ACTA ARITHMETICA
LXXX.3 (1997)

Rational quartic reciprocity II
by

FRANZ LEMMERMEYER (Saarbriicken)

1. Introduction. Let m = py ... p, be a product of primes p; = 1 mod 4
and assume that there are integers A, B, C € Z such that A2 = m(B%+ C?)
and A—1=B=0mod 2, A+ B =1 mod 4. Then

® ()= (),

for every prime p = 1 mod 4 such that (p/p;) = +1 for all 1 < j < r. This
is “the extension to composite values of m” that was referred to in [3], to
which this paper is an addition. Here I will fill in the details of the proof,
on the one hand because I was requested to do so, and on the other hand
because this general law can be used to derive general versions of Burde’s
and Scholz’s reciprocity laws.

Below I will sketch an elementary proof of (1) using induction built on
the results of [3], and then use the description of abelian fields by characters
to give a direct proof.

2. Proof by induction. Using induction over the number of prime
factors of m we may assume that (1) is true if m has r different prime
factors.

Now assume that m = p;m/; we choose integers A, B, A1, By such that
B and B are even, A+ B = A; + B; = 1 mod 4, A2 = m(B? + C?),
A? = p1(Bf + C7), and put &« = A+ By/m and oy = Ay + By/p1. Then
K = Q(y/a) and K; = Q(y/a1) are cyclic quartic extensions of conductors
m and p;, respectively.

Consider the compositum K7 K; it is an abelian extension of type (4,4)
over Q, and it clearly contains F = Q(\/W ,/P1). Moreover, F' has three
quadratic extensions in KK, namely F(y/a), F(\/a1), and L = F(\/aaq).
It is not hard to see that L is the compositum of a cyclic quartic extension
Q(V) of conductor m’ and Q(\/pr). Since aa; and o differ at most by
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a square in F', we find (¢//p) = (a/p)(c1/p). On the other hand, by the
induction hypothesis we have (¢//p) = (p/m’)4, hence we find

G)-G)6)-6).G). - ()
p p)\p m'J\p1/)y \m/,
This is what we wanted to prove.

3. Proof via characters. Let K be a cyclotomic field with conductor
f. Then it is well known (see [6] for the necessary background) that the
subfields of Q(() correspond biuniquely to the subgroups of the character
group of (Z/fZ)*.

Let m = pi...p, be a product of primes p = 1 mod 4, and let ¢; de-
note the quadratic character modulo p;. There exist two quartic charac-
ters modulo p;, namely w; (say) and wj_l = ¢jwj; for primes p such that
X;i(p) = (p/p;) = +1 we have w;(p) = (p/p;)4-

The quadratic subfield Q(y/m) of L = Q((,,) corresponds to the sub-
group (¢), where ¢ = ¢ ... ¢,; similarly, there is a cyclic quartic exten-
sion K contained in L which corresponds to (w), where w is a character of
order 4 and conductor m. Moreover, K contains Q(y/m), hence we must
have w? = ¢. This implies at once that w = wy...w, - ¢, where ¢ is a
suitably chosen quadratic character. By the decomposition law in abelian
extensions a prime p splitting in Q(y/m) will split completely in K if and
only if w(p) = +1, i.e. if and only if (p/m)s = +1 (the quadratic character
¢' does not influence the splitting of p since ¢'(p) = 1).

By comparing this with the decomposition law in Kummer extensions
we see immediately that (1) holds.

Remark. If we define (p/2)y = (=1)®=1/8 for all primes p = 1 mod 8,
then the above proofs show that (1) is also valid for even m; one simply
has to replace the cyclic quartic extension of conductor p by the totally
real cyclic quartic extension of conductor 8, i.e. the real quartic subfield of

Q(C16)-

4. Some rational quartic reciprocity laws

Burde’s reciprocity law. Let m and n be coprime integers, and assume
that m = [[p; and n = [[¢; are products of primes = 1 mod 4. Assume
moreover that (m/q;) = (n/p;) = +1 for all p; and g;. Write m = a? + b?,
n = ¢ + d? with ac odd; then we can prove as in [3] that

(), (5), = (57) = (2),

Remark. It is easy to deduce Gauss’ criterion for the biquadratic char-
acter of 2 from Burde’s law. In fact, assume that p = a? 4+ 160> = 1 mod 8
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is prime, and choose the sign of a in such a way that a = 1 mod 4; then

3).G).-(57)-%)

Since (p/2) = (=1)®"V/8 and p—1 =0a?—1+16b> = (a—1)(a+1) mod 16
we find

-1 -1 1 -1
p8 :a4 .a—;- Ea4 mod 2,

and this gives (—1)P~1/8 = (2/a). Thus

).~ (0 n) - ) - () -

Scholz’s reciprocity law. Let €,, = t + uy/m be a unit in Q(y/m) with
norm —1. Putting &,,,4/m = A 4+ By/m we find immediately

(5)-6).2),

for all primes p = 1 mod 4 such that (p;/p) = 1 for all p;|m. If n is a
product of such primes p, this implies

()= (2),(5),

Moreover, if the fundamental unit of Q(y/n) has negative norm, we conclude

that ()=00).6) =)

The general version of Scholz’s reciprocity law has a few nice corollaries:

COROLLARY 1. Let m and n satisfy the conditions above, and suppose
that m = rs; assume moreover that the fundamental units €, and €5 of
Q(y/r) and Q(+/s) have negative norm. Then

Em er\ [ €s
)-G)E)
Proof. This is a simple computation:
Em m n r n s n er\ [ €s
(3)-(0).G). - GLG)LGLE),- ()G
where we have twice applied (2).

COROLLARY 2. Let m = p1...p¢ and n satisfy the conditions above.
Then (em/n) = (e1/n) ... (e¢/n), where €; denotes the fundamental unit in

Q(y/pj)-

This is a result due to Furuta [1]; its proof is clear.
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5. Some remarks on the 4-rank of class groups. The reciprocity
laws given above are connected with the 4-rank of class groups: let k be a real
quadratic number field of discriminant d, and assume that d can be written
as a sum of two squares. It is well known ([5]) that the quadratic unramified
extensions of k correspond to factorizations d = d;ds of d into two relatively
prime discriminants dy,ds with at least one of the d; positive, and that
cyclic quartic extensions which are unramified outside oo correspond to Cy-
extensions d = dydg, where (dy/p2) = (d2/p1) = +1 for all primes p; | d;.

Let K = k(y/a) be such an extension, corresponding to d = djdz. Then
any quartic cyclic extension of k which contains Q(1/d1, v/d2) and which is
unramified outside oo has the form K’ = k(v/d'a), where d’ is a product of
prime discriminants occurring in the factorization of d as a product of prime
discriminants. Since these prime discriminants are all positive, either all of
these extensions K'/k are totally real, or all of them are totally complex.
Scholz [5] has sketched a proof for the fact that the K’ are totally real if
and only if (dy/d2)s = (d2/d1)4; an elementary proof was given in [4].

In addition to the references given in [3] we should remark that Kaplan [2]
has also proved the general version of Burde’s reciprocity law and noticed
the connection with the structure of the 2-class groups of real quadratic
number fields.
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