On the distribution of the sequence $(n \alpha)$ with transcendental α

by
Christoph Baxa (Wien)

1. Introduction. Let $\alpha \in \mathbb{R}$ be irrational with regular continued fraction expansion $\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ (i.e. $a_{0} \in \mathbb{Z}$ and $a_{i} \in \mathbb{N}$ for all $i \geq 1$) and convergents $p_{n} / q_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. (Sometimes we write $a_{n}(\alpha)$ and $p_{n}(\alpha) / q_{n}(\alpha)$ to stress the dependence on α.) It is a classic result of P . Bohl [5], W. Sierpiński [15], [16] and H. Weyl [17], [18] that the sequence $(n \alpha)_{n \geq 1}$ is uniformly distributed modulo 1 . This property is studied from a quantitative viewpoint by means of the speed of convergence in the limit relation $\lim _{N \rightarrow \infty} D_{N}^{*}(\alpha)=0$ where the quantity

$$
D_{N}^{*}(\alpha)=\sup _{0 \leq x \leq 1}\left|\frac{1}{N} \sum_{n=1}^{N} c_{[0, x)}(\{n \alpha\})-x\right|
$$

is called discrepancy. According to a theorem of W. M. Schmidt [11] the convergence is best possible if $D_{N}^{*}(\alpha)=O((\log N) / N)$. It was first observed by H. Behnke [4] that this estimate is satisfied if and only if α is of bounded density, i.e. $\sum_{i=1}^{m} a_{i}=O(m)$ as $m \rightarrow \infty$. For α of bounded density the $\operatorname{map} \alpha \mapsto \nu^{*}(\alpha)=\lim \sup _{N \rightarrow \infty} N D_{N}^{*}(\alpha) / \log N$ is used to obtain more detailed information. It was proved by Y. Dupain and V. T. Sós [6] that $\inf _{\alpha \in B} \nu^{*}(\alpha)=\nu^{*}([\overline{2}])$ where B denotes the set of numbers of bounded density and $[\overline{2}]=[2,2,2, \ldots]=1+\sqrt{2}$ is used as a convenient shorthand notation. J. Schoißengeier [14] expressed $\nu^{*}(\alpha)$ in terms of the continued fraction expansion of α after he had obtained partial results in [13]. Employing these results C. Baxa [3] showed the following:
(1) Let $B^{q}:=\{\alpha \in B \mid \alpha$ is a quadratic irrationality $\}$. Then we have $\nu^{*}(B)=\overline{\nu^{*}\left(B^{q}\right)}=\left[\nu^{*}([2]), \infty\right)$.
(2) Let $b \geq 4$ be an even integer, $B_{b}:=\left\{\alpha=\left[a_{0}, a_{1}, a_{2}, \ldots\right] \in B \mid a_{i} \geq b\right.$ for all $i \geq 1\}$ and $B_{b}^{q}:=\left\{\alpha \in B_{b} \mid \alpha\right.$ is a quadratic irrationality $\}$. Then $\nu^{*}\left(B_{b}\right)=\overline{\nu^{*}\left(B_{b}^{q}\right)}=\left[\nu^{*}([\bar{b}]), \infty\right)$.

[^0]It is the purpose of the present paper to strengthen these results and to prove:

Theorem 1. Let $B^{t}:=\{\alpha \in B \mid \alpha$ is transcendental $\}$ and $B^{u}:=\{\alpha \in$ $B \mid \alpha$ is a U_{2}-number $\}$. Then

$$
\nu^{*}\left(B^{t}\right)=\nu^{*}\left(B^{u}\right)=\left[\nu^{*}([\overline{2}]), \infty\right)
$$

Theorem 2. Let $B_{b}^{t}:=\left\{\alpha \in B_{b} \mid \alpha\right.$ is transcendental $\}$ and $B_{b}^{u}:=$ $\left\{\alpha \in B_{b} \mid \alpha\right.$ is a U_{2}-number $\}$ (where again $b \geq 4$ is assumed to be an even integer). Then

$$
\nu^{*}\left(B_{b}^{t}\right)=\nu^{*}\left(B_{b}^{u}\right)=\left[\nu^{*}([\bar{b}]), \infty\right)
$$

Remarks. (1) For a more detailed and leisurely exposition of the problem and its history the reader is referred to [3].
(2) In contrast to Theorem 1 we see that $\nu^{*}\left(B^{q}\right) \varsubsetneqq\left[\nu^{*}([\overline{2}]), \infty\right)$ since $\nu^{*}(\alpha)$ is transcendental if α is a quadratic irrationality. This follows from Theorem 1 in $\S 4$ of [14] as the logarithm of an algebraic number $\neq 1$ is always transcendental.
2. Criteria for transcendence. Our criteria are a variant of a method used by E. Maillet [7, Chapter 7] and A. Baker [1], [2] (see also [8, §36]). We will follow rather closely parts of [1] and [2] with two major differences:
(1) We will use a theorem by W. M. Schmidt which became available only a few years later [9] and was generalized in [10] (compare also with [12]).
(2) We do not aim at criteria of great generality but at specific ones which are well suited for our purpose. This explains the special shape of Corollary 6 below.

Definition. If β is algebraic then $H(\beta)$ denotes the classical absolute height. This means, if $p(X)=\sum_{i=0}^{m} a_{i} X^{i} \in \mathbb{Z}[X] \backslash\{0\}$ with $\operatorname{gcd}\left(a_{0}, \ldots, a_{m}\right)$ $=1$ and $p(\beta)=0$ (and $\operatorname{deg} p$ minimal with this property) then

$$
H(\beta)=\max _{0 \leq i \leq m}\left|a_{i}\right| .
$$

Theorem 3 (W. M. Schmidt). Let $\alpha \in \mathbb{R}$ be algebraic but neither rational nor a quadratic irrationality and $\delta>0$. Then there exist only finitely many $\beta \in \mathbb{R}$ which are rational or quadratic irrationalities such that $|\alpha-\beta|<$ $H(\beta)^{-3-\delta}$.

Corollary 4. Let $\alpha \in \mathbb{R}$ have "quasiperiodic" but not periodic continued fraction expansion

$$
\alpha=\left[0, a_{1}, \ldots, a_{\nu_{1}-1},{\overline{a_{\nu_{1}}}, \ldots, a_{\nu_{1}+k_{1}-1}}^{\lambda_{1}},{\overline{a_{\nu_{2}}, \ldots, a_{\nu_{2}+k_{2}-1}}}^{\lambda_{2}}, \ldots\right]
$$

(i.e. $\nu_{n}=\nu_{1}+\sum_{i=1}^{n-1} \lambda_{i} k_{i}$). If α is algebraic then $\lim \sup _{i \rightarrow \infty} q_{\nu_{i+1}-1} q_{\nu_{i}+k_{i}-1}^{-3-\delta}$ $<\infty$. (Here $\overline{a_{\nu}, \ldots, a_{\nu+k}} \lambda$ indicates that the partial quotients $a_{\nu}, \ldots, a_{\nu+k}$
should be repeated λ times. For example $\left[0, \overline{1,2,3}^{2}, \overline{5}^{3}, 7, \ldots\right]=[0,1,2,3,1,2$, $3,5,5,5,7, \ldots]$.)

Proof. For $i \geq 1$ we define the quadratic irrationality

$$
\begin{aligned}
\beta_{i}:= & {\left[0, a_{1}, \ldots, a_{\nu_{1}-1},{\overline{a_{\nu_{1}}}, \ldots, a_{\nu_{1}+k_{1}-1}}^{\lambda_{1}}, \ldots\right.} \\
\ldots, \overline{a_{\nu_{i-1}}, \ldots, a_{\nu_{i-1}+k_{i-1}-1}} & \left.\lambda_{i-1}, \overline{a_{\nu_{i}}, \ldots, a_{\nu_{i}+k_{i}-1}}\right] .
\end{aligned}
$$

For $k \leq \nu_{i+1}-1$ we have $a_{k}(\alpha)=a_{k}\left(\beta_{i}\right)$ and we may write p_{k} / q_{k} for $p_{k}(\alpha) / q_{k}(\alpha)=p_{k}\left(\beta_{i}\right) / q_{k}\left(\beta_{i}\right)$. Now

$$
L_{i} \beta_{i}^{2}+M_{i} \beta_{i}+N_{i}=0
$$

with

$$
\begin{aligned}
& L_{i}=q_{\nu_{i}-2} q_{\nu_{i}+k_{i}-1}-q_{\nu_{i}-1} q_{\nu_{i}+k_{i}-2}, \\
& M_{i}=q_{\nu_{i}-1} p_{\nu_{i}+k_{i}-2}+p_{\nu_{i}-1} q_{\nu_{i}+k_{i}-2}-p_{\nu_{i}-2} q_{\nu_{i}+k_{i}-1}-q_{\nu_{i}-2} p_{\nu_{i}+k_{i}-1} \text {, } \\
& N_{i}=p_{\nu_{i}-2} p_{\nu_{i}+k_{i}-1}-p_{\nu_{i}-1} p_{\nu_{i}+k_{i}-2},
\end{aligned}
$$

and therefore

$$
H\left(\beta_{i}\right) \leq \max \left\{\left|L_{i}\right|,\left|M_{i}\right|,\left|N_{i}\right|\right\}<2 q_{\nu_{i}+k_{i}-1}^{2} .
$$

Theorem 3 implies

$$
q_{\nu_{i+1}-1}^{-2}>\left|\alpha-\beta_{i}\right|>C(\alpha, \delta) H\left(\beta_{i}\right)^{-3-\delta}>C(\alpha, \delta) 2^{-3-\delta} q_{\nu_{i}+k_{i}-1}^{-6-2 \delta}
$$

for a certain $C(\alpha, \delta)>0$. The corollary follows immediately.
Lemma 5. Keeping all notations of Corollary 4 we have

$$
0<\left|L_{i} \alpha^{2}+M_{i} \alpha+N_{i}\right|<8 q_{\nu_{i}+k_{i}+1}^{4} q_{\nu_{i+1}-1}^{-2} .
$$

Proof. Let $\bar{\beta}_{i}$ denote the conjugate of β_{i}. If $\left|\bar{\beta}_{i}\right| \geq 1$ it follows from $L_{i} \bar{\beta}_{i}^{2}+M_{i} \bar{\beta}_{i}+N_{i}=0$ that

$$
\begin{aligned}
\left|\bar{\beta}_{i}\right|^{2} \leq\left|L_{i} \bar{\beta}_{i}^{2}\right| & =\left|M_{i} \bar{\beta}_{i}+N_{i}\right|<2 q_{\nu_{i}+k_{i}-1}^{2}\left(\left|\bar{\beta}_{i}\right|+1\right) \\
& \leq 4 q_{\nu_{i}+k_{i}-1}^{2}\left|\bar{\beta}_{i}\right|
\end{aligned}
$$

and therefore $\left|\bar{\beta}_{i}\right|<4 q_{\nu_{i}+k_{i}-1}^{2}$, which remains true even if $\left|\bar{\beta}_{i}\right|<1$. This implies $\left|\alpha-\bar{\beta}_{i}\right| \leq 1+\left|\bar{\beta}_{i}\right|<1+4 q_{\nu_{i}+k_{i}-1}^{2}<8 q_{\nu_{i}+k_{i}-1}^{2}$ and thus

$$
\begin{aligned}
\left|L_{i} \alpha^{2}+M_{i} \alpha+N_{i}\right| & =\left|L_{i}\right| \cdot\left|\alpha-\beta_{i}\right| \cdot\left|\alpha-\bar{\beta}_{i}\right| \\
& <q_{\nu_{i}+k_{i}-1}^{2} \cdot q_{\nu_{i+1}-1}^{-2} \cdot 8 q_{\nu_{i}+k_{i}-1}^{2}=8 q_{\nu_{i}+k_{i}-1}^{4} q_{\nu_{i+1}-1}^{-2} .
\end{aligned}
$$

Corollary 6. (1) Let $b>a>1$ be integers and $\alpha=\left[0, \bar{a}^{\lambda_{1}}, \bar{b}^{\lambda_{2}}, \bar{a}^{\lambda_{3}}\right.$, $\left.\bar{b}^{\lambda_{4}}, \ldots\right]$. If

$$
\limsup _{n \rightarrow \infty}\left(\lambda_{n+1}-13 \frac{\log b}{\log a}\left(\lambda_{1}+\ldots+\lambda_{n}\right)\right)=\infty
$$

then α is transcendental.
(2) If even $\lim \sup _{n \rightarrow \infty} \lambda_{n+1} /\left(\lambda_{1}+\ldots+\lambda_{n}\right)=\infty$ then α is a U_{2}-number.

Proof. If $i>1$ then

$$
\begin{aligned}
q_{\nu_{i}+k_{i}-1} & =q_{\nu_{i}} \leq(b+1)^{1+\lambda_{1}+\ldots+\lambda_{i-1}} \\
& \leq\left(b^{2}\right)^{2\left(\lambda_{1}+\ldots+\lambda_{i-1}\right)}=a^{4 \frac{\log b}{\log a}\left(\lambda_{1}+\ldots+\lambda_{i-1}\right)}
\end{aligned}
$$

and therefore

$$
q_{\nu_{i+1}-1} q_{\nu_{i}+k_{i}-1}^{-13 / 4} \geq a^{\lambda_{i}-13 \frac{\log b}{\log a}\left(\lambda_{1}+\ldots+\lambda_{i-1}\right)}
$$

and (1) follows immediately from Corollary 4.
We have

$$
H\left(L_{i} X^{2}+M_{i} X+N_{i}\right)=\max \left\{\left|L_{i}\right|,\left|M_{i}\right|,\left|N_{i}\right|\right\}<2 q_{\nu_{i}+k_{i}-1}^{2} \leq 2 b^{4\left(\nu_{i}+k_{i}-1\right)}
$$

where H denotes the height of a polynomial just for once. Now estimating $q_{\nu_{i}+k_{i}-1} \leq b^{2\left(\nu_{i}+k_{i}-1\right)}$ and $q_{\nu_{i+1}-1} \geq a^{\nu_{i+1}-1}$ we deduce from Lemma 5 that

$$
\begin{aligned}
0 & <\left|L_{i} \alpha^{2}+M_{i} \alpha+N_{i}\right| \\
& <b^{-\left(2\left(\nu_{i+1}-1\right) \log a-8\left(\nu_{i}+k_{i}-1\right) \log b-3 \log 2\right) / \log b}=\left(2 b^{4\left(\nu_{i}+k_{i}-1\right)}\right)^{-\Psi_{i}}
\end{aligned}
$$

with

$$
\Psi_{i}=\frac{2\left(\nu_{i+1}-1\right) \log a-8\left(\nu_{i}+k_{i}-1\right) \log b-3 \log 2}{4\left(\nu_{i}+k_{i}-1\right) \log b+\log 2} .
$$

Obviously $\lim \sup _{i \rightarrow \infty} \Psi_{i}=\infty$ is equivalent to $\lim \sup _{i \rightarrow \infty} \nu_{i+1} / \nu_{i}=\infty$ and therefore to $\limsup _{i \rightarrow \infty} \lambda_{i} /\left(\lambda_{1}+\ldots+\lambda_{i-1}\right)=\infty$.

3. Values of $\nu^{*}(\alpha)$ for transcendental α

Lemma 7. Let $a<b$ be even positive integers and $\nu^{*}([\bar{a}])<\mu<\nu^{*}([\bar{b}])$. Then there exists a transcendental $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ (and even a U_{2}-number $\alpha)$ such that $a_{i} \in\{a, b\}$ for all $i \geq 1$ and $\nu^{*}(\alpha)=\mu$.

Proof. The function

$$
f_{a b}(x)=\frac{1}{8} \cdot \frac{a+x b}{\log ([\bar{a}])+x \log ([\bar{b}])}
$$

increases for positive $x, f_{a b}(0)=\nu^{*}([\bar{a}])$ and $\lim _{x \rightarrow \infty} f_{a b}(x)=\nu^{*}([\bar{b}])$. Therefore there is a unique $Q \in(0, \infty)$ such that $\mu=f_{a b}(Q)$. Let $\left(\sigma_{n}\right)_{n \geq 1}$ be a strictly increasing sequence of integers such that $\sigma_{1} Q \geq 1$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\sigma_{n+1}-13(Q+1) \frac{\log b}{\log a}\left(\sigma_{1}+\ldots+\sigma_{n}\right)\right)=\infty \tag{1}
\end{equation*}
$$

or even

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\sigma_{n+1}}{\sigma_{1}+\ldots+\sigma_{n}}=\infty \tag{2}
\end{equation*}
$$

are satisfied. Let $\lambda_{2 n-1}=2 \sigma_{n}$ and $\lambda_{2 n}=2\left[\sigma_{n} Q\right]$ for $n \geq 1$. Furthermore, let $\alpha=\left[0, \bar{a}^{\lambda_{1}}, \bar{b}^{\lambda_{2}}, \bar{a}^{\lambda_{3}}, \bar{b}^{\lambda_{4}}, \ldots\right]$. Using Corollary 6 it is easy to check that α is transcendental if (1) and a U_{2}-number if (2) is satisfied. Employing a special
case of Theorem 1 in $\S 3$ of [14] which was already stated as Theorem 1 in $\S 4$ of [13] we see that

$$
\begin{aligned}
\nu^{*}(\alpha) & =\frac{1}{4} \limsup _{m \rightarrow \infty} \frac{1}{\log q_{m}} \max \left(\sum_{1 \leq i \leq m, 2 \mid i} a_{i}, \sum_{1 \leq i \leq m, 2 \nmid i} a_{i}\right) \\
& =\frac{1}{8} \limsup _{m \rightarrow \infty} \frac{1}{\log q_{m}} \sum_{i=1}^{m} a_{i}
\end{aligned}
$$

where we used the fact that $\lim _{m \rightarrow \infty} \log q_{m+1} / \log q_{m}=1$ for numbers of bounded density and that

$$
\max \left(\sum_{1 \leq i \leq m, 2 \mid i} a_{i}, \sum_{1 \leq i \leq m, 2 \nmid i} a_{i}\right)=\frac{1}{2} \sum_{i=1}^{m} a_{i}+\Delta \quad \text { with }|\Delta| \leq b / 2 .
$$

If $\lambda_{1}+\ldots+\lambda_{2 k-1}<m \leq \lambda_{1}+\ldots+\lambda_{2 k+1}$ then

$$
\begin{aligned}
\log q_{m}= & \left(\lambda_{1}+\lambda_{3}+\ldots+\lambda_{2 k-1}+r_{2 k+1}\right) \log ([\bar{a}]) \\
& +\left(\lambda_{2}+\lambda_{4}+\ldots+\lambda_{2 k-2}+r_{2 k}\right) \log ([\bar{b}])+O(k)
\end{aligned}
$$

with an implicit constant that depends on a and b only. Here

$$
\begin{aligned}
1 \leq r_{2 k}=m-\left(\lambda_{1}+\ldots+\lambda_{2 k-1}\right) \leq \lambda_{2 k}, \quad r_{2 k+1} & =0 \\
& \text { if } m \leq \lambda_{1}+\ldots+\lambda_{2 k}, \\
r_{2 k}=\lambda_{2 k}, \quad 1 \leq r_{2 k+1}=m-\left(\lambda_{1}+\ldots+\lambda_{2 k}\right) & \leq \lambda_{2 k+1} \\
& \text { if } m>\lambda_{1}+\ldots+\lambda_{2 k} .
\end{aligned}
$$

(If the reader considers this step to be too sketchy he or she may want to consult the proof of Theorem 4.3 in [3].) Therefore $\nu^{*}(\alpha)=\frac{1}{8} \lim _{\sup }^{m \rightarrow \infty}$ $h(m)$ where

$$
\begin{aligned}
& h(m) \\
& =\frac{\left(\lambda_{1}+\lambda_{3}+\ldots+\lambda_{2 k-1}+r_{2 k+1}\right) a+\left(\lambda_{2}+\lambda_{4}+\ldots+\lambda_{2 k-2}+r_{2 k}\right) b}{\left(\lambda_{1}+\lambda_{3}+\ldots+\lambda_{2 k-1}+r_{2 k+1}\right) \log ([\bar{a}])+\left(\lambda_{2}+\lambda_{4}+\ldots+\lambda_{2 k-2}+r_{2 k}\right) \log ([\bar{b}])} .
\end{aligned}
$$

Obviously $\max \left\{h(m) \mid \lambda_{1}+\ldots+\lambda_{2 k-1}<m \leq \lambda_{1}+\ldots+\lambda_{2 k+1}\right\}=h\left(\lambda_{1}+\right.$ $\ldots+\lambda_{2 k}$) and thus

$$
\begin{aligned}
\nu^{*}(\alpha) & =\frac{1}{8} \lim _{k \rightarrow \infty} \sup _{m \geq k} h(m)=\frac{1}{8} \lim _{k \rightarrow \infty} \sup _{m>\lambda_{1}+\ldots+\lambda_{2 k-1}} h(m) \\
& =\frac{1}{8} \lim _{k \rightarrow \infty} \sup _{m \geq k} h\left(\lambda_{1}+\ldots+\lambda_{2 m}\right)=\frac{1}{8} \limsup _{k \rightarrow \infty} h\left(\lambda_{1}+\ldots+\lambda_{2 k}\right)=\mu
\end{aligned}
$$

since $\lim _{k \rightarrow \infty}\left(\lambda_{2}+\lambda_{4}+\ldots+\lambda_{2 k}\right) /\left(\lambda_{1}+\lambda_{3}+\ldots+\lambda_{2 k-1}\right)=Q$.

Lemma 8. Let a be an even positive integer. Then there exists a transcendental $\alpha=\left[0, a_{1}, a_{2}, \ldots\right]$ (and even a U_{2}-number α) such that $a_{i} \in\{a, a+2\}$ for all $i \geq 1$ and $\nu^{*}(\alpha)=\nu^{*}([\bar{a}])$.

Proof. Let $\lambda_{1}=1$ and $\lambda_{2 n+1}=n\left(\lambda_{1}+\lambda_{3}+\ldots+\lambda_{2 n-1}\right)$ for $n \geq 1$. Finally, put $\alpha=\left[0, \bar{a}^{\lambda_{1}}, a+2, \bar{a}^{\lambda_{3}}, a+2, \bar{a}^{\lambda_{5}}, \ldots\right]$. Then α is a U_{2}-number according to Corollary 6 and $\nu^{*}(\alpha)=\nu^{*}([\bar{a}])$ by Theorem 5.1 in [3].

Proof of Theorems 1 and 2. Let b be a positive even integer. Then

$$
\left[\nu^{*}([\bar{b}]), \infty\right)=\left\{\nu^{*}([\bar{b}])\right\} \cup \bigcup_{k=1}^{\infty}\left(\nu^{*}([\bar{b}]), \nu^{*}([\overline{b+2 k}])\right)
$$

and both theorems follow from Lemmata 7 and 8, the theorem of Y. Dupain and V. T. Sós [6] and Theorem 3.1 of [3].

References

[1] A. Baker, Continued fractions of transcendental numbers, Mathematika 9 (1962), 1-8.
[2] -, On Mahler's classification of transcendental numbers, Acta Math. 111 (1964), 97-120.
[3] C. Baxa, On the discrepancy of the sequence (n α), J. Number Theory 55 (1995), 94-107.
[4] H. Behnke, Zur Theorie der diophantischen Approximationen I, Abh. Math. Sem. Univ. Hamburg 3 (1924), 261-318.
[5] P. Bohl, Über ein in der Theorie der säkularen Störungen vorkommendes Problem, J. Reine Angew. Math. 135 (1909), 189-283.
[6] Y. Dupain and V. T. Sós, On the discrepancy of ($n \alpha$) sequences, in: Topics in Classical Number Theory, Vol. 1, Colloq. Math. Soc. János Bolyai 34, G. Halász (ed.), North-Holland, Amsterdam, 1984, 355-387.
[7] E. Maillet, Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions, Gauthier-Villars, Paris, 1906.
[8] O. Perron, Die Lehre von den Kettenbrüchen, Band 1, Teubner, Stuttgart, 1977.
[9] W. M. Schmidt, On simultaneous approximations of two algebraic numbers by rationals, Acta Math. 119 (1967), 27-50.
[10] -, Simultaneous approximation to algebraic numbers by rationals, ibid. 125 (1970), 189-201.
[11] -, Irregularities of distribution VII, Acta Arith. 21 (1972), 45-50.
[12] -, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
[13] J. Schoißengeier, On the discrepancy of (no) II, J. Number Theory 24 (1986), 54-64.
[14] -, The discrepancy of $(n \alpha)_{n \geq 1}$, Math. Ann. 296 (1993), 529-545.
[15] W. Sierpiński, Sur la valeur asymptotique d'une certaine somme, Bull. Internat. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1910, 9-11.
[16] -, On the asymptotic value of a certain sum, Rozprawy Akademii Umiejętności w Krakowie, Wydział mat. przyrod. 50 (1910), 1-10 (in Polish).
[17] H. Weyl, Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo 30 (1910), 377-407.
[18] -, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352.
Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien, Austria
E-mail: baxa@pap.univie.ac.at

Received on 8.10.1996
and in revised form on 3.4.1997

[^0]: 1991 Mathematics Subject Classification: 11K31, 11K38, 11J81.

