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1. Introduction. We continue the presentation of new constructions
of algebraic curves over a finite field Fq with many Fq-rational points by
a method based on Drinfeld modules of rank 1 which was initiated in our
earlier papers [28], [29]. By an algebraic curve over Fq we always mean a
projective, smooth, absolutely irreducible algebraic curve defined over Fq.
Let N(C) denote the number of Fq-rational points of C. For given g ≥ 0
and q we put

Nq(g) = maxN(C),

where the maximum is extended over all algebraic curves C of fixed genus
g over Fq.

An algebraic curve C over Fq of genus g is called optimal if N(C) =
Nq(g). Optimal curves, and more generally algebraic curves C over Fq of
genus g with many Fq-rational points, i.e., with N(C) close to Nq(g), have
received a lot of attention in the literature. We refer e.g. to the work of
Ihara [6] and Serre [15]–[18] in the 1980s and to the more recent papers
of Garcia and Stichtenoth [1], [3], Niederreiter and Xing [8]–[10], Perret
[11], Schoof [14], van der Geer and van der Vlugt [23], [24], Xing [26], and
Xing and Niederreiter [28], [29]. The construction of algebraic curves over
Fq with many Fq-rational points is an interesting problem per se, but it is
also important for applications in the theory of algebraic-geometry codes
(see [21], [22]) and in the recent constructions of low-discrepancy sequences
introduced by the authors [7], [8], [27].

It will be convenient to use the correspondence between an algebraic
curve C over Fq and its function field K, which is a global function field
with full constant field Fq, i.e., with Fq algebraically closed in K. An Fq-
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rational point of C corresponds to a rational place (i.e., a place of degree
1) of K, and vice versa, and the genus of C is the same as the genus of K.
If K is an arbitrary global function field which has Fq as its full constant
field (if we want to stress this property, it will be expressed by the notation
K/Fq), then N(K) = N(K/Fq) denotes the number of rational places of
K and g(K) the genus of K. By analogy with the case of algebraic curves,
we call K optimal if N(K) = Nq(g(K)). Throughout this paper we will use
the language of algebraic curves over finite fields and that of global function
fields interchangeably.

The constructions of algebraic curves over Fq with many Fq-rational
points presented in our earlier papers [28], [29] were restricted to the case
where q is a prime. The present paper is devoted to general prime powers
q, with a stress on the case where q is composite which requires new ideas.
In Section 2 we review the necessary background on Hilbert class fields
and Drinfeld modules, in particular the theory of narrow ray class fields
obtained from sgn-normalized Drinfeld modules of rank 1. Three different
constructions of algebraic curves over Fq with many Fq-rational points, or
equivalently of global function fields with many rational places, are described
in Sections 3 and 4. In Section 5 we present various specific examples of
algebraic curves over F4 with many F4-rational points as well as a table of
the intervals in which N4(g) lies for many values of g.

2. Background on Hilbert class fields and Drinfeld modules. We
recall some pertinent facts about Hilbert class fields. A convenient refer-
ence for this topic is Rosen [12]. Let F/Fq be a global function field with
N(F/Fq) ≥ 1. We distinguish a rational place ∞ of F and let A be the
∞-integral ring of F , i.e., A consists of the elements of F that are regular
outside ∞. Then the Hilbert class field HA of F with respect to A is the
maximal unramified abelian extension of F (in a fixed separable closure of
F ) in which∞ splits completely. The extension HA/F is finite and its Galois
group is isomorphic to the fractional ideal class group Pic(A) of A, which
in the case under consideration (∞ rational) is isomorphic to the group of
divisor classes of F of degree 0. In particular, we have [HA : F ] = h(F ),
the divisor class number of F . The value of h(F ) can be obtained from the
L-polynomial

LF (t) = (1− t)(1− qt)ZF (t)
of F , where ZF (t) is the zeta-function of F , by the formula h(F ) = LF (1).
For r ≥ 2 the constant field extension Fr = Fqr · F is viewed as a global
function field with full constant field Fqr . In the case r = 2 we have

(1) h(F2)/h(F ) = LF (−1).

This follows from [21, Theorem V.1.15].
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For the basic facts on Drinfeld modules we refer to the survey article
of Hayes [5]. Let the global function field F/Fq, the rational place ∞ of F ,
and the ∞-integral ring A of F be as above. We fix a sgn-function and let
φ be a sgn-normalized Drinfeld A-module of rank 1 defined over HA. The
additive group of the algebraic closure HA of HA forms an A-module under
the action of φ. For any nonzero ideal M in A we consider the M -torsion
module

Λ(M) = {u ∈ HA : φM (u) = 0}.
Then Λ(M) is a cyclic A-module which is isomorphic to A/M and has
|(A/M)∗| generators, where (A/M)∗ is the group of units of the ring A/M .

Let I(A) be the fractional ideal group of A and let IM (A) be the sub-
group of all fractional ideals in I(A) which are prime to M . We define the
quotient group

PicM (A) = IM (A)/RM (A),

where RM (A) is the subgroup of IM (A) consisting of all principal ideals bA
with sgn(b) = 1 and b ≡ 1 mod M . We will often identify places and prime
ideals in the obvious manner. Furthermore, for an arbitrary place P of a
global function field we write νP for the corresponding normalized discrete
valuation.

The field HA(Λ(M)) generated by the elements of Λ(M) over HA is
called the narrow ray class field modulo M . This field is independent of the
specific choice of the sgn-normalized Drinfeld A-module φ of rank 1. The
following facts from [5] are needed.

Proposition 1. Let E = HA(Λ(M)) be the narrow ray class field mod-
ulo M. Then:

(i) The extension E/F is unramified away from ∞ and the prime ideals
in A dividing M.

(ii) The extension E/F is abelian and there is an isomorphism σ :
PicM (A) → Gal(E/F ), determined by σIφ = I ∗ φ for any ideal I in A
prime to M , and λσI = φI(λ) for any generator λ of the cyclic A-module
Λ(M). Moreover , for any ideal I in A that is prime to M , the corresponding
Artin automorphism of E/F is exactly σI .

(iii) The multiplicative group (A/M)∗ is isomorphic to Gal(E/HA) by
means of b 7→ σbA, where b ∈ A satisfies sgn(b) = 1 and is prime to M.

We now consider the special case where M is a power of a prime ideal.
The results in part (i) of the following proposition can be found in [5], and
the genus formula in part (ii) was shown in [29].

Proposition 2. Let E = HA(Λ(Pn)) be the narrow ray class field mod-
ulo Pn, where P is a prime ideal in A and n ≥ 1. Then:
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(i) If λ is a generator of the cyclic A-module Λ(Pn), then E = HA(λ)
and the minimal polynomial of λ over HA is

f(z) := φPn(z)/φPn−1(z).

Moreover , f(z) is Eisenstein at any place Q of HA lying over P. Thus, Q is
totally ramified in E/HA and νR(λ) = 1 for the place R of E lying over Q.

(ii) If deg(P ) = d, then for the genus g(E) of E we have

2g(E)− 2

= h(F )qd(n−1)
(

(2g(F )− 2)(qd − 1) + dn(qd − 1)− d+
(qd − 1)(q − 2)

q − 1

)
.

Let F/Fq again be a global function field, let ∞ be a rational place of
F and A the ∞-integral ring of F . For r ≥ 2 we consider the constant field
extension Fr = Fqr ·F . Then ∞ can be viewed as a rational place of Fr/Fqr
with ∞-integral ring Ar of Fr. Let P 6=∞ be a place of F of degree d with
gcd(d, r) = 1. Then similarly, P is a place of Fr/Fqr of the same degree d. We
now consider the group PicPn(Ar) for a given n ≥ 1. Note that (Ar/Pn)∗

can be viewed as a subgroup of PicPn(Ar) in the following way: for every
a ∈ Ar there is a b ∈ Fr satisfying sgn(b) = 1 and b ≡ a mod Pn; then we
have the embedding (Ar/Pn)∗ 3 a 7→ bA ∈ PicPn(Ar).

Next we observe that PicPn(A) can also be viewed as a subgroup of
PicPn(Ar). One way to see this is to use the language of algebraic curves.
Let C be an algebraic curve over Fq with function field F . If we view C as
a curve over Fq, then a divisor D on C/Fq is a divisor of F if and only if D
is Fq-rational, i.e.,

Dψ = D for all ψ ∈ Gal(Fq/Fq).

Hence PicPn(A) can be described as the group of all Fq-rational divisors
on C/Fq prime to P and ∞, from which we factor out the subgroup of
all divisors (c)0 with c ∈ F , sgn(c) = 1, and c ≡ 1 mod Pn, where (c)0 is
the divisor corresponding to the principal ideal cA. We have an analogous
description for PicPn(Ar), and this leads to a natural embedding of PicPn(A)
into PicPn(Ar).

Let I∞ be the subgroup of (Ar/Pn)∗ formed by the residue classes mod
Pn of the elements of F∗qr , so that in particular |I∞| = qr − 1. According to
Hayes [4], [5], I∞ is both the decomposition group and the inertia group of
∞ in the extension HAr (Λ(Pn))/Fr.

Lemma 1. We have

(Ar/Pn)∗ ∩ (I∞ · PicPn(A)) = I∞ · (A/Pn)∗,

where all groups are considered as subgroups of PicPn(Ar).
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P r o o f. It is trivial that I∞ · (A/Pn)∗ ⊆ (Ar/Pn)∗ ∩ (I∞ · PicPn(A)).
Conversely, consider an element of (Ar/Pn)∗∩(I∞ ·PicPn(A)). This element
is a residue class mod RPn(Ar) determined by an Fqr -rational divisor D
prime to P and ∞. Since D represents an element of (Ar/Pn)∗, we can
write D = (a)0 with a ∈ Fr, sgn(a) = 1, and a 6≡ 0 mod P , where (a)0 is the
divisor corresponding to the principal ideal aAr. Now D also represents an
element of I∞ ·PicPn(A), hence mod RPn(Ar) we can write D = (b)0 +D1,
where b ∈ Fr, sgn(b) = 1, b ≡ α mod Pn for some α ∈ F∗qr , and D1 is an
Fq-rational divisor prime to P and ∞. Thus, mod RPn(Ar) we have

(a)0 = (b)0 +D1,

and so

(ab−1)0 −D1 = (c)0

for some c ∈ Fr with sgn(c) = 1 and c ≡ 1 mod Pn. This means that D1 =
(ab−1c−1)0. Since D1 and ∞ are Fq-rational, it follows that ab−1c−1 ∈ F ,
hence D1 represents an element of (A/Pn)∗. In view of D = (b)0 + D1, we
conclude that D represents an element of I∞ · (A/Pn)∗.

3. The first construction. We show how to use narrow ray class fields
to construct global function fields over Fqr with many rational places from
global function fields over Fq with many rational places. The notations from
the previous sections will remain operative. In particular, we recall that
Fr = Fqr · F , viewed as a global function field with full constant field Fqr ,
denotes a constant field extension of the global function field F/Fq, and that
h(F ) and h(Fr) denote the divisor class numbers of F and Fr, respectively.

Theorem 1. Let F/Fq be a global function field of genus g(F ) with
N(F ) ≥ 2. Then for all integers n ≥ 1 and r ≥ 2 there exists a global
function field Kn,r/Fqr such that :

(i) The number of rational places of Kn,r/Fqr is given by

N(Kn,r) =
h(Fr)
h(F )

(1 + q(r−1)(n−1)(N(F )− 1)).

(ii) The genus of Kn,r/Fqr satisfies

h(F )
h(Fr)

(2g(Kn,r)− 2) = q(r−1)(n−1)(2g(F ) + n− 2)− q(r−1)(n−1) − 1
qr−1 − 1

− 1.

P r o o f. (i) Let P and ∞ be two different rational places of F/Fq. For
given r ≥ 2 consider the constant field extension Fr = Fqr ·F , and let A and
Ar be the ∞-integral rings of F and Fr, respectively. For fixed n ≥ 1 let

E = HAr (Λ(Pn))
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be the narrow ray class field modulo Pn determined by a sgn-normalized
Drinfeld Ar-module φ of rank 1. Let K = Kn,r be the subfield of the exten-
sion E/Fr fixed by the subgroup I∞ ·PicPn(A) of PicPn(Ar) = Gal(E/Fr).
Since |I∞ ∩ PicPn(A)| = q − 1, we have

(2) [K : Fr] =
[E : Fr]

|I∞ · PicPn(A)| =
h(Fr)
h(F )

q(r−1)(n−1).

By the construction of K, the place ∞ of Fr splits completely in the ex-
tension K/Fr. A rational place of Fr/Fqr different from P and ∞ splits
completely in K/Fr if and only if its Artin automorphism is contained in
PicPn(A), and this holds if and only if the restriction of this rational place
to F/Fq is rational. In this way we get

(3) [K : Fr](N(F )− 1) =
h(Fr)
h(F )

q(r−1)(n−1)(N(F )− 1)

rational places of K/Fqr . In order to determine N(K), it remains to study
the decomposition of P in the extension K/Fr.

Let Q be a place of K lying over P and R a place of E lying over Q.
Then the inertia group G(R|Q) of R over Q is

G(R|Q) = Gal(E/K) ∩G(R|P ),

where G(R|P ) is the inertia group of R over P , which is equal to (Ar/Pn)∗

(recall that the extension HAr/Fr is unramified). By Lemma 1 we conclude
that G(R|Q) = I∞ · (A/Pn)∗, and so for the ramification indices we get

(4) e(Q|P ) =
e(R|P )
e(R|Q)

=
(qr − 1)qr(n−1)

|I∞ · (A/Pn)∗| = q(r−1)(n−1),

where we also used the fact that |I∞ ∩ (A/Pn)∗| = q − 1.
Let T be the inertia field of Q in the extension K/Fr. We have already

noted that ∞ splits completely in K/Fr, and so by Proposition 1(i) the
only ramified place in K/Fr can be P . Consequently, T/Fr is an unramified
abelian extension in which ∞ splits completely, and so it follows from the
definition of the Hilbert class field that T ⊆ HAr . We also observe that

(5) [T : Fr] =
[K : Fr]
e(Q|P )

=
h(Fr)
h(F )

in view of (2) and (4). Let J = HAr∩K, then Fr ⊆ T ⊆ J . On the one hand,
the extension J/T is unramified, and on the other hand, any place of T lying
over P is totally ramified in J/T . Thus, we must have J = HAr ∩K = T . It
follows that Gal(E/T ) is the subgroup of PicPn(Ar) generated by (Ar/Pn)∗

and I∞ · PicPn(A). By applying Lemma 1, we get

Gal(HAr/T ) = Gal(E/T )/(Ar/Pn)∗

' (I∞ · PicPn(A))/(I∞ · (A/Pn)∗) ' PicPn(A)/(A/Pn)∗.
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Let t ∈ A be a uniformizer at P . Then

(t)0 = P +D,

where P 6∈ supp(D) and D is a positive Fq-rational divisor prime to ∞.
For the corresponding fractional ideals (denoted by the same symbols) we
have P = D−1 modulo principal ideals, and so for the corresponding Galois
automorphisms in Gal(HAr/Fr) = Pic(Ar) we get τP = τD−1 . Since D is Fq-
rational and prime to P and∞, it follows from the formula for Gal(HAr/T )
above that τP = τD−1 ∈ Gal(HAr/T ), and so the theory of Hilbert class
fields shows that P splits completely in T/Fr. By taking into account (5),
we see that P splits into h(Fr)/h(F ) rational places of K. Together with
(3) this yields the formula for N(K) = N(Kn,r) in the theorem.

(ii) Let L be the inertia field of R in E/K. Then Gal(E/L) = G(R|Q) =
I∞ · (A/Pn)∗ by part (i) of the proof, and |Gal(E/L)| = (qr − 1)qn−1.
Furthermore,

Gal(E/L) ⊆ G(R|P ) = Gal(E/HAr ),

hence HAr ⊆ L. Thus, the place S of L lying under R is totally ramified in
E/L. Then by [21, Proposition III.5.12] the different exponent d(R|S) of R
over S is given by

d(R|S) =
∑

γ∈Gal(E/L)\{1}
νR(λ− λγ),

where λ is a generator of Λ(Pn). In accordance with Proposition 1(iii), for
γ ∈ Gal(E/L) we have γ = σgAr for some g ∈ Ar with sgn(g) = 1 and
g =

∑n−1
i=0 αit

i, where all αi ∈ Fqr and t ∈ Ar is a uniformizer at P . Using
the special form of Gal(E/L), the n-tuple (α0, . . . , αn−1) of coefficients can
be written in the form β(1, b1, . . . , bn−1) with β ∈ F∗qr and b1, . . . , bn−1 ∈ Fq.
By Proposition 1(ii) and [5, Lemma 4.4] we have

νR(λ− λγ) = νR(λ− φg(λ)) = νR

(
(1− β)λ−

n−1∑

i=1

βbiφti(λ)
)
.

As in [29, Lemma 5] we see that

νR(φti(λ)) = qri for 0 ≤ i ≤ n− 1.

Thus, if β 6= 1, then νR(λ− λγ) = 1, and if β = 1 and g 6= 1, then

νR(λ− λγ) = qrj ,

where j is the least positive integer with bj 6= 0. This yields
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d(R|S) = (qr − 2)qn−1 +
n−1∑

j=1

(q − 1)qn−1−jqrj(6)

= (qr − 2)qn−1 + (q − 1)qn−1 q
(r−1)n − qr−1

qr−1 − 1
.

Since Gal(E/L) contains I∞, the place ∞ splits completely in L/Fr.
By the definition of L, the place Q is unramified in L/K, and this holds
for any place of K lying over P . Thus, L/K is an unramified extension.
Furthermore, we have

[L : K] =
[E : Fr]

[E : L][K : Fr]
= h(F ).

Hence the Hurwitz genus formula yields

(7) 2g(L)− 2 = h(F )(2g(K)− 2).

For the extension E/L the Hurwitz genus formula shows that

(8) 2g(E)− 2 = (qr − 1)qn−1(2g(L)− 2) + deg(Diff(E/L)).

Only places of E lying over P or ∞ can contribute to deg(Diff(E/L)).
In part (i) of the proof we have shown that there are exactly h(Fr)/h(F )
rational places of K lying over P . If we also use the facts that the extension
L/K of degree h(F ) is unramified and that the places of L lying over P are
totally ramified in E/L, then we can conclude that the sum of the degrees
of the places of E lying over P is equal to h(Fr). Recall that I∞ is both the
decomposition group and the inertia group of ∞ in E/Fr. Therefore we get

deg(Diff(E/L)) = d(R|S)h(Fr) + (qr − 2)h(Fr)qr(n−1).

If we now combine this formula with Proposition 2(ii) (of course with q
replaced by qr), (6), (7), and (8), and if we note that g(Fr) = g(F ), then
we arrive at the desired formula for g(K) = g(Kn,r).

Corollary 1. Let F/Fq be a global function field of genus g(F ) with
N(F ) ≥ 2. Then for every integer r ≥ 2 there exists a global function field
Kr/Fqr with

g(Kr) =
h(Fr)
h(F )

(g(F )− 1) + 1 and N(Kr) =
h(Fr)N(F )

h(F )
.

P r o o f. Apply Theorem 1 with n = 1.

In the theory of algebraic curves over Fq of genus 2 (see Serre [15], [16],
[18]), the prime power q = pe, p prime, e ≥ 1, is called nonspecial if either
(i) e is even and q 6= 4, 9; or (ii) e is odd, p does not divide b2q1/2c, and q is
not of the form k2 + 1, k2 + k + 1, or k2 + k + 2 for some integer k.
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Corollary 2. If the prime power q is nonspecial , then there exists a
global function field K/Fq2 with

g(K) = (q −m+ 1)2 + 1 and N(K) = (q + 2m+ 1)(q −m+ 1)2,

where m = b2q1/2c.
P r o o f. Since q is nonspecial, there is a function field F/Fq with g(F ) = 2

and N(F ) = q + 2m + 1 (see Serre [15], [16]). By Serre [18] we can have
g(F ) = 2 and N(F ) = q+2m+1 only if the eigenvalues of the Frobenius are
α and α (each with multiplicity 2) with α+α = −m and αα = q. Therefore

LF (t) = (1− αt)2(1− αt)2 = (qt2 +mt+ 1)2.

By Corollary 1 and (1) we get a function field K/Fq2 with the desired values
of g(K) and N(K).

Corollary 3. Let q be a nonsquare and let the characteristic p of Fq
satisfy p ≡ 1 mod 4. Then there exists a global function field K/Fq2 with

g(K) = q2 + 2q + 2 and N(K) = (q + 1)3.

P r o o f. It is well known that under our conditions on q there exists
an elliptic curve E over Fq with N(E) = q + 1 (see e.g. Schoof [13] and
Waterhouse [25]). Then E is a supersingular elliptic curve with a cyclic
group of Fq-rational points (see [13, Lemma 4.8]). Furthermore, the order
of the Frobenius acting on the group of 2-division points of E is at most 2.
Thus according to Serre [18], E can be glued to itself if the j-invariant of
E is not equal to 1728. By [20, p. 144, Example 4.5] an elliptic curve with
the j-invariant 1728 is not supersingular if p ≡ 1 mod 4. Hence under our
assumptions, E can be glued to itself. If C is the algebraic curve over Fq
with Jacobian isogenous to E ×E, then for its function field F/Fq we have
g(F ) = 2, N(F ) = q+1, and h(F ) = (q+1)2. This yields LF (t) = (qt2 +1)2,
and so the desired result follows from Corollary 1 and (1).

Example 1. Let F be the rational function field F2(x). Then with n = 4
and r = 2 in Theorem 1 we get a function field K/F4 with g(K) = 5 and
N(K) = 17.

Example 2. Let F = F2(x, y) be the function field defined by

y2 + y =
x

x2 + x+ 1
.

Then g(F ) = 1, N(F ) = 4, and LF (t) = 2t2 + t + 1. Thus, by using (1)
and Theorem 1 with n = 3 and r = 2, we get a function field K/F4 with
g(K) = 9 and N(K) = 26. The function field K is optimal.

Example 3. Let F = F2(x, y) be the function field defined by

y2 + y = x3 + x.
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Then g(F ) = 1, N(F ) = 5, and LF (t) = 2t2 + 2t + 1. Thus, by using (1)
and Theorem 1 with n = 3, 4, 5 and r = 2, we get three function fields
Kn/F4, n = 3, 4, 5, with

g(K3) = 5, N(K3) = 17;

g(K4) = 13, N(K4) = 33;

g(K5) = 33, N(K5) = 65.

The function field K4 is optimal.

Example 4. Let F = F2(x, y) be the function field defined by

y2 + y =
x

x3 + x+ 1
.

Then g(F ) = 2 and N(F ) = 4. Since F has exactly three places of degree 2,
we obtain

LF (t) = 4t4 + 2t3 + 3t2 + t+ 1.
Thus, by using (1) and Theorem 1 with n = 1 and r = 2, we get a function
field K/F4 with g(K) = 6 and N(K) = 20. The function field K is optimal.

Example 5. Let F be the rational function field Fq(x), where q is an
arbitrary prime power. Then with n = 3 and r = 2 in Theorem 1 we get
a function field K/Fq2 with g(K) = q(q − 1)/2 and N(K) = q3 + 1. The
field K is the well-known Hermitian function field (see [2, Section V]), it is
optimal and meets the Weil bound.

4. The second and third constructions. In the first construction
the only ramification occurred at rational places of the base field F . In this
section we present constructions in which places of F of higher degree can
be ramified.

Theorem 2. Let F/Fq be a global function field of genus g(F ) with
N(F ) ≥ 1 and let r ≥ 2 be an integer. Suppose that F has at least one place
of degree d > 1 with gcd(d, r) = 1. Then for every integer n ≥ 1 there exists
a global function field Kn/Fqr such that :

(i) The number of rational places of Kn/Fqr is given by

N(Kn) =
(q − 1)(qdr − 1)h(Fr)
(qd − 1)(qr − 1)h(F )

qd(r−1)(n−1)N(F ).

(ii) The genus of Kn/Fqr satisfies

h(F )
h(Fr)

(2g(Kn)− 2) =
(q − 1)(qdr − 1)
(qd − 1)(qr − 1)

qd(r−1)(n−1)(2g(F ) + dn− 2)

− d(q − 1)(qdr − 1)(qd(r−1)(n−1) − 1)
(qd − 1)(qr − 1)(qd(r−1) − 1)

− d.
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P r o o f. (i) Let ∞ be a rational place of F/Fq, and for given r ≥ 2 let A
and Ar be the ∞-integral rings of F and Fr = Fqr · F , respectively. Let Q
be a place of F/Fq of degree d. Then Q is still a place of degree d of Fr/Fqr
since gcd(d, r) = 1. For given n ≥ 1 let

E = HAr (Λ(Qn))

be the narrow ray class field modulo Qn determined by a sgn-normalized
Drinfeld Ar-module φ of rank 1. Let Kn be the subfield of the extension
E/Fr fixed by the subgroup H = I∞ ·PicQn(A) of PicQn(Ar) = Gal(E/Fr).
Since |I∞ ∩ PicQn(A)| = q − 1, we have

|H| = qr − 1
q − 1

(qd − 1)qd(n−1)h(F ),

and so

(9) [Kn : Fr] =
|PicQn(Ar)|
|H| =

(q − 1)(qdr − 1)h(Fr)
(qd − 1)(qr − 1)h(F )

qd(r−1)(n−1).

By arguments in the proof of Theorem 1 it is clear that

N(Kn) = [Kn : Fr]N(F ),

and this yields the desired formula for N(Kn).
(ii) Let R be a place of E lying over Q and let L be the inertia field

of R in E/Kn. As in the proof of Theorem 1(ii) we see that Gal(E/L) =
I∞ · (A/Qn)∗ and that the place S of L lying under R is totally ramified in
E/L. Furthermore, the different exponent d(R|S) of R over S is given by

d(R|S) =
∑

γ∈Gal(E/L)\{1}
νR(λ− λγ),

where λ is a generator of Λ(Qn). We continue to proceed as in the proof of
Theorem 1(ii), but now g =

∑n−1
i=0 αit

i, where t ∈ Ar is a uniformizer at Q
and the αi belong to a fixed complete residue system of Ar modulo Q which
includes the elements of Fqr for convenience. Therefore

νR(λ− λγ) = νR

(
φ1−α0(λ)−

n−1∑

i=1

φαi(φti(λ))
)
.

Furthermore,

νR(φti(λ)) = qdri for 1 ≤ i ≤ n− 1,

and νR(φb(λ)) = 1 for b ∈ Ar with νQ(b) = 0. Thus, if α0 6= 1, then
νR(λ− λγ) = 1, and if α0 = 1 and g 6= 1, then

νR(λ− λγ) = qdrj ,
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where j is the least positive integer with αj 6= 0. Using the special form of
Gal(E/L), we obtain

(10) d(R|S)

=
(

(qd − 1)(qr − 1)
q − 1

− 1
)
qd(n−1) +

n−1∑

j=1

(qd − 1)qd(n−1−j)qdrj

=
(

(qd − 1)(qr − 1)
q − 1

− 1 +
(qd − 1)(qdn(r−1) − qd(r−1))

qd(r−1) − 1

)
qd(n−1).

By the Hurwitz genus formula and g(Fr) = g(F ) we get

2g(Kn)− 2 = [Kn : Fr](2g(F )− 2) + deg(Diff(Kn/Fr)).

Since only the place Q can be ramified in the extension Kn/Fr, we have

deg(Diff(Kn/Fr)) =
d[Kn : Fr]d(P |Q)

e(P |Q)
,

where d(P |Q), respectively e(P |Q), is the different exponent, respectively
ramification index, of P over Q and P is the place of Kn lying under S.
Now

e(P |Q) =
|(Ar/Qn)∗|

[E : L]
=

(q − 1)(qdr − 1)
(qd − 1)(qr − 1)

qd(r−1)(n−1),

and so together with (9) this yields

deg(Diff(Kn/Fr)) =
dh(Fr)d(P |Q)

h(F )
.

Thus we obtain

(11)
h(F )
h(Fr)

(2g(Kn)− 2)

=
(q − 1)(qdr − 1)
(qd − 1)(qr − 1)

qd(r−1)(n−1)(2g(F )− 2) + d(P |Q)d.

It remains to calculate d(P |Q). By the tower formula for different exponents
we have d(R|P ) = d(R|S) and

d(R|Q) = [E : L]d(P |Q) + d(R|P ),

and also d(R|Q) = d(R|U), where U is the place of HAr lying under R. This
yields

d(P |Q) =
(q − 1)(d(R|U)− d(R|S))

(qd − 1)(qr − 1)qd(n−1)
.

Now d(R|U) was calculated in the proof of [29, Proposition 2], and accord-
ingly we get

d(R|U) = (nqdr − n− 1)qdr(n−1).
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If we combine this with (10), then we arrive at an expression for d(P |Q),
and by substituting this into (11) we obtain the desired identity.

Example 6. Let the function field F/F2 be as in Example 3. Then F
has a place of degree 5. Thus, by using (1) and Theorem 2 with r = 2, d = 5,
and n = 1, we get a function field K/F4 with g(K) = 26 and N(K) = 55.
The function field K is optimal.

Example 7. Let F be the rational function field Fq(x), where q is an
arbitrary prime power. Then with r = 2, d = 3, and n = 1 in Theorem 2 we
get a function field K/Fq2 with g(K) = q(q−1)/2 and N(K) = q3 + 1. This
is again the Hermitian function field (compare with Example 5).

Theorem 3. Let q = pr with a prime p and r ≥ 1, and for a given integer
m ≥ 1 let F/Fq be a global function field of genus g(F ) with N(F ) ≥ m+ 1.
Suppose that F has at least one place of degree d > 1 with rd > m. Assume
also that Nq(1 + p(g(F )− 1)) < (m+ 1)p in case g(F ) ≥ 1. Then for every
integer l with 1 ≤ l ≤ rd−m there exists a global function field Kl/Fq such
that :

(i) The number of rational places of Kl/Fq satisfies N(Kl) ≥ (m+ 1)pl

and pl |N(Kl). Furthermore, N(Kl) = (m+ 1)pl if N(F ) = m+ 1.
(ii) The genus of Kl/Fq is given by

g(Kl) = pl(g(F ) + d− 1) + 1− d.

P r o o f. (i) Let ∞, P1, . . . , Pm be m+ 1 distinct rational places of F and
let A be the∞-integral ring of F . Let Q be a place of F of degree d. Consider
the Fp-vector space

V := PicQ2(A)/PicQ2(A)p.

Then dimFp(V ) is equal to the p-rank of PicQ2(A), which is at least the
p-rank of (A/Q2)∗. Let t ∈ A be a uniformizer at Q and let α1, . . . , αrd be
a basis of the residue field of Q over Fp. We identify the residue field of Q
with Fqd . Then

(A/Q2)∗ ' (Fqd [t]/(t2))∗.
The group (Fqd [t]/(t2))∗ has a direct decomposition

F∗qd ⊗
( rd⊗

i=1

〈1 + αit〉
)
,

hence the p-rank of (A/Q2)∗ is rd since each cyclic subgroup 〈1 + αit〉 has
order p. If we view P1, . . . , Pm as elements of the vector space V in an
obvious sense, then they generate a subspace of V of dimension at most m.
For a given l with 1 ≤ l ≤ rd−m, let Wl be a subspace of V of dimension
dimFp(V ) − l containing all Pi. Let Gl be the subgroup of PicQ2(A) that
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contains PicQ2(A)p and satisfies Gl/PicQ2(A)p = Wl. Then Gl contains all
Pi and [PicQ2(A) : Gl] = pl. Let

E = HA(Λ(Q2))

be the narrow ray class field modulo Q2 determined by a sgn-normalized
Drinfeld A-module φ of rank 1. Let Kl be the subfield of the extension E/F
fixed by Gl. Then Kl/F is an extension of degree pl and∞, P1, . . . , Pm split
completely in Kl/F , hence N(Kl) ≥ (m + 1)pl. The remaining assertions
in part (i) of the theorem follow from the fact that Q is the only possible
ramified place in Kl/F .

(ii) We first show that Q is totally ramified in Kl/F . Otherwise, one
could find a subfield J of Kl/F such that J/F is an unramified extension of
degree p. This is impossible if g(F ) = 0. If g(F ) ≥ 1, then the genus of J is
1 + p(g(F )− 1) and the number of rational places of J is at least (m+ 1)p.
This yields the contradiction (m+ 1)p ≤ N(J) ≤ Nq(g(J)) < (m+ 1)p.

Now let R be the place of Kl lying over Q and S a place of E lying over
R. Then the inertia group G(S|R) of S over R has the order

|(A/Q2)∗|
[Kl : F ]

= (qd − 1)prd−l

and it is a subgroup of G(S|Q) = Gal(E/HA) = (A/Q2)∗. Hence G(S|R)
has a direct decomposition F∗qd⊗H, where H is a subgroup of

⊗rd
i=1〈1+αit〉

of order prd−l. Let T be the place lying under S in the inertia field of S in
E/Kl. Then the different exponent d(S|T ) of S over T is given by

d(S|T ) =
∑

γ∈G(S|R)\{1}
νS(λ− λγ)

=
∑

γ∈G(S|R)\H
νS(λ− λγ) +

∑

γ∈H\{1}
νS(λ− λγ),

where λ is a generator of Λ(Q2). As in the proof of Theorem 2, we have
νS(φt(λ)) = qd and νS(φb(λ)) = 1 for b ∈ A with νQ(b) = 0. Hence νS(λ−
λγ) = 1 if γ ∈ G(S|R)\H and νS(λ − λγ) = qd if γ ∈ H\{1}. Thus we
obtain

d(S|T ) = (qd − 2)prd−l + qd(prd−l − 1).

Places of E lying over ∞ are tamely ramified. Thus, the Hurwitz genus
formula yields

2g(E)− 2 = h(F )(qd − 1)prd−l(2g(Kl)− 2) + dh(F )d(S|T )

+ h(F )qd
(qd − 1)(q − 2)

q − 1
.
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If we now use the formula for d(S|T ) above and Proposition 2(ii), then we
arrive at the formula for g(Kl).

R e m a r k 1. If l = 1 and we drop the condition on Nq(1 + p(g(F )− 1))
in Theorem 3, then in Theorem 3(ii) we either have the stated formula for
g(K1) or g(K1) = p(g(F )−1)+1. This holds since then [K1 : F ] = p, so that
either Q is totally ramified in K1/F or the extension K1/F is unramified.

R e m a r k 2. Theorem 3 improves values in the table of bounds for N2(g)
in [29] or equalizes values in [24] for q = 2. In the following Table 1 we list
the values of g(K) and N(K) obtained from Theorem 3, the value of the
genus g(F ) of the base field F in Theorem 3, and the values of l, m, and d
in Theorem 3. In all cases we take, of course, p = 2 and r = 1 in Theorem 3.

Table 1

g(K) 24 27 38 41 48 60 63 70 74 78 85 87 89 91
N(K) 20 22 28 30 34 40 42 44 48 48 52 56 56 54
g(F ) 6 8 12 13 15 6 21 23 25 9 10 3 11 31
l 1 1 1 1 1 2 1 1 1 2 2 3 2 1
m 9 10 13 14 16 9 20 21 23 11 12 6 13 26
d 13 12 15 16 19 13 22 25 25 15 16 10 16 30

Example 8. Let F = F4(x, y) be the function field defined by

y2 + y = x3.

Then g(F ) = 1 and N(F ) = N4(1) = 9. Furthermore, F/F4 has a place
of degree 5, for instance by [29, Lemma 8]. Thus, we can apply Theorem 3
with m = 8, d = 5, and l = 2, and this yields a function field K/F4 with
g(K) = 16 and N(K) = 36.

Example 9. Since N8(1) = 14, there exists a function field F/F8 with
g(F ) = 1 and N(F ) = 14. By [29, Lemma 8], F/F8 has a place of degree
5. Thus, we can apply Theorem 3 with m = 13, d = 5, and l = 2, and this
yields a function field K/F8 with g(K) = 16 and N(K) = 56.

5. Curves over F4 with many rational points. In this section, by
applying the three theorems in Sections 3 and 4, we give a table of intervals
[a, b] in which N4(g) lies for 1 ≤ g ≤ 51 and some selected larger values.
This table extends and improves the corresponding table in [24]. But first we
present some examples which cannot be derived from our previous theorems.
In these examples, it will be convenient to identify an irreducible polynomial
over Fq with the place of Fq(x) of which it is a zero.

Example 10. Let F be the rational function field F4(x). Let the place
∞ of F be the pole of x and let A = F4[x] be the ∞-integral ring of F .
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Put E = HA(Λ(Q)), where Q is the place x3 + x + 1 of F . Let K be the
subfield of the extension E/F fixed by the subgroup (F2[x]/(x3 + x + 1))∗

of Gal(E/F ) = (A/Q)∗. Then [K : F ] = 9, and the places x and x + 1
split completely in K/F . The place ∞ splits into three rational places in
K/F , each with ramification index 3. Thus we get N(K) = 21. The place
Q is totally and tamely ramified in K/F . Hence the Hurwitz genus formula
yields 2g(K)− 2 = −9 · 2 + 3 · (3− 1) + 3 · (9− 1), that is, g(K) = 7.

Example 11. Let the function field F/F2 be as in Example 2. Let R be
one of the two places of F of degree 4 lying over the place x4+x3+x2+x+1 of
F2(x). Then there are two places Q2 and Q′2 of F2/F4 of degree 2 lying over
R, where F2 = F4 ·F . Distinguish a rational place∞ of F and let A and A2

be the ∞-integral rings of F and F2, respectively. Put E = HA2(Λ(Q2Q
′
2)).

We have

|PicR(A)| = 15 · h(F ) and |Gal(E/F2)| = 152 · h(F2) = 450 · h(F ),

where we used (1) and LF (−1) = 2 in the last identity. Let G be the
subgroup of Gal(E/F2) of order 45 ·h(F ) which contains PicR(A), and let K
be the subfield of the extension E/F2 fixed by G. Note that [K : F2] = 10.
Clearly, all rational places of F/F2 split completely in the extension K/F2,
and so for the function field K/F4 we have N(K) ≥ 40. The only ramified
places in the extension K/F2 are Q2 and Q′2, each with ramification index
5. Hence the Hurwitz genus formula yields g(K) = 17. Since N4(17) ≤ 40,
the function field K is optimal and N(K) = 40.

Example 12. Let F = F2(x, y) be the function field defined by

y2 + y =
x(x+ 1)
x3 + x+ 1

.

Then g(F ) = 2, N(F ) = 6, and

LF (t) = 4t4 + 6t3 + 5t2 + 3t+ 1.

The place x2 + x+ 1 of F2(x) is inert in F/F2(x), hence it yields a place R
of F of degree 4. Furthermore, there are two places Q2 and Q′2 of F2/F4 of
degree 2 lying over R, where F2 = F4 · F . Distinguish a rational place ∞ of
F and let A and A2 be the ∞-integral rings of F and F2, respectively. Put
E = HA2(Λ(Q2Q

′
2)). We have

|PicR(A)| = 15 · h(F ) and |Gal(E/F2)| = 152 · h(F2) = 152 · h(F ),

where we used (1) in the last identity. Let G be the subgroup of Gal(E/F2)
of order 45 · h(F ) which contains PicR(A), and let K be the subfield of the
extension E/F2 fixed by G. Note that [K : F2] = 5. All rational places of
F/F2 split completely in the extension K/F2, and so for the function field
K/F4 we have N(K) ≥ 30. Since F/F2 has no places of degree 2, all rational
places of F2/F4 are lying over rational places of F/F2, and so N(K) = 30.
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The only ramified places in the extension K/F2 are Q2 and Q′2, and they
are totally and tamely ramified. Hence the Hurwitz genus formula yields
g(K) = 14.

Example 13. Let F = F2(x, y) be the function field defined by

y2 + y = x2(x+ 1)(x2 + x+ 1).

Then g(F ) = 2, N(F ) = 5, and

LF (t) = 4t4 + 4t3 + 4t2 + 2t+ 1.

Let R be one of the two places of F of degree 4 lying over the place x4 +x+1
of F2(x). Then there are two places Q2 and Q′2 of F2/F4 of degree 2 lying over
R, where F2 = F4 ·F . Distinguish a rational place∞ of F and let A and A2

be the ∞-integral rings of F and F2, respectively. Put E = HA2(Λ(Q2Q
′
2))

and note that E is the composite field of HA2(Λ(Q2)) and HA2(Λ(Q′2)). We
have |PicR(A)| = 15 · h(F ) and |Gal(E/F2)| = 152 · h(F2) = 675 · h(F ),
where we used (1) and LF (−1) = 3 in the last identity. Furthermore, the
place ∞ has ramification index 3 in the extension E/F2, and so its inertia
group in E/F2 has order 3 and can be identified with F∗4. Now let K be the
subfield of the extension E/F2 fixed by F∗4 · PicR(A), then [K : F2] = 15.
All rational places of F/F2 split completely in the extension K/F2, and so
for the function field K/F4 we have N(K) ≥ 75. The only ramified places in
the extension K/F2 are Q2 and Q′2, and as in the proof of Theorem 1(i) it
is seen that each has ramification index 5. Hence the Hurwitz genus formula
yields g(K) = 40. From N4(40) ≤ 77 it follows that N(K) = 75.

We need to explain the symbols appearing in Table 2 below. In all three
theorems and in the examples of our paper, the field K is a subfield of a
narrow ray class extension E/F with a base field F of lower genus.

• g = g(K) — the genus of K/F4.

In the column labeled N4(g), the first number is the lower bound for
N(K), and thus for N4(g), and the second is the upper bound for N4(g)
obtained by Weil’s explicit formulas and the trigonometric polynomials of
Oesterlé (see [15], [18]). A program for calculating upper bounds for Nq(g)
was kindly supplied to us by Jean-Pierre Serre. If only one number is given
under N4(g), then this is the exact value.

• g(F ) — the genus of the base field F .
•M — the ideal yielding the narrow ray class field. In the column labeled

M , the ideal P always corresponds to a rational place of F and the ideals
Qd and Q′d correspond to places of F of degree d.
• G — the Galois group of K/F .



98 H. Niederreiter and C. P. Xing

• n — the number of rational places of F that split completely in K/F .
• Ref — the theorem, example, or reference from which the resulting

field K is obtained. Where necessary, a reference to the base field F is also
given, and the various base fields are listed after the table.

Table 2

g N4(g) g(F ) M |G| n Ref

1 9 [25]
2 10 [17]
3 14 [17]
4 15 [17]
5 17-18 0 P 4 8 2 Ex. 1 (see also Ex. 3)
6 20 2 P 5 4 Ex. 4
7 21-22 0 Q3 9 2 Ex. 10
8 21-24 2 P 7 3 Th. 1, F.2
9 26 1 P 3 8 3 Ex. 2

10 27-28 2 P 2 6 4 Th. 1, F.4
11 25-30 [10]
12 28-31 3 Q2

7 2 14 Th. 3, l = 1,m = 13, d = 7, r = 2

13 33 1 P 4 8 4 Ex. 3
14 30-35 2 Q2Q

′
2 5 6 Ex. 12

15 33-37 0 Q5 11 3 Th. 2

16 36-38 1 Q2
5 4 9 Ex. 8

17 40 1 Q2Q
′
2 10 4 Ex. 11

18 34-42 5 Q2
9 2 17 Th. 3, l = 1, m = 16, d = 9, r = 2

19 36-43 1 Q2
6 4 9 Th. 3, l = 2, m = 8, d = 6, r = 2

20 36-45 2 Q2
5 4 9 Th. 3, l = 2, m = 8, d = 5, r = 2

21 41-47 2 P 4 8 5 Th. 1, F.1
22 40-48 6 Q2

11 2 20 Th. 3, l = 1, m = 19, d = 11, r = 2

23 40-50 2 Q2
6 4 10 Th. 3, l = 2, m = 9, d = 6, r = 2

24 42-52 7 Q2
11 2 21 Th. 3, l = 1, m = 20, d = 11, r = 2

25 51-53 2 P 3 12 4 Th. 1, F.4
26 55 1 Q5 11 5 Ex. 6
27 49-56 [24]

28 44-58 9 Q2
11 2 22 Th. 3, l = 1, m = 21, d = 11, r = 2

29 49-60 3 P 4 8 6 Th. 1, F.5
30 52-61 3 Q2

7 4 13 Th. 3, l = 2, m = 12, d = 7, r = 2
31 60-63 2 Q3 15 4 Th. 2, F.3

32 52-65 10 Q2
13 2 26 Th. 3, l = 1, m = 25, d = 13, r = 2

33 65-66 1 P 5 16 4 Ex. 3
34 57-68 [24]
35 54-69 10 Q2

16 2 27 Th. 3, l = 1, m = 26, d = 16, r = 2

36 64-71 1 Q2
5 8 8 Th. 3, l = 3, m = 7, d = 5, r = 2
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Table 2 (cont.)

g N4(g) g(F ) M |G| n Ref

37 66-72 2 Q5 11 6 Th. 2, F.1

38 56-74 12 Q2
15 2 28 Th. 3, l = 1, m = 27, d = 15, r = 2

39 56-75 13 Q2
14 2 28 Th. 3, l = 1, m = 27, d = 14, r = 2

40 75-77 2 Q2Q
′
2 15 5 Ex. 13

41 65-78 2 P 3 20 3 Th. 1, F.3
42 66-80 13 Q2

17 2 33 Th. 3, l = 1, m = 32, d = 17, r = 2

43 72-81 1 Q2
6 8 9 Th. 3, l = 3, m = 8, d = 6, r = 2

44 68-83 5 Q2
9 4 17 Th. 3, l = 2, m = 16, d = 9, r = 2

45 80-84 0 Q2
4 16 5 Th. 3, l = 4, m = 4, d = 4, r = 2

46 66-86 13 Q2
21 2 33 Th. 3, l = 1, m = 32, d = 21, r = 2

47 68-87 5 Q2
10 4 17 Th. 3, l = 2, m = 16, d = 10, r = 2

48 77-89 3 Q5 11 7 Th. 2, F.5

49 81-90 2 P 5 16 5 Th. 1, F.1
50 91-92 [19]
51 80-93 2 Q2

6 8 10 Th. 3, l = 3, m = 9, d = 6, r = 2

53 80-96 17 Q2
20 2 40 Th. 3, l = 1, m = 39, d = 20, r = 2

54 80-98 6 Q2
11 4 20 Th. 3, l = 2, m = 19, d = 11, r = 2

61 99-108 2 P 4 24 4 Th. 1, F.4
73 112-125 3 Q2

8 8 14 Th. 3, l = 3, m = 13, d = 8, r = 2
133 204-209 [19]

F.1: y2 + y = x(x+ 1)
x3 + x+ 1

, F.2: y2 + y = x(x2 + x+ 1)2,

F.3: y2 + y = x
x3 + x+ 1

, F.4: y2 + y = x2(x+ 1)(x2 + x+ 1),

F.5: L(Λ(Q)) with L = F2(x) and Q = x3 + x+ 1 (see [9, Example 3A]).

References

[1] A. Garc ia and H. St ichtenoth, A tower of Artin–Schreier extensions of function
fields attaining the Drinfeld–Vladut bound , Invent. Math. 121 (1995), 211–222.

[2] —, —, Algebraic function fields over finite fields with many rational places, IEEE
Trans. Inform. Theory 41 (1995), 1548–1563.

[3] —, —, On the asymptotic behaviour of some towers of function fields over finite
fields, J. Number Theory 61 (1996), 248–273.

[4] D. R. Hayes, Stickelberger elements in function fields, Compositio Math. 55 (1985),
209–239.

[5] —, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields,
D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1–32.

[6] Y. Ihara, Some remarks on the number of rational points of algebraic curves over
finite fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 721–724.

[7] H. Niederre i ter and C. P. Xing, Low-discrepancy sequences and global function
fields with many rational places, Finite Fields Appl. 2 (1996), 241–273.



100 H. Niederreiter and C. P. Xing

[8] H. Niederre i ter and C. P. Xing, Quasirandom points and global function fields,
in: Finite Fields and Applications, S. D. Cohen and H. Niederreiter (eds.), Cam-
bridge University Press, Cambridge, 1996, 269–296.

[9] —, —, Explicit global function fields over the binary field with many rational places,
Acta Arith. 75 (1996), 383–396.

[10] —, —, Cyclotomic function fields, Hilbert class fields, and global function fields with
many rational places, ibid. 79 (1997), 59–76.

[11] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38
(1991), 300–322.

[12] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987),
365–378.

[13] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Combin. Theory
Ser. A 46 (1987), 183–211.

[14] —, Algebraic curves over F2 with many rational points, J. Number Theory 41 (1992),
6–14.

[15] J.-P. Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un
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