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1. Introduction. Gauss [7] conjectured that there are infinitely many
real quadratic fields with ideal class number 1. Empirical evidence suggests
that about 3/4 of all primes p give rise to a field Q(

√
p) with a class number

of 1 and Cohen and Lenstra [3] have given very general heuristic arguments
supporting this observation and many others. Given the many similarities
between function fields and number fields it is reasonable to conjecture that
the same is true of real quadratic function fields (see, for example, Friedman
and Washington [5]). Those conjectures fix q and let the degree of M vary
as they look at the ideal class number of Fq(t,

√
M(t)). In this paper we

shall fix the degree to be 4 and examine the behavior of ideal class numbers
as q varies (excluding only powers of 2 or 3). In our first result we shall give
a lower bound for the number of monic irreducible quartics M ∈ Fq[t] such
that Fq(t,

√
M(t)) has ideal class number of 1 and in the second theorem

we shall see that, for any odd h and for all sufficiently large q, there exists
an M as above giving rise to an ideal class number of h.

Readers interested in an introduction to quadratic function fields are
directed to Emil Artin’s thesis [1] or to more recent work of D. R. Hayes [8].
We turn briefly to a description of our notation.

Let Fq be the finite field of odd characteristic having q elements and use
F∗q to denote the multiplicative group. Fix M to be an even-degree squarefree
monic in Fq[t] where t is an indeterminate. Adjoining

√
M to Fq(t) provides

us with a quadratic extension (analogous to a real quadratic extension) with
OM = Fq[t,

√
M(t)] as its ring of integers.

For an irreducible even-degree monic M we have the fundamental unit
of OM defined as the element T + U

√
M such that T,U ∈ Fq[t] are monic
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polynomials with T of minimal degree satisfying T 2 − U2M ∈ F∗q . The
regulator RM of OM is then the degree of T .

Two ideals A and B of OM are equivalent, A ∼ B, if A = cB for some
c ∈ Fq(t,

√
M(t)). The set of ideal classes under this equivalence forms

a finite abelian group called the ideal class group which we shall denote
Cl(OM ).

From this point onwards we shall restrict ourselves to M that are of
degree 4 and if we let hM denote the ideal class number of Fq(t,

√
M(t))

then the number of points over Fq on the curve y2 = M(t) (including the
infinite ones) is equal to hMRM .

Recently Thomas A. Schmidt [11] proved that for sufficiently large
primes p there exists a degree six polynomial M ∈ Fp[t] such that the field
Fp(t,

√
M(t)) has ideal class number of 1. In the case of degree 4 polyno-

mials we obtain a stronger result (Theorem 1.1) and a more general result
(Theorem 1.2) which we describe below.

Theorem 1.1. Let Fq be the finite field of q elements with characteristic
greater than 3. Then there exist at least q7/2/(10 log log q) monic irreducible
quartics M ∈ Fq[t] such that the field Fq(t,

√
M(t)) has ideal class number

hM = 1.

Theorem 1.2. For any odd positive integer h there exists a bound N
such that if Fq is the finite field of q > N elements with characteristic
greater than 3 then there exists an irreducible monic M(t) ∈ Fq[t] of degree
4 such that the field Fq(t,

√
M(t)) has ideal class number of hM = h.

The idea of the proof of these theorems is the following. One of the au-
thors recently proved the following theorem [6] which we quote here without
proof.

Theorem 1.3. Let Fq be the finite field with q elements and with
odd prime characteristic. If M ∈ Fq[t] is a monic quartic irreducible with
hMRM = 2smn where m,n are odd and where m is squarefree then there
exist at least 2s−3q(q − 1)φ(m) monic quartic irreducibles, N ∈ Fq[t], such
that Fq[t,

√
N(t)] has ideal class number hN = n and regulator RN = 2sm.

This reduces the task of finding quartics which give function fields with
prescribed class numbers to finding quartics M(t) such that the number
of points on the elliptic curve y2 = M(t) has a certain squarefree part.
In Section 3 we show that there exist “enough” integers L in the interval
[q+ 1− 2

√
q, q+ 1 + 2

√
q] with the needed properties. In Section 2 we show

that for such an L there exists a quartic M(t) such that y2 = M(t) has L
points.
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2. Quartics M(t) where y2 = M(t) has L solutions. Throughout
this section we will assume that char(Fq) is not equal to 2 or 3.

In this section we will show that given an even number L in the allowed
range for the number of points on an elliptic curve, we can find a monic
irreducible quartic M such that y2 = M(x) has L rational points over Fq.
We start by finding an explicit elliptic curve in Weierstrass form isomorphic
to a given y2 = M(x).

Proposition 2.1. For any separable

M(u) = u4 + b3u
3 + 3b2u2 + b1u+ b0

in Fq[u] the hyperelliptic curve defined by

C1 : v2 = M(u)

is isomorphic over Fq to

C2 : y2 = x3 + (−3b22 + b3b1 − 4b0)x+ 2b32 − b2b3b1 + b21 − 8b2b0 + b23b0.

P r o o f. By C1 defining a hyperelliptic curve we mean C1 is the affine
part and the points at infinity are added by gluing on the chart

v′2 = 1 + b3u
′ + 3b2u′2 + b1u

′3 + b0u
′4

using the isomorphism

u′ =
1
u
, v′ =

v

u2 .

In this way C1 becomes a smooth projective variety (see [9, Section IIIa §1]).
It is easy to check that the map taking (u, v) to

(x, y) = (b2 + b3u+ 2u2 + 2v, b1 + 6b2u+ 3b3u2 + 4u3 + b3v + 4uv)

is a rational map from C1 to C2 (see [2, pp. 35–36] for a method for obtaining
this map). Also, if we set

v(x, y) = − 32b32 + 3b22b
2
3 + 12b2b3b1 − b33b1 − 4b21 + 24b2x2 − 3b23x

2

+ 8x3 − 12b2b3y + b33y + 8b1y − 4y2

then the map taking (x, y) to

(u, v) =
(
b2b3 − 2b1 − b3x+ 2y

8b2 − b23 + 4x
,

v(x, y)
(8b2 − b23 + 4x)2

)

is a rational map from C2 to C1. It is also straightforward to verify that
these two maps are inverses of each other. This shows that the two curves
C1 and C2 are birationally equivalent. Since the discriminants of the quartic
and cubic are equal and M(x) is separable, the cubic must also be separable
and therefore C2 is smooth. So it only remains to recall that two birationally
equivalent smooth curves are in fact isomorphic.
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It can be shown that for an irreducible M the cubic we find in this
proposition has one and only one root in Fq. We therefore need to show
that for any L there exists an elliptic curve with L rational points and this
additional property. We do this next.

For an elliptic curve E defined over Fq, let #E(Fq) denote the number
of rational points (including the points at infinity) on E and E(Fq)[n] the
rational n-torsion points. Let Fq denote the algebraic closure of Fq.

Proposition 2.2. Let Fq be the finite field with q elements and with odd
characteristic p and let t ∈ [−2

√
q, 2
√
q] be an even integer. If p - t or q = p

then there exists an elliptic curve E defined over Fq with #E(Fq) = q+1−t
and E(Fq)[2] ∼= Z/2Z.

P r o o f. In [12] Schoof computes the number of elliptic curves with a
given number of rational points. He also computes the number of such elliptic
curves with the n torsion points all being rational. Although he does this
explicitly only for n odd, a reading of the proof shows that it contains a
proof of our theorem. For the sake of completeness we outline the proof.

As negation on an elliptic curve is defined over Fq the rational points
occur in pairs. This implies that the number of non-2-division points is a
multiple of 2. Therefore, if the curve has an even number of rational points,
there must be a non-zero rational 2-division point.

First, assume p - t. The canonical map

EndFq (E)/2 EndFq (E) ↪→ End(E(Fq)[2])

is injective (see [13]). If φ is the Frobenius endomorphism then it is clear
that (φ − 1)P = 0 if and only if P is rational. The above injection then
implies that if E(Fq)[2] ⊂ E(Fq) then

φ− 1
2
∈ EndFq (E).

Using the fact that φ satisfies the equation φ2 − tφ+ q = 0 it is easy to
verify that (φ− 1)/2 satisfies

(
φ− 1

2

)2

−
(
t− 2

2

)(
φ− 1

2

)
+
q + 1− t

4
= 0.

This quadratic has discriminant (t2−4q)/4. It is non-zero because we assume
p - t.

By [15, Theorem 4.1] and [15, Theorem 4.2] (or see [12]) there exists
an elliptic curve E with #E = q + 1 − t such that its Fq endomorphism
ring is given by the complex quadratic order of discriminant t2 − 4q. This
ring does not contain the root of a quadratic with discriminant (t2 − 4q)/4.
So this elliptic curve cannot have all of E(Fq)[2] rational. As E(Fq)[2] ∼=
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Z/2Z⊕ Z/2Z and we have already seen that there is one rational 2-torsion
point we must have

E(Fq)[2] ∼= Z/2Z.
By [12, Lemma 4.8] and [15, Theorem 4.1] there is always an elliptic

curve with #E(Fp) = p+ 1 and E(Fp) cyclic. This implies that E(Fp)[2] 6∼=
Z/2Z⊕ Z/2Z and so the case q = p and t = 0 is also taken care of.

Finally we need to show that there exists an M mapping to each elliptic
curve found in the above proposition. The following lemma is the crucial
ingredient for doing so.

Lemma 2.3. Let σ be a generator of the Galois group of Fq4/Fq. The
map from Fq4 − Fq2 to Fq2 given by

H(r) = −2rσ(r) + rσ2(r) + σ(r)σ2(r) + rσ3(r) + σ(r)σ3(r)− 2σ2(r)σ3(r)

is onto Fq2 − Fq.
P r o o f. Fix an element δ0 in Fq4 but not in Fq2 . Set δ = δ0 − σ2(δ0).

Then σ2(δ) = −δ. It is clear that we can write any element of Fq4 as r1δ+r2

for some r1, r2 ∈ Fq2 . We then have

H(r1δ + r2) = −6r1σ(r1)δσ(δ) + (r2 − σ(r2))2 − r2
1δ

2 − σ(r2
1δ

2).

Note that, as σ(δσ(δ)) = −δσ(δ), we can write any element of Fq2 as
t1δσ(δ)+ t2 for some t1, t2 ∈ Fq. So to show that the map H is onto we need
to demonstrate that for any t1 in F∗q and t2 in Fq we can find r1 in F∗q2 and
r2 in Fq2 such that

−6r1σ(r1) = t1,

(r2 − σ(r2))2 − r2
1δ

2 − σ(r2
1δ

2) = t2.

It is well known that the norm map from Fq2 to Fq is onto and so it
is clear that we can find r1 such that −6r1σ(r1) = t1. Note that if now
t2 + r2

1δ
2 + σ(r2

1δ
2) is zero we are done, but if it is a non-zero square in Fq

then there is no r2 such that (r2 − σ(r2))2 equals it. So we need to show
that we can pick r1 such that t2 + r2

1δ
2 + σ(r2

1δ
2) is not a square in Fq.

For s any one of the q + 1 values 1, gq−1, g2(q−1), . . . , gq(q−1), where g is
a generator of F∗q2 , we see σ(s) = 1/s and −6(sr1)σ(sr1) also equals t1. If

r2
1δ

2 + σ(r2
1δ

2) = s2r2
1δ

2 + σ(s2r2
1δ

2)
then

s2
(

1
s2 − 1

)
r2
1δ

2 =
(

1
s2 − 1

)
σ(r2

1δ
2),

so s2 = 1 or s = ±σ(r1δ)/(r1δ). If we apply σ to this last equality and then
take reciprocals we find −s = ±σ(r1δ)/(r1δ). This is a contradiction and so
s = ±1. So we see that there are (q+ 1)/2 values of t2 + r2

1δ
2 +σ(r2

1δ
2) such

that −6r1σ(r1) = t1. As there are only (q − 1)/2 non-zero squares in Fq we
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can pick r1 such that −6r1σ(r1) = t1 and t2 + r2
1δ

2 + σ(r2
1δ

2) is zero or a
non-square. Finally, it is clear that we can then choose

r2 = 1
2

√
t2 + r2

1δ
2 + σ(r2

1δ
2)

for either of the two possible square roots.

We are now able to prove the main theorem of this section.

Theorem 2.4. Let Fq be the finite field of q elements with characteristic
p not 2 or 3. Let L be any even integer with |L − q − 1| ≤ 2

√
q. Set t =

L − q − 1. If p - t or q = p then there exists at least one monic irreducible
quartic M ∈ Fq[x] such that the number of points defined over Fq (including
the two points at infinity) on the hyperelliptic curve y2 = M(x) is L.

P r o o f. Proposition 2.2 says that for L satisfying the hypothesis we can
find an elliptic curve defined over E with #E(Fq) = L and E(Fq)[2] ∼= Z/2Z.
As the characteristic is not 2 or 3 any such elliptic curve can be written in
the form

y2 = (x− (−b− σ(b)))(x− b)(x− σ(b))
for some b ∈ Fq2 − Fq and σ a generator for the Galois group of Fq4/Fq.

Using Proposition 2.1 it is easy to show that if

M(x) = (x− r)(x− σ(r))(x− σ2(r))(x− σ3(r))

for some r ∈ Fq4 then the hyperelliptic curve y2 = M(x) is isomorphic to
the elliptic curve given by y2 = (x− (−b− σ(b)))(x− b)(x− σ(b)) where

b = 1
3 (−2rσ(r) + rσ2(r) + σ(r)σ2(r) + rσ3(r) + σ(r)σ3(r)− 2σ2(r)σ3(r)).

Lemma 2.3 says that there is an r ∈ Fq4 − Fq2 mapping onto any
b ∈ Fq2 − Fq. As r is not in Fq2 , M(x) is irreducible and as the two curves
are isomorphic over Fq they have the same number of points. This completes
the proof.

3. Odd-part-squarefree integers. In this section we shall determine
lower bounds for the number of even integers n in an interval that have odd
part squarefree (that is, p2 - n for odd primes p).

Lemma 3.1. Fix an odd prime p and positive integers b, r, t. The number
of integers x in the interval [r, r+ t] satisfying x 6≡ b (mod p) and that have
an odd part that is squarefree is bounded from below by

(t+ 1)
(

1− 1
p
−

∑

v≤√r+t

1
v2

)
− π(
√
r + t)

where the sum is over all odd primes v less than or equal to
√
r + t and

where π(x) represents the number of primes less than or equal to x.
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P r o o f. Consider an odd prime v. Asymptotically we have (t + 1)/v2

elements in the interval [r, r+ t] that are divisible by v2. The absolute error
in this estimate is at most 1 − v−2. If we now sum over all odd primes
v ≤ √r + t we arrive at an upper bound for the number of elements in the
interval that do not have odd part squarefree as

∑

v≤√r+t

(
t+ 1
v2 + 1

)
< π(

√
r + t)− 1 +

∑

v≤√r+t

t+ 1
v2

where the sum is over all odd primes v less than or equal to
√
r + t. Now,

the number of integers in this interval that are congruent to b modulo p is
bounded from above by (t + 1)/p + (p − 1)/p so the number of odd-part-
squarefree integers x 6≡ b (mod p) is at least

t+ 1−
(
t+ 1
p

+ 1
)
−

∑

v≤√r+t

t+ 1
v2 − (π(

√
r + t)− 1),

which finishes the proof of this lemma.

For the results that are to follow we will wish to obtain approximate
values for the two terms above. We note that

∑

v≤√r+t

1
v2 <

∑
v

1
v2 < 0.21

where the second sum, over all odd primes, is arrived at by summing all
primes less than 1000 and using the integral

T∞
1000 x

−2 dx to bound the error.
We shall bound the function π(x) with the assistance of the result due

to Rosser and Schoenfeld [10, formula 3.2]

π(x) <
x

log x

(
1 +

3
2 log x

)
.

Corollary 3.2. For any odd positive integer n there exists a positive
integer N such that if q = pm > N for some odd prime p ≥ 5 and some
positive integer m then there exists an integer x in the interval [q + 1 −
2
√
q, q + 1 + 2

√
q] satisfying x ≡ 0 (mod 2n), x 6≡ 1 (mod p) and such that

x/n has odd part squarefree.

P r o o f. We begin our task by rewriting the problem. If we consider only
those integers in the interval that are divisible by 2n and then divide by the
same we obtain the equivalent statement that there exists an integer x in
the interval

[ q+1−2
√
q

2n ,
q+1+2

√
q

2n

]
such that 2xn 6≡ 1 (mod p) and x has odd

part squarefree. Let r be the first integer in our interval. Then the integers
in our interval are those in [r, r + t] where t > 2

√
q/n − 2. If p |n then

the condition 2xn 6≡ 1 (mod p) is superfluous, otherwise we may rewrite
it as x 6≡ (2n)−1 (mod p). To show the existence of at least one integer
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with the desired properties we need to demonstrate that the lower bound of
Lemma 3.1 is positive. In other words, we will wish to prove that

1− 1
p
>
π(
√
r + t)

t+ 1
+
∑
v

1
v2 .

Using 0.21 as an upper bound for the summation and using p = 5 as a worst
case for the left reduces the problem to showing that

0.59 >
π(
√
r + t)

t+ 1
.

In the asymptotic sense, as q approaches infinity we have r+ t u q/(2n) and
t+ 1 u 2

√
q/n. Since we have π(x) u x/ log x we can write

π(
√
r + t)

t+ 1
u

√
q

2n

log
(√

q
2n

) · 1
2
√
q

n

=
√
n√

2(log q − log(2n))

and it is clear that we can choose q so that the quantity in question is
smaller than 0.59 from which the existence of the desired integer may be
concluded. The arguments that follow serve to put a value to the bound N
of the corollary.

We have (q + 1 + 2
√
q)/(2n) ≥ r + t, which implies that

π(
√
r + t)

t+ 1
≤
π
(√ q+1+2

√
q

2n

)
2
√
q

n − 1

=
1

1− n
2
√
q

·
π
(√q+1√

2n

)

2
√
q

n

<
1

1− n
2
√
q

· n

2
√
q

(
1 +

3

2 log
(√q+1√

2n

)
) √

q+1√
2n

log
(√q+1√

2n

)

=
1 + q−1/2

1− n
2
√
q

(
1 +

3

2 log
(√q+1√

2n

)
) √

n

2
√

2 log
(√q+1√

2n

)

<
1 + q−1/2

1− n
2
√
q

(
1 +

3
log
(
q

2n

)
) √

n√
2 log

(
q

2n

) .

Since we shall treat the special case n = 1 in the following corollary we
may assume here that n ≥ 3. If we assume, in addition, that q > 2500n2

then we obtain

π(
√
r + t)

t+ 1
<

1 + 1
150

1− 1
100

(
1 +

3
log 3750

) √
n√

2 log
(
q

2n

) <
√
n

log
(
q

2n

) .



Quadratic function fields 53

When q > 2n exp(
√
n/0.59) the above expression will be less than 0.59

as required to demonstrate the existence of our desired integer. So, we may
take N to be the maximum of 2500n2 and 2n exp(

√
n/0.59). Looking at

our asymptotic formula we see that the best we could hope for, in order
to require 0.59 > π(

√
r + t)/(t + 1), is to get N > 2n exp(

√
n/(0.59

√
2)).

Even this is not, we should point out, the sharpest obtainable result—in the
interest of brevity we have used an estimate for the number of squarefree
integers that is not the best possible and readers interested in attempting
improvements are referred to papers by Filaseta and Trifonov [4] and by
Warlimont [14].

Corollary 3.3. For all q = pm for some positive integer m and some
prime p ≥ 5 at least 1/2 of all even integers x in the interval [q+1−2

√
q, q+

1 + 2
√
q] have odd part squarefree and satisfy x 6≡ 1 (mod p).

P r o o f. Our argument consists of a computer check to verify the result
for all q < 105 and a proof, which follows, that the statement is also true
for q ≥ 105.

Following the argument of the previous lemma we see that we need to
bound π(

√
r + t)/(t+ 1) by 0.09 in order to be certain of having 1/2 of the

integers satisfying our requirements. From above we have

π(
√
r + t)

t+ 1
<

1 + q−1/2

1− 1
2
√
q

(
1 +

3
log
(
q
2

)
)

1√
2 log

(
q
2

)

where the right-hand side is a decreasing function of q. Substituting q = 105

gives a result on the right that is less than 0.09 and it follows that for q ≥ 105

we have at least 1/2 of the even integers in the interval [q+ 1− 2
√
q, q+ 1 +

2
√
q] with odd part squarefree and satisfying x 6≡ 1 (mod p). We conclude

our proof with the remark that a computer program verified the statement
for all q < 105.

4. Conclusion. We are now in a position to prove

Theorem 1.1. Let Fq be the finite field of q elements with characteristic
greater than 3. Then there exist at least q7/2/(10 log log q) monic irreducible
quartics M ∈ Fq[t] such that the field Fq(t,

√
M(t)) has ideal class number

hM = 1.

P r o o f. Using Theorem 2.4 together with Corollary 3.3 gives us more
than 2[

√
q] distinct even values of L = 2sm with odd part m squarefree

such that there is at least one irreducible monic M with L points on the
curve y2 = M(t). Now Theorem 1.3 says that for every such M we get at
least 2s−3q(q− 1)φ(m) monic quartic irreducibles N such that hN = 1. It is
evident that the curves y2 = M(t) and y2 = N(t) have the same number of
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points (since hMRM = hNRN ) and thus there will be no overlap as we take
different values of L. To continue from here we shall need to find a lower
bound for 2s−3φ(m) = 1

4φ(2sm) for even integers 2sm ∈ [q + 1 − 2
√
q, q +

1 + 2
√
q] with m odd. We will use a result of Rosser and Schoenfeld [10,

formula 3.42]

φ(n) >
n

eγ log log n+ 2.50637/(log log n)

where γ is Euler’s constant. The bound on the right is an increasing function
of n and it follows that

φ(2sm) >
q + 1− 2

√
q

eγ log log(q + 1− 2
√
q) + 2.50637/(log log(q + 1− 2

√
q))

for 2sm in the chosen interval.
Putting the pieces together we have a number of monic quartic irre-

ducibles N with hN = 1 in excess of

2[
√
q ]q(q − 1)

1
4
· (q1/2 − 1)2

eγ log log(q + 1− 2
√
q) + 2.50637/(log log(q + 1− 2

√
q))

>
q7/2

10 log log q
B(q)

where

B(q) =
5(1− q−1/2)3(1− q−1) log log q

eγ log log(q + 1− 2
√
q) + 2.50637/(log log(q + 1− 2

√
q))

>
5(1− q−1/2)3(1− q−1)

eγ + 2.50637/((log log q)(log log(q + 1− 2
√
q)))

.

To prove the theorem we will show that B(q) > 1. Since the last line de-
scribes an increasing function with a value greater than 1 when q > 1000
it follows that our theorem holds for q > 1000. Let p = char(Fq). For the
values of q less than 1000 a computer program verified that

∑
2s−3q(q − 1)φ(m) >

q7/2

10 log log q

where the first sum is over all even 2sm ∈ [q + 1 − 2
√
q, q + 1 + 2

√
q] with

m odd and squarefree and with 2sm 6≡ 1 (mod p) if p 6= q. In fact, we could
have replaced the coefficient 1/10 in our theorem with (13 log log 5)/55/2

u 0.1107, this minimum occurs at q = 5.

In similar fashion to the above we may combine Theorem 2.4 with Corol-
lary 3.2 and reference the result from [6] to obtain

Theorem 1.2. For any odd positive integer h there exists a bound N
such that if Fq is the finite field of q > N elements with characteristic
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greater than 3 then there exists an irreducible monic M(t) ∈ Fq[t] of degree
4 such that the field Fq(t,

√
M(t)) has ideal class number hM = h.

We may take N to be the maximum of 2500h2 and 2h exp(
√
h/0.59).
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Z. 19 (1924), 153–246.

[2] J. W. S. Casse l s, Lectures on Elliptic Curves, London Math. Soc. Student Texts
24, Cambridge University Press, 1991.

[3] H. Cohen and H. W. Lenstra , Jr., Heuristics on class groups of number fields,
in: Number Theory Noordwijkerhout, H. Jager (ed.), Lecture Notes in Math. 1068,
Springer, Berlin, 1984, 33–62.

[4] M. Fi laseta and O. Tr i fonov, On gaps between squarefree numbers. II , J. London
Math. Soc. (2) 45 (1992), 215–221.

[5] E. Fr iedman and L. C. Washington, On the distribution of divisor class groups
of curves over a finite field , in: Théorie des nombres (Québec, PQ, 1987), de
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