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On the diophantine equation (z™ + 1)(z™ + 1) = 32
by

MAOHUA LE (Zhanjiang)

1. Introduction. Let Z, N, Q be the sets of integers, positive inte-
gers and rational numbers respectively. In [7], Ribenboim proved that the
equation

(1) (2™ +1)(z"+1)=v* zymneN z>1, n>m>1,

has no solution (z,y, m,n) with 2|2 and (1) has only finitely many solu-
tions (z,y,m,n) with 2{z. Moreover, all solutions of (1) with 2tz satisfy
max(z,m,n) < C, where C' is an effectively computable constant. In this
paper we completely determine all solutions of (1) as follows.

THEOREM. Equation (1) has only the solution (z,y, m,n) = (7,20,1,2).

2. Preliminaries
LEMMA 1 ([4]). The equation
X2 _2vy*=1, X,YeN,
has no solution (X,Y). The equation
X?-2v*=-1, X, YeN,
has only the solutions (X,Y) = (1,1) and (239, 13).
LEMMA 2 ([5]). Let a, D be positive integers with 21a. The equation
a’X*—DY?=-1, X,Y €N,
has at most one solution (X,Y).
LEMMA 3 ([1]). The equation
X"+1=Y% X, Y,neN, n>1,
has only the solution (X,Y,n) = (2,3,3).
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18 M.-H. Le
LEMMA 4 ([6]). The equation
X" +1
X:-rl =YY% X, Y,neN, X>1, n>1, 2{n,

has no solution (X,Y,n).

Let a, b be nonzero integers such that a > 0, ged(a,b) = 1 and a—4b > 0.
Let a, (3 be distinct zeros of the polynomial 22 — \/az + b. For any odd
integer n, let F'(n) = (™ — ")/(a — ). Then F(n) are nonzero integers if
n > 0.

LEMMA 5 ([9]). If 4|a, b =1 (mod 4) and (a/b) = 1, where (a/b) is

Jacobi’s symbol, then the equation

F(n)=Y? nYeN, n>1, 2tn,
has no solution (n,Y). If 4]a, b = 3 (mod 4) and (a/b) = 1, then the
equation

F(n)=nY? n,YeN, n>1, 2¢n,

has no solution (n,Y).

LEMMA 6. The equation
X"+1
(2) le =nY? X, Y,neN, X>1, n>1, 2¢n,

has no solution (X,Y,n) with X =1 (mod 4).

Proof. Let « = X and 8 = —1. Then « and 3 are distinct zeros of
22— (X —-1)z—X. Since X —1=0 (mod 4) and —X =3 (mod 4) if X =1
mod 4), by Lemma 5, (2) is impossible. The lemma is proved.

LEMMA 7. If (X,Y,n) is a solution of (2) with X +1 =0 (mod n), then
n is squarefree.

Proof. Let (X,Y,n) be a solution of (2) with X +1 =0 (mod n). If
n is not squarefree, then there exists an odd prime p satisfying p? | n. Since
X"P41=0 (mod X+1)and X +1=0 (mod n), we derive from (2) that

3) Xn/p 41 (Xn/Pyp 41
X+1 Xn/p 41
where d, Y7, Y3 are positive integers satisfying dY1Y> = Y. Since d|p, we

get either d = 1 or d = p. By Lemma 4, (3) is impossible for d = 1. So we
have d = p and

X/ 4] X"+1
4 S =Y, o =pYP
( ) ): 1 np 1> )rn/p 1 p 2
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By the same argument, we infer from the first equality of (4) that

X/ 41
(5) 7—’_
X +1

Xn/v 41

_ 2
XoE L1 pY7s,

=npY7y,
pYuuYiz =Y, Y11, Yio e N
Combination of (4) and (5) yields
(X" 41
Xn/v* 41

However, by Lemma 4, this is impossible. The lemma is proved.

= (pY12Y2)>.

LEMMA 8. Let 0 = 14++/2 and 6 = 1—+/2. For any nonnegative integer k,
let
oF + o v oF —*

y k — .

2 22
Then Uy and Vi are nonnegative integers satisfying:

(i) ng(Uk, Vk) =1.

(11) ng(Uk, Uk:+1) = ng(Vk, Vk+1) =1.

(iii) If Up =7 (mod 8), then k =3 (mod 4).

(iv) The prime factors p of Uy, satisfy
_ J #£1 (mod 8) if 21k,
= 11,3 (mod 8) if 2|k.
(v) If 21k, then the prime factors p of Vi, satisfy p=1 (mod 4).
(vi) Uk is a square if and only if k = 1.
(vil) Vi is a square if and only if k = 1,7.

(6) Uy =

Proof. Since Uy and Vj, are integers satisfying
(7) Ui =2V = (-1)F,

we get (i), (iv) and (v) immediately. Moreover, by Lemmas 1 and 2, we
obtain (vi) and (vii), respectively.
On the other hand, since U, and Vj, satisfy the recurrences

Up=1, Ui=1, Upo=2Uss1+Us, k>0,
Vo=0, Vi=1 Vigo=2Vep1 +Vi, k>0,
respectively, we get (ii) and (iii) immediately. The lemma is proved.
LEMMA 9. The equation
(8) Us=UY? rsYeN r>1, s>1, 2{r, 2ts,

has no solution (r,s,Y).
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Proof. Let a = " and 8 = @". Then a and ( are distinct zeros of
22 —2y2V,z + 1. If (r,5,Y) is a solution of (8), then we have

as_ﬁs
a—p

However, by Lemma 5, this is impossible.

=Y2

LEMMA 10. Let n be a positive integer with n < 23. Then the equation
(9) U.=nY? rYeN r>1,2{r, Y >1
has no solution (r,Y).

Proof. By (iv) of Lemma 8, we see from (9) that every prime factor p
of n satisfies p = £1 (mod 8). Since n < 23, we have n = 7 or 17. Since
Us =7, by Lemma 9, (9) is impossible for n = 7. Notice that Uy = 17 and
171U, for j = 1,2,3. We see that 17{U, if 2{/r. This implies that (9) is
impossible for n = 17. The lemma is proved.

LEMMA 11 ([8]). Let p be an odd prime with p < 1000. If V,. = pY? for
some positive integers r, Y with 2tr, then Y = 1.

Let a be an algebraic number with the minimal polynomial over Z

d
aoz? + a1z 4.+ ag = ag H(z—aia), ag > 0,

i=1
where o1, 020, . ..,04a are all conjugates of a. Then
1 d
h(a) = p (log ap + Z log max(1, |a¢a|)>

i=1
is called the absolute logarithmic height of c.
LEMMA 12 ([2, Corollary 2]). Let v, e be real algebraic numbers which

exceed one and are multiplicatively independent. Further, let A = by log oy —
ba log an for some positive integers by, ba. Then

log |A| > —24.34D*(log A;)(log A3)(max(1/2,21/D,0.14 + log B))?,
where D = [Q(ov, o) : Q], log A; = max(h(«;), [logoj|/D,1/D) (j =1,2),
B =b:1/(Dlog A2) + bz /(Dlog Ay).

LEMMA 13. If (X,Y,n) is a solution of the equation
(10) X"4+1=2Y? X, Y,neN, X>1,Y>1 n>1, 2{n,
then there exist suitable positive integers Xy, Y1, s such that

X1 +Y1v2

11) —X = X2-2Y?2, ged(X1,Y1)=1, 1<|—/——— =
(11) 1—2Y7, ged(Xy,Yq) X, — Vi3

< (3+2v2)?,
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)(1‘|'Y'1\/§ 2 2\/5 4
12 nlog ————~— — slog(3 +2v2 — < 75, Ss<n.
(12) . X 1 v,/a g( ) v < %un
Proof. Since 2{n, we see from (10) that
(13) (-X)"=1-2Y2

Notice that the class number of Q(v/2) is equal to one. By much the same
argument as in the proof of [3, Theorem 2], we can obtain (11) and (12)
from (13). The lemma is proved.

LEMMA 14. All solutions (X,Y,n) of (10) satisfy n < 330000.

Proof. Let (X,Y,n) be a solution of (10). By Lemma 13, there ex-
ist positive integers X, Y7, s satisfying (11) and (12). Let a; = (X1 +
Yiv2) /(= X1 +Y1V2), as = (3+2v/2)? and A = nloga; —slogas. Then ay
and ay are multiplicatively independent and satisfy Xa? —2(X? +2Y?)a; +
X =0 and a3 — 34as + 1 = 0 respectively. So we have

X1+Y1fD = log(3 + 2V/2).

1
14 =—| log X +1
(14)  h(a) 2( og X + log X, v,

Further, by (11) and (14), we get
1
(15) h(on) < 5 (log X + 2log(3 + 2v/2)).

Since [Q(a1,az) : Q] = [Q(v2) : Q] = 2, by Lemma 12, we deduce from
(14) and (15) that

1
(16) log|A| > — 389.44(2 log X + log(3 + 2\/§)>
x (log(3 + 2v/2))(max(10.5,0.14 + log B))?,
where
(17) n S

P log(3 + 2v/2) * log X + 2log(3 + 2v2)
Since s < n by (12), if n > 330000, then from (17) we get

log B > log(n/21og(3 + 2v/2)) > log(330000/21og(3 + 2v/2)) > 10.5.
Therefore, by (16) and (17), we obtain
(18)  log|A| > —343.24(log X + 2log(3 + 2v/2))(0.14 + log 0.5673n)%.
Combination of (12) and (18) yields

2log4 2log(3 + 2v/2)
1 A8 14+ —————=
(19) 3 x * 08 8< + %

Since every prime factor p of X satisfies p = +1 (mod 8) by (11), we get
X > 7 and (19) is impossible for n > 330000. The lemma is proved.

> (0.14 + log 0.5673n)?
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LEMMA 15. The equation
(20) X" 4+1=2Y% X, Y,neN X>1,Y>1 n>2 2|n,
has no solution (X,Y,n).

Proof. Let (X,Y,n) be a solution of (20). Notice that (X', Y”’) = (1,1)
is a solution of the equation
X4 —2v?=1, X, Y eN

Hence, by Lemma 2, we have 4tn. This implies that n = 2¢, where ¢ is an
odd integer with ¢ > 1. Since ¢t has an odd prime factor p if ¢ > 1, we see
from (20) that

(21) X"P 41 =2dY2,
Xm4l
(22) S Eeas

where d, Y7, Y5 are positive integers satisfying dY;1Y>, = Y. By Lemma 4,
if d = 1, then (22) is impossible. On the other hand, since X™/? = —1
(mod d) by (21), we see from (22) that d|p. So we have d = p and

(Xn/Pyp 41
Xn/p+1

by (22). Since 2|n and X™/? =1 (mod 4), by Lemma 6, (23) is impossible.
The lemma is proved.

(23> = pY227

3. Proof of Theorem. By [7], it suffices to consider the solutions
(z,y,m,n) of (1) with 2{z.

Let (z,y,m,n) be a solution of (1) with 2¢x. Then we have
(24) ™+ 1=dyf, 2" +1=dy;, 1<m<n,

where d, y1, yo are positive integers satisfying dy,y. = y and d is squarefree.
By Lemma 3, (24) is impossible for d = 1. If d > 1 and d has an odd
factor d; with dy > 1, let r denote the least positive integer with " +1 =0
(mod dy). Then from (24) we get

(25) m=rmi, n=rng,
where my, n; are odd positive integers with 1 < mj < ny. Further, let
(26) s =ged(m,n), m=sm/, n=sn

We see from (25) and (26) that r|s and m/, n’ are odd positive integers
satisfying 1 < m’ < n’ and ged(m’,n’) = 1. Let z = x°. Then (24) can be
written as

(27) 2 l=dy?, 2 41 =dyl
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Since r|s, 2¢s/rand z+1=2°+1=0 (mod z" + 1), we derive from (27)
that z + 1 = dd’'y’? and

zm/—i—l z“/—i—l
:d/ 12 :d/ 12
1 AR | Y2

where d', ¢/, y}, v, are positive integers satisfying d'y'y; = y1 and d'y'vy)
= ya. Since ged(m/,n’) = 1, we have ged((z™ +1)/(z+1), (2™ +1)/(2+1))
= 1. Hence, by (28), we get d’ =1 and

(28)

z”,—l—l
z+1

However, by Lemma 3, (29) is impossible. So we have d = 2. Then (24) can
be written as

(30) ™+ 1=2y2 2" +1=2y.

(29) =y, n'>1,2tn.

Let s, m’, n’ be defined as in (26), and let z = z°. If m =n =1
(mod 2), then from (30) we get

’

zZm +1 2" 41
31 1=2dy?, “——=dy’, " =dy,
(31) Z+ Y11 ] Y12 ] Y22
where d, y11, Y12, Yoo are positive integers satisfying dyi;1yi12 = y1 and

dy11y22 = 2. Since ged(m’,n’) = 1 and ged((z™ +1)/(z+1), (2™ +1)/(z+
1)) = 1, we see from (31) that d = 1. Since n’ > 1 and 2t{n’, by Lemma 3,
(31) is impossible for d = 1. On the other hand, if m =n =0 (mod 2), then
n > 2 and 2 |n. By Lemma 15, this is impossible. Therefore, the parities of
m and n are distinct. Furthermore, by Lemma 15, we conclude from (30)
that either m =1 and n = 2, or m = 2 and 2{n.

If m =1 and n = 2, then from (30) we get

(32) r+1=2y 22 +1=273.

Let o =1+ v2 and 6 = 1 — /2. For any nonnegative integer k, let Uy, Vj
be defined as in (6). We see from the second equality of (32) that

A A 4
2 e+o’

for some odd positive integers k. From (33), we get

(33)

k ok
(34) cp1=2 o (—g)—1/2

o+o
_ 2U(k+1)/2U(k_1)/2 if k=1 (mod 4),
4‘/kk+1)/2‘/kk_1)/2 ifk=3 (HlOd 4)

Notice that ged(Ux41)/2, Uk—1)/2) = 1 by (ii) of Lemma 8. If k=1 (mod 4),
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then from (34) and the first equality of (32) we get

(35)  Ugsnye =1, Up—1y2 =¥ yuyi2=u, yi1,y12 €N

However, by (vi) of Lemma 8, (35) is impossible. Similarly, if k =3 (mod 4),
then from (32) and (35) we get

(36) Viksny2 =2u11, V-2 =¥l 202 =y, Yiy2 €N,
since 2f(k — 1)/2 and 2{V(j_1)/2. Therefore, by (vii) of Lemma 8, we
see from (36) that (k,y11,y12) = (3,1,1). Further, by (32), we obtain
("'Ij7 y7 m7 n) = (77 207 17 2).

If m = 2 and 2¢n, then from (30) we get
(37) 2 4+ 1 =243,
(38) 2" +1=2y3, n>2 2{n.
By the proof of [3, Theorem 2], we see from (38) that z+1 = 2ny’? for some
positive integer y’. Further, by Lemma 6, we get 2|y’ and
" +1
z+1
By Lemma 7 we find from (39) that n is squarefree.

On the other hand, since x = 7 (mod 8), by (iii) of Lemma 8, we see
from (37) that

(39) x+1=38ny3, = NY3y,  2NY21Y22 = Y2,  Yo1,Ya2 € N.

(40) o =Upys, k>0, keZ

Combination of the first equality of (39) and (40) yields

(41) Vor+1Vary2 = 2ny3, .

Notice that ged(Vag41, Vakt2) = 1 and 24 Vagy1. From (39) we get
(42) Vokto = 2143,

(43) Vakt1 = nayj,

where n1, no, ys, y4 are positive integers satisfying

(44) ning =n,  Y3Ys = Y21.

Since n > 3, by (vii) of Lemma 8, we see from (39) and (41)—(44) that if
ng =1, then k =3, n =n; =51, y3 =2, yg, = 13 and x = 275807. Then
the second equality of (39) is false. Moreover, if ny = 1, then from (42) we
get

(45) 2y3 = Va2 = 2Uk41 Vit

Since ged(Uk+41, Vi+1) = 1, we find from (45) that U411 and Vj41 are both
squares. Hence, by (vi) and (vii) of Lemma 8, we deduce from (39), (40),
(42), (43) and (45) that k =0, Ugy1 = Vekq1 =ys =wu =1L, 2 =Us =7
and n = 1, a contradiction. So we have ny > 1 and ny > 1.
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From (42), we get

(46) Ukt1 = n3Y3,

(47) Vier1 = nayg,

where ns3, ng, ys5, yg are positive integers satisfying

(48) ged(nz,ng) =1, ngng=ni,  Ysye = Y3

By using the same method, we can prove that ng > 1 and ny > 1.

We now consider the case where 2| k. By Lemma 10, we see from (46)
that ng > 23. Moreover, we observe that if y4 = 1 and ns is a prime with
ny < 1000, then (39) is false. Recall that n is squarefree. Therefore, by
Lemma 11, either no has at least two distinct prime factors or ny is a prime
with ng > 1000. Similarly, we see from (47) that ng has the same property.
Since ged(Vags1, Vagr2) = 1, we have ged(Vis1, Vog+1) = 1. Hence, by
(43) and (47), we get ged(ng,ng) = 1. Notice that every prime factor p of
Vie+1Vak41 satisfies p =1 (mod 4). So we have

(49) n =ning = nansgng > 23ngonyg > 23 min(5- 13- 17 29, 106) > 482885.

But, by Lemma 14, from (38) and (39) we get n < 330000, a contradiction.

For the case where 21k, we have Vi1 = 2U(;11)/2V(k+1)/2- Therefore,
by much the same argument as in the proof of the case where 2|k, we
can obtain a lower bound n > 482885 as in (49). By Lemma 14, this is
impossible. The proof is complete.
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