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Rational quartic reciprocity II

by

Franz Lemmermeyer (Saarbrücken)

1. Introduction. Let m = p1 . . . pr be a product of primes pi ≡ 1 mod 4
and assume that there are integers A,B,C ∈ Z such that A2 = m(B2 +C2)
and A− 1 ≡ B ≡ 0 mod 2, A+B ≡ 1 mod 4. Then

(1)
(
A+B

√
m

p

)
=
(
p

m

)

4

for every prime p ≡ 1 mod 4 such that (p/pj) = +1 for all 1 ≤ j ≤ r. This
is “the extension to composite values of m” that was referred to in [3], to
which this paper is an addition. Here I will fill in the details of the proof,
on the one hand because I was requested to do so, and on the other hand
because this general law can be used to derive general versions of Burde’s
and Scholz’s reciprocity laws.

Below I will sketch an elementary proof of (1) using induction built on
the results of [3], and then use the description of abelian fields by characters
to give a direct proof.

2. Proof by induction. Using induction over the number of prime
factors of m we may assume that (1) is true if m has r different prime
factors.

Now assume that m = p1m
′; we choose integers A,B,A1, B1 such that

B and B1 are even, A + B ≡ A1 + B1 ≡ 1 mod 4, A2 = m(B2 + C2),
A2

1 = p1(B2
1 + C2

1 ), and put α = A + B
√
m and α1 = A1 + B1

√
p1. Then

K = Q(
√
α) and K1 = Q(

√
α1) are cyclic quartic extensions of conductors

m and p1, respectively.
Consider the compositum K1K; it is an abelian extension of type (4, 4)

over Q, and it clearly contains F = Q(
√
m′,
√
p1). Moreover, F has three

quadratic extensions in K1K, namely F (
√
α), F (

√
α1), and L = F (

√
αα1).

It is not hard to see that L is the compositum of a cyclic quartic extension
Q(
√
α′) of conductor m′ and Q(

√
p1). Since αα1 and α′ differ at most by
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a square in F , we find (α′/p) = (α/p)(α1/p). On the other hand, by the
induction hypothesis we have (α′/p) = (p/m′)4, hence we find(

α

p

)
=
(
α′

p

)(
α1

p

)
=
(
p

m′

)

4

(
p

p1

)

4
=
(
p

m

)

4
.

This is what we wanted to prove.

3. Proof via characters. Let K be a cyclotomic field with conductor
f . Then it is well known (see [6] for the necessary background) that the
subfields of Q(ζf ) correspond biuniquely to the subgroups of the character
group of (Z/fZ)×.

Let m = p1 . . . pr be a product of primes p ≡ 1 mod 4, and let φj de-
note the quadratic character modulo pj . There exist two quartic charac-
ters modulo pj , namely ωj (say) and ω−1

j = φjωj ; for primes p such that
χj(p) = (p/pj) = +1 we have ωj(p) = (p/pj)4.

The quadratic subfield Q(
√
m) of L = Q(ζm) corresponds to the sub-

group 〈φ〉, where φ = φ1 . . . φr; similarly, there is a cyclic quartic exten-
sion K contained in L which corresponds to 〈ω〉, where ω is a character of
order 4 and conductor m. Moreover, K contains Q(

√
m), hence we must

have ω2 = φ. This implies at once that ω = ω1 . . . ωr · φ′, where φ′ is a
suitably chosen quadratic character. By the decomposition law in abelian
extensions a prime p splitting in Q(

√
m) will split completely in K if and

only if ω(p) = +1, i.e. if and only if (p/m)4 = +1 (the quadratic character
φ′ does not influence the splitting of p since φ′(p) = 1).

By comparing this with the decomposition law in Kummer extensions
we see immediately that (1) holds.

R e m a r k. If we define (p/2)4 = (−1)(p−1)/8 for all primes p ≡ 1 mod 8,
then the above proofs show that (1) is also valid for even m; one simply
has to replace the cyclic quartic extension of conductor p by the totally
real cyclic quartic extension of conductor 8, i.e. the real quartic subfield of
Q(ζ16).

4. Some rational quartic reciprocity laws

Burde’s reciprocity law. Let m and n be coprime integers, and assume
that m =

∏
pi and n =

∏
qj are products of primes ≡ 1 mod 4. Assume

moreover that (m/qj) = (n/pi) = +1 for all pi and qj . Write m = a2 + b2,
n = c2 + d2 with ac odd; then we can prove as in [3] that(

m

n

)

4

(
n

m

)

4
=
(
ac− bd
m

)
=
(
ac− bd
n

)
.

R e m a r k. It is easy to deduce Gauss’ criterion for the biquadratic char-
acter of 2 from Burde’s law. In fact, assume that p = a2 + 16b2 ≡ 1 mod 8
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is prime, and choose the sign of a in such a way that a ≡ 1 mod 4; then(
2
p

)

4

(
p

2

)

4
=
(
a− 4b

2

)
=
(

2
a− 4b

)
.

Since (p/2) = (−1)(p−1)/8 and p−1 = a2−1 + 16b2 ≡ (a−1)(a+ 1) mod 16
we find

p− 1
8

=
a− 1

4
· a+ 1

2
≡ a− 1

4
mod 2,

and this gives (−1)(p−1)/8 = (2/a). Thus(
2
p

)

4
=
(

2
a

)(
2

a+ 4b

)
=
(

2
a2 + 4b

)
=
(

2
1 + 4b

)
= (−1)b.

Scholz’s reciprocity law. Let εm = t + u
√
m be a unit in Q(

√
m) with

norm −1. Putting εm
√
m = A+B

√
m we find immediately

(2)
(
εm
p

)
=
(
m

p

)

4

(
p

m

)

4

for all primes p ≡ 1 mod 4 such that (pj/p) = 1 for all pj |m. If n is a
product of such primes p, this implies(

εm
n

)
=
(
m

n

)

4

(
n

m

)

4
.

Moreover, if the fundamental unit of Q(
√
n) has negative norm, we conclude

that (
εm
n

)
=
(
m

n

)

4

(
n

m

)

4
=
(
εn
m

)
.

The general version of Scholz’s reciprocity law has a few nice corollaries:

Corollary 1. Let m and n satisfy the conditions above, and suppose
that m = rs; assume moreover that the fundamental units εr and εs of
Q(
√
r) and Q(

√
s) have negative norm. Then(

εm
n

)
=
(
εr
n

)(
εs
n

)
.

P r o o f. This is a simple computation:(
εm
n

)
=
(
m

n

)

4

(
n

m

)

4
=
(
r

n

)

4

(
n

r

)

4

(
s

n

)

4

(
n

s

)

4
=
(
εr
n

)(
εs
n

)
,

where we have twice applied (2).

Corollary 2. Let m = p1 . . . pt and n satisfy the conditions above.
Then (εm/n) = (ε1/n) . . . (εt/n), where εj denotes the fundamental unit in
Q(√pj).

This is a result due to Furuta [1]; its proof is clear.



276 F. Lemmermeyer

5. Some remarks on the 4-rank of class groups. The reciprocity
laws given above are connected with the 4-rank of class groups: let k be a real
quadratic number field of discriminant d, and assume that d can be written
as a sum of two squares. It is well known ([5]) that the quadratic unramified
extensions of k correspond to factorizations d = d1d2 of d into two relatively
prime discriminants d1, d2 with at least one of the di positive, and that
cyclic quartic extensions which are unramified outside ∞ correspond to C4-
extensions d = d1d2, where (d1/p2) = (d2/p1) = +1 for all primes pj | dj .

Let K = k(
√
α) be such an extension, corresponding to d = d1d2. Then

any quartic cyclic extension of k which contains Q(
√
d1,
√
d2) and which is

unramified outside ∞ has the form K ′ = k(
√
d′α), where d′ is a product of

prime discriminants occurring in the factorization of d as a product of prime
discriminants. Since these prime discriminants are all positive, either all of
these extensions K ′/k are totally real, or all of them are totally complex.
Scholz [5] has sketched a proof for the fact that the K ′ are totally real if
and only if (d1/d2)4 = (d2/d1)4; an elementary proof was given in [4].

In addition to the references given in [3] we should remark that Kaplan [2]
has also proved the general version of Burde’s reciprocity law and noticed
the connection with the structure of the 2-class groups of real quadratic
number fields.
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[5] A. Scho lz, Über die Lösbarkeit der Gleichung t2 −Du2 = −4, Math. Z. 39 (1934),

95–111.
[6] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Sprin-

ger, 1982.

Fachbereich Informatik
Universität des Saarlandes
D-66041 Saarbrücken, Germany
E-mail: lemmermf@cs.uni-sb.de

Received on 9.10.1996
and in revised form on 23.12.1996 (3060)


