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On the diophantine equation
(
n
k

)
= xl
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K. Győry (Debrecen)

To the memory of Professor P. Erdős

1. Introduction. Consider the equation
(
n

k

)
= xl in integers n, k, x, l(1)

with k ≥ 2, n ≥ 2k, x > 1, l > 1.

There is no loss in generality in assuming that n ≥ 2k, since
(
n
k

)
=
(
n

n−k
)
.

It is clear that there are infinitely many solutions if k = l = 2. For k = 3,
l = 2, equation (1) has only the solution n = 50, x = 140 (for references see
e.g. [4], p. 25 or [7], p. 251). In 1939, P. Erdős [5] proved that no solutions
exist if k ≥ 2l or if l = 3. Further, he conjectured that (1) has no solution if
l > 3. R. Obláth [13] confirmed this conjecture for l = 4 and l = 5.

In 1951, Erdős [6] (see also [7]) proved in an ingenious, elementary way
the following.

Theorem A (P. Erdős [6]). For k > 3, equation (1) has no solution.

There remained the cases k = 2 and k = 3. In what follows, we consider
the equations

(2)
(
n

2

)
= xl in integers n, x, l with n > 2, x > 1, l > 2,

and

(3)
(
n

3

)
= xl in integers n, x, l with n > 3, x > 1, l > 2.

It follows from results of P. Dénes [3] that for certain regular primes l,
equations (2) and (3) have no solutions in n and x.
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In [10] (see also [8]) I proved the following. Assume that for given prime
l > 5, equation (2) is not solvable. Then equation (3) has at most one
solution. Further, if in addition

(4) 3l−1 6≡ 1 (mod l2)

holds, then (3) has no solution.
An important contribution was made by R. Tijdeman [16] who proved

that equations (2) and (3) have only finitely many solutions, and all these
solutions can be effectively determined. In his proof Tijdeman used a pro-
found effective inequality of A. Baker concerning linear forms in logarithms.
Recently, N. Terai [15] utilized a recent estimate of linear forms in logarithms
to show that if (2) or (3) is solvable then l < 4250.

H. Darmon and L. Merel [2] have recently proved that for given integer
l ≥ 3, the equation

xl + yl = 2 · zl in relatively prime integers x, y, z

has only trivial solutions for which xyz = 0 or ±1. In their proof the authors
combined various recent powerful results in number theory, including Wiles’
proof of most cases of the Shimura–Taniyama conjecture. If now equation
(2) is solvable then n = yl, n − 1 = 2zl or n = 2zl, n − 1 = yl with some
coprime positive integers y, z, whence yl ± 1 = 2zl. Thus, the next theorem
immediately follows from the above theorem of Darmon and Merel.

Theorem B (H. Darmon and L. Merel). Equation (2) has no solution.

In the present paper we shall prove the following.

Theorem 1. Equation (3) has no solution.

To prove Theorem 1, we combine the arguments of [10] with Theorem B,
a result on (4) and a recent theorem of M. A. Bennett and B. M. M. de
Weger [1]. As will be shown after the proof of Theorem 1, this latter theorem
can be replaced in our proof by the results of Dénes [3] and Terai [15].

Together with Theorems A and B, Theorem 1 proves Erdős’ conjecture.
The following theorem provides a complete solution of equation (1). It may
be regarded as a joint result of Erdős, Darmon, Merel and the present author.

Theorem 2 (P. Erdős, case k > 3; H. Darmon and L. Merel, case k = 2;
K. Győry). Apart from the case k = l = 2, equation (1) has only the solution
n = 50, k = 3, x = 140, l = 2.

As was quoted above, for k = 3, l = 2 the assertion of Theorem 2 had
been proved a long time ago. For other values of k and l, Theorem 2 is an
immediate consequence of Theorems A, B and Theorem 1.



Diophantine equation
(
n
k

)
= xl 291

2. Proof of Theorem 1. We first show that we can make some re-
strictions concerning l. The number 1402 is the only square which can be
represented in the form

(
n
3

)
with n > 3. Since 140 is not a full power, in

equation (3) the exponent l cannot be even. Further, the results of Erdős [5]
and Obláth [13] imply that l must be greater than 5. Therefore it suffices to
prove that (3) has no solution for any prime l > 5.

For primes l > 5 satisfying (4), the proof of a result of my thesis [10]
can be adapted. A similar result was earlier published in my paper ([8],
Thm. 2). However, [10] and [8] were written in Hungarian, and the proof of
the theorem in question in [8] is not complete. Hence we shall give here a
detailed proof of our Theorem 1.

We shall need five lemmas. In Lemmas 1 to 3, l denotes a prime greater
than 3.

Lemma 1. Let a, b be relatively prime integers with a+ b 6= 0. Then(
a+ b,

al + bl

a+ b

)
= 1 or l.

Further , l2 - a
l+bl

a+b and each prime divisor 6= l of al+bl

a+b is of the form lt+ 1.

P r o o f. See e.g. [11].

The following two lemmas have been proved by means of Eisenstein’s
reciprocity theorem.

Lemma 2 (S. Lubelski [12]). Let a, b, c be integers such that

(5)
al + bl

a+ b
= cl, (a, b) = 1, (a2 − b2, l) = 1.

Then for each prime r with r 6= l and r | a− b, we have

(6) rl−1 ≡ 1 (mod l2).

P r o o f. See [12], Satz 2.

Lemma 3 (K. Győry [9]). Let a, b, c be integers satisfying (5). Then we
have (6) for each prime r with r 6= l and r | a+ b.

P r o o f. This was proved in [9] (cf. the Lemma in the proof of Satz 1).

Lemma 4. If l is an odd prime with l < 230 and

(7) 3l−1 ≡ 1 (mod l2)

then l = 11 or l = 1006003.

P r o o f. See e.g. [14], pp. 169–170, and the references given there.

The next result has recently been proved by means of rational approxi-
mation to hypergeometric functions, the theory of linear forms in logarithms
and some recent computational methods.
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Lemma 5 (M. A. Bennett and B. M. M. de Weger [1]). Let a, b and l be
integers with b > a > 1 and 3 ≤ l < 17 or l > 347. Then the equation

|axl − byl| = 1

has at most one solution in positive integers x, y.

P r o o f. This is an immediate consequence of Theorem 1.1 in [1].

P r o o f o f T h e o r e m 1. Suppose that equation (3) has a solution n,
x, l with n > 3, l > 2. As was remarked above, we may assume that l is a
prime greater than 5.

We first show that, for l, (7) must hold. To prove this, we follow the
arguments of [10] (cf. also [8]). It follows from (3) that

n(n− 1)(n− 2) = 6xl.

We distinguish three cases according as n, n − 1 or n − 2 is divisible by 3.
Among the numbers n, n−1 and n−2 at most one is divisible by 22. Hence,
apart from the prime factors 2 and 3, each of the numbers n, n−1 and n−2
must be an lth power.

First, we consider the case when n is divisible by 3. We have the following
three subcases. In what follows, u, v and w denote positive integers.

(i,1) n = 3ul, n−1 = 2vl, n−2 = wl, whence
(
n−1

2

)
= (vw)l and n−1 > 2.

However, by Theorem B this is not possible.
(i,2) n = 3 · 2lul, n − 1 = vl, n− 2 = 2wl, whence

(
n−1

2

)
= (vw)l, which

is also impossible.
(i,3) n = 6ul, n− 1 = vl, n− 2 = 2lwl, which gives vl − 1 = (2w)l. This

is, however, not solvable in positive integers v, w because l > 5.

When n− 2 is divisible by 3, we have the following three subcases.

(ii,1) n = ul, n − 1 = 2vl, n − 2 = 3wl, whence
(
n
2

)
= (uv)l and n > 2.

But this is impossible by Theorem B.
(ii,2) n = 2ul, n− 1 = vl, n− 2 = 3 · 2lwl, whence

(
n
2

)
= (uv)l, which is

again impossible.
(ii,3) n = 2lul, n− 1 = vl, n− 2 = 6wl, whence vl + 1 = (2u)l, which has

no solution in positive integers v, u.

Finally, consider those subcases when n− 1 is divisible by 3.

(iii,1) n = ul, n − 1 = 6vl, n − 2 = wl, whence ul − wl = 2, which is
impossible.

We have showed that the above cases cannot hold. It remains to deal
with the following two subcases:

(iii,2) n = 2wl, n− 1 = 3vl, n− 2 = 2lul,

(iii,3) n = 2lul, n− 1 = 3vl, n− 2 = 2wl.
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It is easily seen that, in both cases, v and w must be greater than 1. In the
cases (iii,2) and (iii,3) we obtain the systems of equations

2(wl − 1) = 3vl − 1 = 2lul in integers u, v, w(8)
with u ≥ 1, v, w > 1,

and

2(wl + 1) = 3vl + 1 = 2lul in integers u, v, w(9)
with u ≥ 1, v, w > 1,

respectively.
It is sufficient to prove that none of the systems (8) and (9) is solvable.

Consider (8) and (9) simultaneously. It follows from (8) and (9) that

(10) (2u)l ± 1 = 3vl.

Here and in the sequel the upper and lower sign must be taken according
as the case under consideration is a consequence of (8) or (9), respectively.
First assume that l - v and l - (2u)2 − 1. Then, by Lemma 1, we infer from
(10) that

(2u)l ± 1
2u± 1

= cl

with some non-zero integer c, and that 3 | 2u+1 in the first case and 3 | 2u−1
in the second case. Hence, by Lemma 3, we deduce in both cases that

(7) 3l−1 ≡ 1 (mod l2).

Next assume that l | (2u)2−1 or l | v. If l | v, then it follows from (10) that
2u± 1 ≡ 0 (mod l), which implies that l | (2u)2 − 1. Hence it is sufficient to
deal with the systems of equations (8) and (9) under the assumption that

(11) 2u ≡ 1 (mod l)

or

(12) 2u ≡ −1 (mod l).

Consider again (8) and (9) simultaneously. It follows from (8) and (9) that

(13) wl ∓ 1 = 2l−1ul.

By (11) and (12), we have l -u. Thus, by Lemma 1, we infer from (13) that

(14)
wl ∓ 1
w ∓ 1

= dl

with some non-zero integer d. To apply Lemma 2 to (14), we have to show
that l -w2 − 1. Together with (11) or (12), (13) implies in both cases that
2w can be congruent only to 1, −1, 3 or −3 (mod l). But l > 5, hence it
follows indeed in both cases that w 6≡ 1 (mod l) and w 6≡ −1 (mod l). In
view of wl ≡ w (mod 3), (8), resp. (9), implies that 3 |w+ 1, resp. 3 |w− 1



294 K. Győry

holds. Thus, by applying Lemma 2 to (14) we conclude again that (7) must
hold.

It follows both from (8) and from (9) that v, w satisfy the equation

(15) |2wl − 3vl| = 1 in positive integers v, w.

This equation has the solution v = w = 1. Hence, if l < 17 or l > 347, it
follows by Lemma 5 that equation (15) has no solution in positive integers
with v > 1 or w > 1. Thus there remains the case 17 ≤ l ≤ 347. However,
in view of Lemma 4, (7) does not hold for these values of l. This completes
the proof of Theorem 1.

R e m a r k. After having proved above that (7) must hold, the results
of Terai [15] and Dénes [3] can also be used in place of Lemma 5. In-
deed, Terai’s theorem implies that no solutions of (3) exist if l ≥ 4250.
By Lemma 4, l = 11 is the only prime l for which both (7) and l < 4250
hold. Finally, it follows from Satz 8 of Dénes [3] that equation (10) is not
solvable for l = 11, and the proof of Theorem 1 is again complete.
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