# Rational quartic reciprocity II 

## by

Franz Lemmermeyer (Saarbrücken)

1. Introduction. Let $m=p_{1} \ldots p_{r}$ be a product of primes $p_{i} \equiv 1 \bmod 4$ and assume that there are integers $A, B, C \in \mathbb{Z}$ such that $A^{2}=m\left(B^{2}+C^{2}\right)$ and $A-1 \equiv B \equiv 0 \bmod 2, A+B \equiv 1 \bmod 4$. Then

$$
\begin{equation*}
\left(\frac{A+B \sqrt{m}}{p}\right)=\left(\frac{p}{m}\right)_{4} \tag{1}
\end{equation*}
$$

for every prime $p \equiv 1 \bmod 4$ such that $\left(p / p_{j}\right)=+1$ for all $1 \leq j \leq r$. This is "the extension to composite values of $m$ " that was referred to in [3], to which this paper is an addition. Here I will fill in the details of the proof, on the one hand because I was requested to do so, and on the other hand because this general law can be used to derive general versions of Burde's and Scholz's reciprocity laws.

Below I will sketch an elementary proof of (1) using induction built on the results of [3], and then use the description of abelian fields by characters to give a direct proof.
2. Proof by induction. Using induction over the number of prime factors of $m$ we may assume that (1) is true if $m$ has $r$ different prime factors.

Now assume that $m=p_{1} m^{\prime}$; we choose integers $A, B, A_{1}, B_{1}$ such that $B$ and $B_{1}$ are even, $A+B \equiv A_{1}+B_{1} \equiv 1 \bmod 4, A^{2}=m\left(B^{2}+C^{2}\right)$, $A_{1}^{2}=p_{1}\left(B_{1}^{2}+C_{1}^{2}\right)$, and put $\alpha=A+B \sqrt{m}$ and $\alpha_{1}=A_{1}+B_{1} \sqrt{p_{1}}$. Then $K=\mathbb{Q}(\sqrt{\alpha})$ and $K_{1}=\mathbb{Q}\left(\sqrt{\alpha_{1}}\right)$ are cyclic quartic extensions of conductors $m$ and $p_{1}$, respectively.

Consider the compositum $K_{1} K$; it is an abelian extension of type $(4,4)$ over $\mathbb{Q}$, and it clearly contains $F=\mathbb{Q}\left(\sqrt{m^{\prime}}, \sqrt{p_{1}}\right)$. Moreover, $F$ has three quadratic extensions in $K_{1} K$, namely $F(\sqrt{\alpha}), F\left(\sqrt{\alpha_{1}}\right)$, and $L=F\left(\sqrt{\alpha \alpha_{1}}\right)$. It is not hard to see that $L$ is the compositum of a cyclic quartic extension $\mathbb{Q}\left(\sqrt{\alpha^{\prime}}\right)$ of conductor $m^{\prime}$ and $\mathbb{Q}\left(\sqrt{p_{1}}\right)$. Since $\alpha \alpha_{1}$ and $\alpha^{\prime}$ differ at most by

[^0]a square in $F$, we find $\left(\alpha^{\prime} / p\right)=(\alpha / p)\left(\alpha_{1} / p\right)$. On the other hand, by the induction hypothesis we have $\left(\alpha^{\prime} / p\right)=\left(p / m^{\prime}\right)_{4}$, hence we find
$$
\left(\frac{\alpha}{p}\right)=\left(\frac{\alpha^{\prime}}{p}\right)\left(\frac{\alpha_{1}}{p}\right)=\left(\frac{p}{m^{\prime}}\right)_{4}\left(\frac{p}{p_{1}}\right)_{4}=\left(\frac{p}{m}\right)_{4} .
$$

This is what we wanted to prove.
3. Proof via characters. Let $K$ be a cyclotomic field with conductor $f$. Then it is well known (see [6] for the necessary background) that the subfields of $\mathbb{Q}\left(\zeta_{f}\right)$ correspond biuniquely to the subgroups of the character group of $(\mathbb{Z} / f \mathbb{Z})^{\times}$.

Let $m=p_{1} \ldots p_{r}$ be a product of primes $p \equiv 1 \bmod 4$, and let $\phi_{j}$ denote the quadratic character modulo $p_{j}$. There exist two quartic characters modulo $p_{j}$, namely $\omega_{j}$ (say) and $\omega_{j}^{-1}=\phi_{j} \omega_{j}$; for primes $p$ such that $\chi_{j}(p)=\left(p / p_{j}\right)=+1$ we have $\omega_{j}(p)=\left(p / p_{j}\right)_{4}$.

The quadratic subfield $\mathbb{Q}(\sqrt{m})$ of $L=\mathbb{Q}\left(\zeta_{m}\right)$ corresponds to the subgroup $\langle\phi\rangle$, where $\phi=\phi_{1} \ldots \phi_{r}$; similarly, there is a cyclic quartic extension $K$ contained in $L$ which corresponds to $\langle\omega\rangle$, where $\omega$ is a character of order 4 and conductor $m$. Moreover, $K$ contains $\mathbb{Q}(\sqrt{m})$, hence we must have $\omega^{2}=\phi$. This implies at once that $\omega=\omega_{1} \ldots \omega_{r} \cdot \phi^{\prime}$, where $\phi^{\prime}$ is a suitably chosen quadratic character. By the decomposition law in abelian extensions a prime $p$ splitting in $\mathbb{Q}(\sqrt{m})$ will split completely in $K$ if and only if $\omega(p)=+1$, i.e. if and only if $(p / m)_{4}=+1$ (the quadratic character $\phi^{\prime}$ does not influence the splitting of $p$ since $\phi^{\prime}(p)=1$ ).

By comparing this with the decomposition law in Kummer extensions we see immediately that (1) holds.

Remark. If we define $(p / 2)_{4}=(-1)^{(p-1) / 8}$ for all primes $p \equiv 1 \bmod 8$, then the above proofs show that (1) is also valid for even $m$; one simply has to replace the cyclic quartic extension of conductor $p$ by the totally real cyclic quartic extension of conductor 8 , i.e. the real quartic subfield of $\mathbb{Q}\left(\zeta_{16}\right)$.

## 4. Some rational quartic reciprocity laws

Burde's reciprocity law. Let $m$ and $n$ be coprime integers, and assume that $m=\prod p_{i}$ and $n=\prod q_{j}$ are products of primes $\equiv 1 \bmod 4$. Assume moreover that $\left(m / q_{j}\right)=\left(n / p_{i}\right)=+1$ for all $p_{i}$ and $q_{j}$. Write $m=a^{2}+b^{2}$, $n=c^{2}+d^{2}$ with ac odd; then we can prove as in [3] that

$$
\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{a c-b d}{m}\right)=\left(\frac{a c-b d}{n}\right) .
$$

Remark. It is easy to deduce Gauss' criterion for the biquadratic character of 2 from Burde's law. In fact, assume that $p=a^{2}+16 b^{2} \equiv 1 \bmod 8$
is prime, and choose the sign of $a$ in such a way that $a \equiv 1 \bmod 4$; then

$$
\left(\frac{2}{p}\right)_{4}\left(\frac{p}{2}\right)_{4}=\left(\frac{a-4 b}{2}\right)=\left(\frac{2}{a-4 b}\right)
$$

Since $(p / 2)=(-1)^{(p-1) / 8}$ and $p-1=a^{2}-1+16 b^{2} \equiv(a-1)(a+1) \bmod 16$ we find

$$
\frac{p-1}{8}=\frac{a-1}{4} \cdot \frac{a+1}{2} \equiv \frac{a-1}{4} \bmod 2,
$$

and this gives $(-1)^{(p-1) / 8}=(2 / a)$. Thus

$$
\left(\frac{2}{p}\right)_{4}=\left(\frac{2}{a}\right)\left(\frac{2}{a+4 b}\right)=\left(\frac{2}{a^{2}+4 b}\right)=\left(\frac{2}{1+4 b}\right)=(-1)^{b} .
$$

Scholz's reciprocity law. Let $\varepsilon_{m}=t+u \sqrt{m}$ be a unit in $\mathbb{Q}(\sqrt{m})$ with norm -1 . Putting $\varepsilon_{m} \sqrt{m}=A+B \sqrt{m}$ we find immediately

$$
\begin{equation*}
\left(\frac{\varepsilon_{m}}{p}\right)=\left(\frac{m}{p}\right)_{4}\left(\frac{p}{m}\right)_{4} \tag{2}
\end{equation*}
$$

for all primes $p \equiv 1 \bmod 4$ such that $\left(p_{j} / p\right)=1$ for all $p_{j} \mid m$. If $n$ is a product of such primes $p$, this implies

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}
$$

Moreover, if the fundamental unit of $\mathbb{Q}(\sqrt{n})$ has negative norm, we conclude that

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{\varepsilon_{n}}{m}\right)
$$

The general version of Scholz's reciprocity law has a few nice corollaries:
Corollary 1. Let $m$ and $n$ satisfy the conditions above, and suppose that $m=r s$; assume moreover that the fundamental units $\varepsilon_{r}$ and $\varepsilon_{s}$ of $\mathbb{Q}(\sqrt{r})$ and $\mathbb{Q}(\sqrt{s})$ have negative norm. Then

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{\varepsilon_{r}}{n}\right)\left(\frac{\varepsilon_{s}}{n}\right)
$$

Proof. This is a simple computation:

$$
\left(\frac{\varepsilon_{m}}{n}\right)=\left(\frac{m}{n}\right)_{4}\left(\frac{n}{m}\right)_{4}=\left(\frac{r}{n}\right)_{4}\left(\frac{n}{r}\right)_{4}\left(\frac{s}{n}\right)_{4}\left(\frac{n}{s}\right)_{4}=\left(\frac{\varepsilon_{r}}{n}\right)\left(\frac{\varepsilon_{s}}{n}\right)
$$

where we have twice applied (2).
Corollary 2. Let $m=p_{1} \ldots p_{t}$ and $n$ satisfy the conditions above. Then $\left(\varepsilon_{m} / n\right)=\left(\varepsilon_{1} / n\right) \ldots\left(\varepsilon_{t} / n\right)$, where $\varepsilon_{j}$ denotes the fundamental unit in $\mathbb{Q}\left(\sqrt{p_{j}}\right)$.

This is a result due to Furuta [1]; its proof is clear.
5. Some remarks on the 4 -rank of class groups. The reciprocity laws given above are connected with the 4-rank of class groups: let $k$ be a real quadratic number field of discriminant $d$, and assume that $d$ can be written as a sum of two squares. It is well known ([5]) that the quadratic unramified extensions of $k$ correspond to factorizations $d=d_{1} d_{2}$ of $d$ into two relatively prime discriminants $d_{1}, d_{2}$ with at least one of the $d_{i}$ positive, and that cyclic quartic extensions which are unramified outside $\infty$ correspond to $C_{4^{-}}$ extensions $d=d_{1} d_{2}$, where $\left(d_{1} / p_{2}\right)=\left(d_{2} / p_{1}\right)=+1$ for all primes $p_{j} \mid d_{j}$.

Let $K=k(\sqrt{\alpha})$ be such an extension, corresponding to $d=d_{1} d_{2}$. Then any quartic cyclic extension of $k$ which contains $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$ and which is unramified outside $\infty$ has the form $K^{\prime}=k\left(\sqrt{d^{\prime} \alpha}\right)$, where $d^{\prime}$ is a product of prime discriminants occurring in the factorization of $d$ as a product of prime discriminants. Since these prime discriminants are all positive, either all of these extensions $K^{\prime} / k$ are totally real, or all of them are totally complex. Scholz [5] has sketched a proof for the fact that the $K^{\prime}$ are totally real if and only if $\left(d_{1} / d_{2}\right)_{4}=\left(d_{2} / d_{1}\right)_{4}$; an elementary proof was given in [4].

In addition to the references given in [3] we should remark that Kaplan [2] has also proved the general version of Burde's reciprocity law and noticed the connection with the structure of the 2-class groups of real quadratic number fields.

## References

[1] Y. Furuta, Norms of units of quadratic fields, J. Math. Soc. Japan 11 (1959), 139-145.
[2] P. Kaplan, Sur le 2-groupe des classes d'idéaux des corps quadratiques, J. Reine Angew. Math. 283/284 (1974), 313-363.
[3] F. Lemmermeyer, Rational quartic reciprocity, Acta Arith. 67 (1994), 387-390.
[4] -, The 4-class group of real quadratic number fields, submitted.
[5] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111.
[6] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.

Fachbereich Informatik
Universität des Saarlandes
D-66041 Saarbrücken, Germany
E-mail: lemmermf@cs.uni-sb.de


[^0]:    1991 Mathematics Subject Classification: 11R16, 11A15.

