2ε)τ(m2ε) = (εmτ(m))2.

We need (εmτ(m))2 ≡ p1 . . . pk mod Q∗2. So it is enough to show that
γ = (εmτ(m))/

√
p1 . . . pk is in Q∗. Since τ fixes ε and

√
p1 . . . pk, τ fixes γ.

On the other hand, since εσ(ε) = −1,

σ(γ) =
−ε−1σ(m)τ(σ(m))

−√
p1 . . . pk

=
ε−1(mεi)τ(mεi)√

p1 . . . pk
.

Since τ fixes ε and maps i to −i, the above quotient reduces to γ. Thus γ
is fixed by Gal(M/Q) and so lies in Q∗.

By condition (1) in Lemma 4.5, we know that

(1 + i, ε)D = (1 + i, δ)D.

Let D be the dyadic prime of Q(
√
−1). Then D splits in M , with D as one

of the two primes of M lying over it. Thus

(1 + i, δ)D = (1 + i, δ)D .

As a result of Proposition 4.1 and Lemmas 4.2–4.5, we have shown:

(4.6) If condition (i) holds then 4-rk K2OE = 0 if and only if (1 + i, δ)D

= −1.

To complete the proof of our theorem, we show under the hypothesis
4-rkC(E) = 0 and NE/Q(ε) = −1, that the condition (1 + i, δ)D = −1 is
equivalent to condition (ii) from the theorem.

P r o o f o f T h e o r e m 2.1. Since the pj are congruent to 1 mod 4,
they split in Q(

√
−1). Let Pj and P j be the primes of Q(

√
−1) lying over

pj . From condition (2) in Lemma 4.5,

ordPj
(δ) + ordP j

(δ) ≡ 1 mod 2.

So we may assume that ordPj
(δ) ≡ 1 mod 2. By reciprocity,

∏

Q

(1 + i, δ)Q = 1

where the product ranges over all primes Q of Q(
√
−1). Let Q be a prime

lying over q 6= 2, p1, . . . , pk and let Q be a prime of M lying over Q. Since
Q is unramified over Q, we have ordQ(δ) = ordQ(δ). Using condition (1)
from Lemma 4.5, we obtain

ordQ(δ) ≡ 0 mod 2.
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Thus, the only nontrivial factors in the product above occur at the primes
lying over 2, p1, . . . , pk. Moreover, since ordP j

(δ) ≡ 0 mod 2, we have

(1 + i, δ)D =
k∏

j=1

(1 + i, δ)Pj
.

Since ordPj
(δ) ≡ 1 mod 2, (1 + i, δ)Pj

= 1 if and only if 1 + i is a square
mod Pj . Because (1 + i)4 = −4, we have

(1 + i, δ)Pj
=

[−4

Pj

]

8

where
[−4

Pj

]
8

is the 8th power symbol of −4 at Pj . We have shown that

(1 + i, δ)D =

k∏

j=1

[−4

Pj

]

8

.

Since the inertial degree of Pj over pj is 1,
[−4

Pj

]
8

= 1 exactly when −4

is an eighth power mod pj . From [BC], this happens exactly when pj can
be represented over Z by the quadratic form x2 + 32y2. Thus, under the
assumption 4-rk K2OE = 0, we have shown that (1 + i, δ)D = −1 exactly
when condition (ii) in the theorem holds. In light of (4.6), this completes
the proof.

5. Examples. We examine two quadratic fields for which k = 6. In
view of Remark 3.4, to apply the theorem we only need to check the graph
ΓE for nontrivial EVD’s and count how many primes can be represented
over Z by x2 + 32y2.

1) Let E = Q(
√

17 · 73 · 89 · 97 · 137 · 233). Then ΓE looks as in Figure
5.1. One can check that this graph has no nontrivial EVD’s and that 137
is the only one of the primes that can be represented over Z by x2 + 32y2.
Hence 4-rk K2OE = 0.

89

17 97

13723373

97

17

73 193 89

41

Fig. 5.1 Fig. 5.2

2) Let E = Q(
√

17 · 41 · 73 · 89 · 97 · 193). Then ΓE looks as in Figure
5.2. Now 41 is the only one of the primes that can be represented over Z by
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x2 +32y2, but {{17, 41, 193}, {73, 89, 97}} is a nontrivial EVD. Thus K2OE

has elements of order four.
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