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Some linear relations between values
of trigonometric functions at kπ/n

by

Kurt Girstmair (Innsbruck)

1. Introduction. We explain the purpose of this note with the example
of the cotangent. The meromorphic function cot is periodic modulo π. If n
is a natural number, one says that the numbers

kπ/n, k = 0, 1, . . . , n− 1,

are the n-division points of the period π. Accordingly,

(1) cot
kπ

n
, k = 1, . . . , n− 1,

are called the n-division values of the cotangent (of course, k = 0 does not
occur here). An n-division value (1) is said to be primitive if (k, n) = 1.
In 1949 Siegel showed that there are no rational linear relations between
primitve n-division values of the cotangent except the trivial ones, namely,

cot
(n− k)π

n
= − cot

kπ

n
.

In other words, for each n ≥ 3, the numbers

(2) cot
kπ

n
, 1 ≤ k < n/2, (k, n) = 1,

are linearly independent over Q (cf. [1] for the history of this and related
results).

If this is known, it is not very hard to see that each n-division value of
cot must be a Q-linear combination of the primitive ones (cf. Section 2).
But what do these combinations look like? This question comes down to the
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following task: Let d ≥ 2 be a divisor of n ≥ 3. Then

(3) cot
π

d
=

∑

1≤k<n/2
(k,n)=1

ak cot
kπ

n

with uniquely determined rational coefficients ak. Describe these coefficients!
Let us consider a numerical example. Take n = 1001 = 7 · 11 · 13 and

d = 13. Define

N = 52 · 132 · 61 · 181 · 1117.

Then each of the 360 coefficients ak in (3) equals—up to the ± sign—one of
the following six numbers:

a(1) =
3 · 19 · 1951 · 6007

N
, a(2) =

190871389
2 ·N , a(3) = −19 · 275929

N
,

a(4) =
19 · 53 · 103 · 131

N
, a(5) = −34 · 31 · 1951

2 ·N , a(6) =
4373 · 27793

2 ·N .

More precisely: Let the index k, 1 ≤ k ≤ 500, (k, 1001) = 1, be given.
If j ∈ {1, . . . , 6} is such that k ≡ j mod 13, then ak = a(j); however, if
k ≡ −j mod 13, then ak = −a(j). The above formulas render the complete
factorization of the numerators and denominators of a(1), . . . , a(6) (e.g., the
numerator of a(2) is a prime). But from these formulas one can hardly see
how to find the coefficients ak in general. Nevertheless, there exists a sort
of closed formula for them.

In Section 2 we display such formulas for all derivatives of the cotangent
(Theorem 1). These formulas involve group theoretic quantities such as the
order modulo d of a prime divisor p of n, p - d. For this reason it is not
surprising that the proof strongly relies on character theory.

We think, for the same reason, that it is hardly possible to obtain the-
orems of this kind by elementary manipulations with known trigonometric
formulas except in very special cases, e.g., if n = d · p and the prime p also
divides d. Here the coefficients ak can be read from

q−1∑

k=0

cot(x+ kπ/q) = q cot qx,

which holds for any natural number q (cf. [4], p. 646, formulas no. 2, 4).
Section 3 contains the respective results for the derivatives of the tangent,

cosecant, and the square of the cotangent. The proof of the last-mentioned
formula serves as a paradigm for higher powers of cot, tan, etc. Finally,
we briefly discuss the sine and the cosine. Here formulas of type (3) only
hold under strong restrictions on n and d. They look very simple and are
known, in principle. All formulas included in this paper have been tested
with numerical examples—so they ought to be correct in detail.
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2. The cotangent theorem. We need some notations. Throughout this
paper p denotes a prime number. If n is an integer, we write vp(n) for the
maximal integer k ≥ 0 such that pk |n. Moreover,

(4) n∗ =
∏

p|n
p and ψ(n) =

∏

p|n
(pvp(n) − 1)

(so ψ is formally similar to Euler’s ϕ). Let d be a divisor of n. We put

(5) λ(n, d) =
∏

p|n
p-d

pl(p,d),

where l(p, d) means the order of p mod d, i.e., the minimal exponent k ≥ 1
with pk ≡ 1 mod d.

For an integer r ≥ 1 let cot(r, x) denote the (r − 1)th derivative of
the function cotx; in particular, cot(1, x) = cotx. If the condition “k ≡
j mod d” occurs in a summation index, we write “k ≡ j (d)” instead (for
typographical reasons).

Theorem 1. Let n ≥ 3 be a natural number and d ≥ 2 a divisor of n.
Put m = λ(n, d). For each integer r ≥ 1,

cot
(
r,
π

d

)
=

∑

1≤k<n/2
(k,n)=1

ar,k cot
(
r,
kπ

n

)
,

with

ar,k =
(
d

n

)r 1
ψ(mr)

( ∑

q≡k (d)

qr + (−1)r
∑

q≡−k (d)

qr
)
.

In these sums q runs through all natural numbers satisfying both m∗ | q |m
and the respective congruence condition.

R e m a r k s. 1. The coefficients ar,k obviously depend on the residue class
of k mod d only; therefore we may write

ar,k = a(r, j),

where j ∈ {1, . . . , d−1}, (j, d) = 1, is uniquely determined by the congruence
k ≡ j mod d. Since

a(r, d− j) = (−1)ra(r, j),

only the numbers a(r, j), 1 ≤ j < d/2, are of actual interest. This is what
we observed in the numerical example of the Introduction.

2. Fix, for a moment, the number d and a finite set P of primes not
dividing d. If n runs through those multiples of d for which {p : p |n, p - d} =
P , the above coefficients a(r, j), 1 ≤ j < d, (j, d) = 1, remain unchanged up
to the trivial factor (d/n)r.
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3. The example of the Introduction shows that the coefficients ar,k may
look quite complicated if there are at least two prime divisors of n not
dividing d. However, these coefficients have a very simple form if all primes
of this kind are ≡ 1 mod d. For example, let n/d be a product of distinct
primes p ≡ 1 mod d. By Theorem 1,

a1,k =

{
±1/

∏
p|n
p-d

(p− 1) if k ≡ ±1 mod d,

0 otherwise.

4. The coefficients ar,k of Theorem 1 being known, it is easy to express an
arbitrary n-division value cot(r, sπ/d), (s, d) = 1, in terms of the primitive
ones: Let s1 ∈ Z be such that s1 ≡ s mod d and (s1, n) = 1. If k is an integer
with (k, n) = 1, define k′ ∈ {1, . . . , n − 1}, (k′, n) = 1, by the congruence
s1k
′ ≡ k mod n. Then

cot
(
r,
sπ

d

)
=

∑

1≤k<n/2
(k,n)=1

br,k cot
(
r,
kπ

n

)
,

with

(6) br,k =
{
ar,k′ if k′ < n/2,
(−1)rar,n−k′ otherwise.

We postpone the proof of Theorem 1 (and (6)) for a moment and return
to a remark of the Introduction: namely, that the Q-linear independence of
the primitive n-division values (2) implies that each n-division value of the
cotangent is a rational linear combination of them. Although this follows
from Theorem 1, we give a (short) independent proof here. Consider the
nth cyclotomic field

Q(n) = Q(ζn) with ζn = e2πi/n.

One readily checks that

(7) i cot
kπ

n
= (1 + ζkn)/(1− ζkn), (k, n) = 1.

In particular, these numbers lie in Q(n), more precisely, in the Q-subspace
V = Q(n)∩Ri. It is easy to see that Q(n) is the direct sum of the Q-subspaces
Q(n) ∩ R and V . The first of these subspaces is a subfield of Q(n) of well-
known Q-degree; indeed, for n ≥ 3, [Q(n) ∩ R : Q] = [Q(n) : Q]/2 = ϕ(n)/2.
Hence V must also have the Q-dimension ϕ(n)/2. But then the Q-linear
independent numbers (7) with 1 ≤ k < n/2 form a basis of V . Now let
d ≥ 2 be a divisor of n. Since Q(d) ⊆ Q(n), each number i cot(sπ/d) lies in
V , so it is a Q-linear combination of the elements of the above basis.

The proof of Theorem 1 requires some preparations, in particular, some
additional notation. By G(n) we denote the Galois group of Q(n) over Q. Its
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elements can be written as σ(n)
k , k ∈ Z, (k, n) = 1, where σ(n)

k acts on ζn by
σ

(n)
k (ζn) = ζkn. Hence, by (7),

(8) σ
(n)
k

(
i cot

π

n

)
= i cot

kπ

n
.

Let X(n) denote the character group of G(n). As usual, we consider each
χ ∈ X(n) as a Dirichlet character modulo n, on putting χ(k) = χ(σ(n)(k))
if (k, n) = 1, and χ(k) = 0 otherwise. For each divisor d of n there is a
canonical epimorphism

G(n) → G(d) : σ(n)
k 7→ σ

(d)
k = σ

(n)
k |Q(d) .

By virtue of this map, the group X(d) can be considered as a subgroup of
X(n). Hence certain characters χ ∈ X(n) can also be regarded as elements of
X(d). If we do so, we sometimes write χ = χd (in order to avoid ambiguities).
The smallest divisor d for which χ ∈ X(d) makes sense is the conductor fχ
of χ ∈ X(n). Instead of χfχ we simply write χf .

We also need the rational group ring Q[G(n)] of G(n), whose elements
have the shape

(9) γ =
∑

σ∈G(n)

cσσ, cσ ∈ Q.

The field Q(n) is a Q[G(n)]-module in the usual way. The trace

T
(n)
d =

∑

kmod∗ n
k≡1 (d)

σ
(n)
k ,

is an element of Q[G(n)] of particular importance; here d means a divisor of
n and “kmod∗ n” stands for “1 ≤ k ≤ n, (k, n) = 1”. For any u ∈ Q(n),
T

(n)
d u is in Q(d). Note the rule

(10) σ(d)
q (T (n)

d u) =
∑

kmod∗ n
k≡q (d)

σ
(n)
k (u),

which holds for any q with (q, d) = 1.
Take a character χ ∈ X(n). If γ ∈ Q[G(n)] is as in (9), then χ(γ) is

defined by

χ(γ) =
∑

σ∈G(n)

cσχ(σ).

Thus χ(γ) lies in the field Q(χ) = Q(χ(σ) : σ ∈ G(n)). This field is a (simple)
Q[G(n)]-module, whose scalar multiplication is given by

γu = χ(γ)u.
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Our main technical device in the proof of Theorem 1 is the character
coordinates introduced by Leopoldt. We do not repeat their definition (cf.
[1], [3]) but only recall those of their properties that enter the proof:

1. For each χ ∈ X(n), the χ-coordinate is a Q[G(n)]-linear map

y(n)
χ : Q(n) → Q(χ).

Accordingly, y(n)
χ (γu) = χ(γ)y(n)

χ (u) for all γ ∈ Q[G(n)] and u ∈ Q(n). In
particular, y(n)

χ (σ(n)
k u) = χ(k)y(n)

χ (u) for each k ∈ Z with (k, n) = 1.
2. The totality of all χ-coordinates characterizes an element u of Q(n)

completely: If u and v are in Q(n), then u equals v if, and only if, y(n)
χ (u)

equals y(n)
χ (v) for all χ ∈ X(n).

3. The reduction property reads as follows: Let d divide n and χ be a
character in X(d) ⊆ X(n). For each u ∈ Q(n), y(n)

χ (u) = y
(d)
χ (T (n)

d u).

Let n be ≥ 2. We observe that the numbers ir cot(r, kπ/n), k ≥ 1, all
lie in Q(n). For r = 1 this was shown above (cf. (7)); for r ≥ 2 this follows
from the fact that the functions ir cot(r, x) can be written as polynomials
in i cotx with rational coefficients. Combined with (8), this argument also
shows

(11) σ
(n)
k

(
ir cot

(
r,
π

n

))
= ir cot

(
r,
kπ

n

)
.

Furthermore, the coordinate y(n)
χ (ir cot(r, π/n)) is well-defined for each χ ∈

X(n). In [1] we computed its value: If χ(−1) = (−1)r, then

(12) y(n)
χ

(
ir cot

(
r,
π

n

))
=
(

2n
fχ

)r∏

p|n

(
1− χf (p)

pr

)
Br,χf /r,

where χ is the complex-conjugate character of χ and Br,χf is the rth
Bernoulli number belonging to χf ∈ X(fχ); if χ(−1) 6= (−1)r, then
y

(n)
χ (ir cot(r, π/n)) = 0. Formula (12) is the cornerstone of the

P r o o f o f T h e o r e m 1. Suppose that d ≥ 2 divides n. Take a
character χ ∈ X(d). On comparing the χ-coordinates of ir cot(r, π/d) and
ir cot(r, π/n), one obtains from (12)
(13)

y(d)
χ

(
ir cot

(
r,
π

d

))
=
(
d

n

)r∏

p|n
p-d

(
1− χf (p)

pr

)−1

y(n)
χ

(
ir cot

(
r,
π

n

))
.

As regards the right side of (13), we may replace χf by χ since fχ divides d
and all p’s in question do not divide d. In addition, we apply property 3 of
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character coordinates. Thereby we get

(14) y(d)
χ

(
ir cot

(
r,
π

d

))

=
(
d

n

)r∏

p|n
p-d

(
1− χ(p)

pr

)−1

y(d)
χ

(
T

(n)
d ir cot

(
r,
π

n

))
.

Suppose now that η ∈ C is such that ηl = 1, l ≥ 1 being a natural number.
One readily verifies the formula

(15)
(

1− 1
ηz

)−1

=
1

zl − 1

l∑

j=1

ηjzj ,

which holds for all z ∈ C fulfilling |z| 6= 1, say. Take η = χ(p) and z = pr as
in (14). Then formula (15) can be applied with l = l(p, d). This yields

∏

p|n
p-d

(
1− χ(p)

pr

)−1

=
1

ψ(mr)

∑

m∗|q|m
χ(q)qr,

with m = λ(n, d) as in (5) and ψ as in (4). We insert this in formula (14)
and use property 1 of character coordinates. Then

y(d)
χ

(
ir cot

(
r,
π

d

))

= y(d)
χ

((
d

n

)r 1
ψ(mr)

∑

m∗|q|m
qrσ(d)

q

(
T

(n)
d ir cot

(
r,
π

n

)))
.

Next one applies the identity (10) to the right side of this equation and recalls
that χ ∈ X(d) was arbitrary. Therefore, property 2 of character coordinates
gives

ir cot
(
r,
π

d

)
=
(
d

n

)r 1
ψ(mr)

∑

m∗|q|m
qr

∑

kmod∗ n
k≡q (d)

σ
(n)
k

(
ir cot

(
r,
π

n

))
.

By (11), one obtains

(16) ir cot
(
r,
π

d

)
=
(
d

n

)r 1
ψ(mr)

∑

m∗|q|m
qr

∑

kmod∗ n
k≡q (d)

ir cot
(
r,
kπ

n

)
,

which readily implies Theorem 1.

The proof of formula (6) is still missing. However, this is also an easy
consequence of (16): just apply σ(n)

s1 to both sides of this equation and change
the summation index.
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3. Other trigonometric functions. The method of the foregoing
section also works for other trigonometric functions, provided that the χ-
coordinates of the (suitably modified) division values are known and interre-
lated by formulas like (13). This is the case for the derivatives of the tangent.
Let tan(r, x) denote the (r−1)th derivative of tanx, so tan(1, x) = tanx. In
[1] we showed that, for n ≥ 3, y(n)

χ (ir tan(r, π/n)) equals y(n)
χ (ir cot(r, π/n))

times the following factor:

(17) cχ(r, n) =





1− 2rχ(2) if 2 -n,
(1− 2rχf (2))−1 if n ≡ 2 mod 4,
−χ(n/2 + 1) otherwise.

Formula (17) implies that the numbers tan(r, kπ/n), 1 ≤ k < n/2, (k, n) =
1, are also linearly independent over Q. But it requires a number of cases
to be distinguished in the tan(r, x)-formula of type (13). Finally, this phe-
nomenon occurs in the consequent analogue of Theorem 1. For a divisor d
of the natural number n put

d̃ =




d if v2(d) = v2(n) or v2(d) ≥ 2,
2d if v2(d) = 0 < v2(n),
d/2 if v2(d) = 1 < v2(n).

Moreover, put m̃ = λ(n, d̃).

Theorem 2. Let d ≥ 3 be a divisor of n and d̃, m̃ as above. Then

tan
(
r,
π

d

)
=
(
d̃

n

)r 1
ψ(m̃r)

∑

1≤k<n/2
(k,n)=1

br,k tan
(
r,
kπ

n

)
,

where br,k takes the following values:

(a) If v2(d) = v2(n), then

br,k =
∑

q≡k (d)

qr +
∑

q≡−k (d)

(−q)r.

(b) If 2 ≤ v2(d) < v2(n), then

br,k =
∑

q≡k+d/2 (d)

qr +
∑

q≡−k+d/2 (d)

(−q)r.

(c) If v2(d) = 0 and v2(n) = 1, then

br,k =
∑

4q≡k (d)

(2q)r +
∑

4q≡−k (d)

(−2q)r −
∑

2q≡k (d)

qr −
∑

2q≡−k (d)

(−q)r.

(d) If v2(d) = 0 and v2(n) ≥ 2, then

br,k =
∑

2q≡k (d)

qr +
∑

2q≡−k (d)

(−q)r.
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(e) If v2(d) = 1 < v2(n), then

br,k =
∑

q/2≡k (d/2)

qr +
∑

q/2≡−k (d/2)

(−q)r.

In all cases q runs through all natural numbers satisfying both m̃∗ | q | m̃ and
the respective congruence condition.

R e m a r k. An inspection of Theorem 2 shows the following: if v2(d) =
v2(n), then Theorem 1 applies word for word to the function tan(r, x); in
the other cases the result may be quite different. For example, take n1 =
4004 = 4n and d1 = 26 = 2d, where n and d are as in the Introduction. Let
the coefficients a1,k, 1 ≤ k < n1/2, (k, n1) = 1, be defined as in Theorem 1;
so they relate cot(π/26) with the primitive 4004-division values of cot. Up
to sign, each coefficient a1,k equals one of the following six numbers:

a(1, 1) = a(1)/2, a(1, 3) = a(3)/2, a(1, 5) = a(5)/2,

a(1, 7) = − a(6)/2, a(1, 9) = − a(4)/2, a(1, 11) = − a(2)/2,

where a(j) is defined as in the Introduction; in fact, a1,k = ±a(1, j) whenever
k ≡ ±j mod d1. In the case of the tangent, let c1,k be the coefficient that
plays the role of a1,k and let c(1, j) correspond to a(1, j) in the same way.
Take N = 52 · 132 · 61 · 181 · 1117 as in the Introduction. Then the values of
the numbers c(1, j) are as follows:

c(1, 1) =
2 · 3 · 347 · 130811

13 ·N , c(1, 3) = − 709 · 1348547
13 ·N ,

c(1, 5) =
1980394109
22 · 13 ·N , c(1, 7) =

3 · 7 · 59 · 7448719
22 · 13 ·N ,

c(1, 9) =
22 · 2777 · 21569

13 ·N , c(1, 11) =
17 · 67 · 265619

22 · 13 ·N .

The above factorization of each c(1, j) is complete. Obviously, the numera-
tors of c(1, j) have almost nothing in common with those of a(1, j).

We do not include the whole proof of Theorem 2 here but pick out one
case that may serve as a model: Suppose that v2(d) = 1 < v2(n) (corre-
sponding to case (e)). By (13) and (17), one obtains y(d)

χ (ir tan(r, π/d)),
χ ∈ X(d), if one multiplies y(n)

χ (ir tan(r, π/n)) by the factor

F =
(
d

n

)r∏

p|n
p-d

(
1− χf (p)

pr

)−1

(1− 2rχf (2))−1(−χ(n/2 + 1))−1.
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Since v2(n) > v2(d), d divides n/2, so χ(n/2 + 1) = 1. Therefore

(18) F =
(
d̃

n

)r∏

p|n
p-d̃

(
1− χf (p)

pr

)−1

χf (2),

with d̃ = d/2 (note that 2 |n but 2 - d̃). Since d ≡ 2 mod 4, X(d) equals X(d̃)

(in the usual sense). In particular, χd̃ is well-defined. We may further replace
χf by χd̃ everywhere in (18) and get

F =
(
d̃

n

)r 1
ψ(m̃r)

∑

m̃∗|q|m̃
χd̃ (q)qr · χd̃ (2),

with m̃ = λ(n, d̃). The q’s occurring in this formula are all even; hence
χd̃ (q) = χd̃ (q/2)χd̃ (2), and so

F =
(
d̃

n

)r 1
ψ(m̃r)

∑

m̃∗|q|m̃
χd̃ (q/2)qr.

Since Q(d) = Q(d̃), we have y
(d)
χ (ir tan(r, π/d)) = y

(d̃)
χ (ir tan(r, π/d)) (cf.

property 3). With this in mind we obtain, in the same way as in the proof
of Theorem 1,

ir tan
(
r,
π

d

)
=
(
d̃

n

)r 1
ψ(m̃r)

∑

m̃∗|q|m̃
qrσ

(d̃)
q/2

(
T

(n)
d̃

ir tan
(
r,
π

n

))
.

Now (10) yields assertion (e) of Theorem 2.
The above method also works for the derivatives of the cosecant. Let

csc(r, x) denote the (r − 1)th derivative of cscx = 1/ sinx. In [1] the char-
acter coordinates of ir csc(r, 2π/n), n ≥ 3, were computed. It is not always
true, however, that csc(r, 2π/d) is a Q-linear combination of the primitive
n-division values of csc(r, 2x) (d ≥ 3, d |n), in contrast with the cases con-
sidered so far. Indeed, the methods of [1] show that

csc
(
r,

2π
d

)
∈

∑

kmod∗ n

Q csc
(
r,

2kπ
n

)

if, and only if, v2(d) = v2(n) or 4 -n. In the case v2(d) = v2(n) Theorem 1
holds for csc(r, 2x) in place of tan(r, x) without any changes. If d is odd and
n ≡ 2 mod 4, one obtains the same formula as in case (d) of Theorem 2, up
to sign: the coefficients br,k must be multiplied by −1.

From Theorems 1, 2 one can derive analogous theorems for the powers
cotrx, tanrx, etc., since these functions are, essentially, rational linear com-
binations of the derivatives of cotx, tanx, etc. If r is even, an additional
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consideration is required, as the case r = 2 will show. We confine ourselves
to this case here. For a natural number n define %(n) by

%(n) = n
∏

p|n
(1 + 1/p),

so this is another analogue of Euler’s ϕ.

Theorem 3. Let d ≥ 2 be a divisor of n ≥ 3. Then

cot2 π

d
=

∑

1≤k<n/2
(k,n)=1

ck cot2 kπ

n
,

with ck = 2u/v + a2,k. Here a2,k is the coefficient given in Theorem 1 (case
r = 2) and

u = −1 + %(d)/%(n), v = ϕ(n)(−1 + %(n)/3).

P r o o f. Since i2 cot(2, x) = 1 + cot2x,

(19) cot2 π

d
= −1 +

∑

1≤k<n/2
(k,n)=1

a2,k

(
1 + cot2 kπ

n

)
.

It is not hard to verify that

−1 +
∑

1≤k<n/2
(k,n)=1

a2,k = u.

Let χ0 ∈ X(1) be the principal character. Then

T
(n)
1 i2 cot

(
2,
π

n

)
= y(1)

χ0

(
T

(n)
1 i2 cot

(
2,
π

n

))
,

so property 3 of character coordinates gives

T
(n)
1 i2 cot

(
2,
π

n

)
= y(n)

χ0

(
i2 cot

(
2,
π

n

))
.

Now (12) implies

T
(n)
1 i2 cot

(
2,
π

n

)
= 4n2

∏

p|n
(1− 1/p2)B2/2,

where B2 = 1/6 is the (ordinary) second Bernoulli number. Thus
∑

1≤k<n/2
(k,n)=1

cot2 kπ

n
=

1
2
T

(n)
1 cot2 π

n
=
v

2
.
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The number v being > 0, (19) may be written

cot2 π

d
=

2u
v

∑

1≤k<n/2
(k,n)=1

cot2 kπ

n
+

∑

1≤k<n/2
(k,n)=1

a2,k cot2 kπ

n
.

This concludes the proof.

The reader may ask what the respective formulas for the sine and cosine
look like. They can be found—in an implicit form at least—in the literature.
Let ζn = cos(2π/n)+ i sin(2π/n) be as usual. Then ζd is in Q[G(n)]ζn if, and
only if, n/d is square-free and (d, n/d) = 1. In this case

T
(n)
d ζn = µ(n/d)σ(d)−1

n/d (ζd),

where µ is the Möbius function (cf. formula (34) in [2], cf. also [3]). Combined
with (10), this gives

sin
2π
d

= µ(n/d)
( ∑

k≡n/d (d)

sin
2πk
n
−

∑

k≡−n/d (d)

sin
2πk
n

)
,

with 1 ≤ k < n/2, (k, n) = 1. This formula remains valid for the cosine if
the minus sign between both sums is replaced by “+”. Whenever n and d
do not satisfy the above condition, no formulas of this kind exist.
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