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On the diophantine equation (xm + 1)(xn + 1) = y2

by

Maohua Le (Zhanjiang)

1. Introduction. Let Z, N, Q be the sets of integers, positive inte-
gers and rational numbers respectively. In [7], Ribenboim proved that the
equation

(1) (xm + 1)(xn + 1) = y2, x, y,m, n ∈ N, x > 1, n > m ≥ 1,

has no solution (x, y, m, n) with 2 |x and (1) has only finitely many solu-
tions (x, y,m, n) with 2 - x. Moreover, all solutions of (1) with 2 - x satisfy
max(x,m, n) < C, where C is an effectively computable constant. In this
paper we completely determine all solutions of (1) as follows.

Theorem. Equation (1) has only the solution (x, y, m, n) = (7, 20, 1, 2).

2. Preliminaries

Lemma 1 ([4]). The equation

X2 − 2Y 4 = 1, X, Y ∈ N,

has no solution (X, Y ). The equation

X2 − 2Y 4 = −1, X, Y ∈ N,

has only the solutions (X, Y ) = (1, 1) and (239, 13).

Lemma 2 ([5]). Let a, D be positive integers with 2 - a. The equation

a2X4 −DY 2 = −1, X, Y ∈ N,

has at most one solution (X, Y ).

Lemma 3 ([1]). The equation

Xn + 1 = Y 2, X, Y, n ∈ N, n > 1,

has only the solution (X, Y, n) = (2, 3, 3).
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Lemma 4 ([6]). The equation

Xn + 1
X + 1

= Y 2, X, Y, n ∈ N, X > 1, n > 1, 2 - n,

has no solution (X, Y, n).

Let a, b be nonzero integers such that a > 0, gcd(a, b) = 1 and a−4b > 0.
Let α, β be distinct zeros of the polynomial z2 −

√
az + b. For any odd

integer n, let F (n) = (αn − βn)/(α− β). Then F (n) are nonzero integers if
n > 0.

Lemma 5 ([9]). If 4 | a, b ≡ 1 (mod 4) and (a/b) = 1, where (a/b) is
Jacobi’s symbol , then the equation

F (n) = Y 2, n, Y ∈ N, n > 1, 2 - n,

has no solution (n, Y ). If 4 | a, b ≡ 3 (mod 4) and (a/b) = 1, then the
equation

F (n) = nY 2, n, Y ∈ N, n > 1, 2 - n,

has no solution (n, Y ).

Lemma 6. The equation

(2)
Xn + 1
X + 1

= nY 2, X, Y, n ∈ N, X > 1, n > 1, 2 - n,

has no solution (X, Y, n) with X ≡ 1 (mod 4).

P r o o f. Let α = X and β = −1. Then α and β are distinct zeros of
z2− (X−1)z−X. Since X−1 ≡ 0 (mod 4) and −X ≡ 3 (mod 4) if X ≡ 1
(mod 4), by Lemma 5, (2) is impossible. The lemma is proved.

Lemma 7. If (X, Y, n) is a solution of (2) with X +1 ≡ 0 (mod n), then
n is squarefree.

P r o o f. Let (X, Y, n) be a solution of (2) with X + 1 ≡ 0 (mod n). If
n is not squarefree, then there exists an odd prime p satisfying p2 |n. Since
Xn/p +1 ≡ 0 (mod X +1) and X +1 ≡ 0 (mod n), we derive from (2) that

(3)
Xn/p + 1

X + 1
= ndY 2

1 ,
(Xn/p)p + 1
Xn/p + 1

= dY 2
2 ,

where d, Y1, Y2 are positive integers satisfying dY1Y2 = Y . Since d | p, we
get either d = 1 or d = p. By Lemma 4, (3) is impossible for d = 1. So we
have d = p and

(4)
Xn/p + 1

X + 1
= npY 2

1 ,
Xn + 1

Xn/p + 1
= pY 2

2 .
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By the same argument, we infer from the first equality of (4) that

(5)
Xn/p2

+ 1
X + 1

= np2Y 2
11,

Xn/p + 1
Xn/p2 + 1

= pY 2
12,

pY11Y12 = Y1, Y11, Y12 ∈ N.

Combination of (4) and (5) yields

(Xn/p2
)p2

+ 1
Xn/p2 + 1

= (pY12Y2)2.

However, by Lemma 4, this is impossible. The lemma is proved.

Lemma 8. Let % = 1+
√

2 and % = 1−
√

2. For any nonnegative integer k,
let

(6) Uk =
%k + %k

2
, Vk =

%k − %k

2
√

2
.

Then Uk and Vk are nonnegative integers satisfying :

(i) gcd(Uk, Vk) = 1.
(ii) gcd(Uk, Uk+1) = gcd(Vk, Vk+1) = 1.
(iii) If Uk ≡ 7 (mod 8), then k ≡ 3 (mod 4).
(iv) The prime factors p of Uk satisfy

p ≡
{
±1 (mod 8) if 2 - k,
1, 3 (mod 8) if 2 | k.

(v) If 2 - k, then the prime factors p of Vk satisfy p ≡ 1 (mod 4).
(vi) Uk is a square if and only if k = 1.
(vii) Vk is a square if and only if k = 1, 7.

P r o o f. Since Uk and Vk are integers satisfying

(7) U2
k − 2V 2

k = (−1)k,

we get (i), (iv) and (v) immediately. Moreover, by Lemmas 1 and 2, we
obtain (vi) and (vii), respectively.

On the other hand, since Uk and Vk satisfy the recurrences

U0 = 1, U1 = 1, Uk+2 = 2Uk+1 + Uk, k ≥ 0,

V0 = 0, V1 = 1, Vk+2 = 2Vk+1 + Vk, k ≥ 0,

respectively, we get (ii) and (iii) immediately. The lemma is proved.

Lemma 9. The equation

(8) Urs = UrY
2, r, s, Y ∈ N, r > 1, s > 1, 2 - r, 2 - s,

has no solution (r, s, Y ).
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P r o o f. Let α = %r and β = %r. Then α and β are distinct zeros of
z2 − 2

√
2Vrz + 1. If (r, s, Y ) is a solution of (8), then we have

αs − βs

α− β
= Y 2.

However, by Lemma 5, this is impossible.

Lemma 10. Let n be a positive integer with n < 23. Then the equation

(9) Ur = nY 2, r, Y ∈ N, r > 1, 2 - r, Y > 1

has no solution (r, Y ).

P r o o f. By (iv) of Lemma 8, we see from (9) that every prime factor p
of n satisfies p ≡ ±1 (mod 8). Since n < 23, we have n = 7 or 17. Since
U3 = 7, by Lemma 9, (9) is impossible for n = 7. Notice that U4 = 17 and
17 - Uj for j = 1, 2, 3. We see that 17 - Ur if 2 - r. This implies that (9) is
impossible for n = 17. The lemma is proved.

Lemma 11 ([8]). Let p be an odd prime with p < 1000. If Vr = pY 2 for
some positive integers r, Y with 2 - r, then Y = 1.

Let α be an algebraic number with the minimal polynomial over Z

a0z
d + a1z

d−1 + . . . + ad = a0

d∏
i=1

(z − σiα), a0 > 0,

where σ1α, σ2α, . . . , σdα are all conjugates of α. Then

h(α) =
1
d

(
log a0 +

d∑
i=1

log max(1, |σiα|)
)

is called the absolute logarithmic height of α.

Lemma 12 ([2, Corollary 2]). Let α1, α2 be real algebraic numbers which
exceed one and are multiplicatively independent. Further , let Λ = b1 log α1−
b2 log α2 for some positive integers b1, b2. Then

log |Λ| ≥ −24.34D4(log A1)(log A2)(max(1/2, 21/D, 0.14 + log B))2,

where D = [Q(α1, α2) : Q], log Aj = max(h(αj), |log αj |/D, 1/D) (j = 1, 2),
B = b1/(D log A2) + b2/(D log A1).

Lemma 13. If (X, Y, n) is a solution of the equation

(10) Xn + 1 = 2Y 2, X, Y, n ∈ N, X > 1, Y > 1, n > 1, 2 - n,

then there exist suitable positive integers X1, Y1, s such that

(11) −X = X2
1−2Y 2

1 , gcd(X1, Y1) = 1, 1 <

∣∣∣∣X1 + Y1

√
2

X1 − Y1

√
2

∣∣∣∣ < (3+2
√

2)2,
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(12)
∣∣∣∣n log

X1 + Y1

√
2

−X1 + Y1

√
2
− s log(3 + 2

√
2)2

∣∣∣∣ <
2
√

2
Y

<
4

Xn/2
, s < n.

P r o o f. Since 2 - n, we see from (10) that

(13) (−X)n = 1− 2Y 2.

Notice that the class number of Q(
√

2) is equal to one. By much the same
argument as in the proof of [3, Theorem 2], we can obtain (11) and (12)
from (13). The lemma is proved.

Lemma 14. All solutions (X, Y, n) of (10) satisfy n < 330000.

P r o o f. Let (X, Y, n) be a solution of (10). By Lemma 13, there ex-
ist positive integers X1, Y1, s satisfying (11) and (12). Let α1 = (X1 +
Y1

√
2)/(−X1+Y1

√
2), α2 = (3+2

√
2)2 and Λ = n log α1−s log α2. Then α1

and α2 are multiplicatively independent and satisfy Xα2
1−2(X2

1 +2Y 2
1 )α1 +

X = 0 and α2
2 − 34α2 + 1 = 0 respectively. So we have

(14) h(α1) =
1
2

(
log X + log

∣∣∣∣X1 + Y1

√
2

X1 − Y1

√
2

∣∣∣∣), h(α2) = log(3 + 2
√

2).

Further, by (11) and (14), we get

(15) h(α1) <
1
2
(log X + 2 log(3 + 2

√
2)).

Since [Q(α1, α2) : Q] = [Q(
√

2) : Q] = 2, by Lemma 12, we deduce from
(14) and (15) that

log |Λ| ≥ − 389.44
(

1
2

log X + log(3 + 2
√

2)
)

(16)

× (log(3 + 2
√

2))(max(10.5, 0.14 + log B))2,

where

(17) B =
n

2 log(3 + 2
√

2)
+

s

log X + 2 log(3 + 2
√

2)
.

Since s < n by (12), if n ≥ 330000, then from (17) we get

log B > log(n/2 log(3 + 2
√

2)) ≥ log(330000/2 log(3 + 2
√

2)) > 10.5.

Therefore, by (16) and (17), we obtain

(18) log |Λ| > −343.24(log X + 2 log(3 + 2
√

2))(0.14 + log 0.5673n)2.

Combination of (12) and (18) yields

(19)
2 log 4
log X

+ 686.48
(

1 +
2 log(3 + 2

√
2)

log X

)
(0.14 + log 0.5673n)2 > n.

Since every prime factor p of X satisfies p ≡ ±1 (mod 8) by (11), we get
X ≥ 7 and (19) is impossible for n ≥ 330000. The lemma is proved.
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Lemma 15. The equation

(20) Xn + 1 = 2Y 2, X, Y, n ∈ N, X > 1, Y > 1, n > 2, 2 |n,

has no solution (X, Y, n).

P r o o f. Let (X, Y, n) be a solution of (20). Notice that (X ′, Y ′) = (1, 1)
is a solution of the equation

X ′4 − 2Y ′2 = 1, X ′, Y ′ ∈ N.

Hence, by Lemma 2, we have 4 - n. This implies that n = 2t, where t is an
odd integer with t > 1. Since t has an odd prime factor p if t > 1, we see
from (20) that

Xn/p + 1 = 2dY 2
1 ,(21)

Xn + 1
Xn/p + 1

= dY 2
2 ,(22)

where d, Y1, Y2 are positive integers satisfying dY1Y2 = Y . By Lemma 4,
if d = 1, then (22) is impossible. On the other hand, since Xn/p ≡ −1
(mod d) by (21), we see from (22) that d | p. So we have d = p and

(23)
(Xn/p)p + 1
Xn/p + 1

= pY 2
2 ,

by (22). Since 2 |n and Xn/p ≡ 1 (mod 4), by Lemma 6, (23) is impossible.
The lemma is proved.

3. Proof of Theorem. By [7], it suffices to consider the solutions
(x, y,m, n) of (1) with 2 - x.

Let (x, y, m, n) be a solution of (1) with 2 - x. Then we have

(24) xm + 1 = dy2
1 , xn + 1 = dy2

2 , 1 ≤ m < n,

where d, y1, y2 are positive integers satisfying dy1y2 = y and d is squarefree.
By Lemma 3, (24) is impossible for d = 1. If d > 1 and d has an odd
factor d1 with d1 > 1, let r denote the least positive integer with xr + 1 ≡ 0
(mod d1). Then from (24) we get

(25) m = rm1, n = rn1,

where m1, n1 are odd positive integers with 1 ≤ m1 < n1. Further, let

(26) s = gcd(m,n), m = sm′, n = sn′.

We see from (25) and (26) that r | s and m′, n′ are odd positive integers
satisfying 1 ≤ m′ < n′ and gcd(m′, n′) = 1. Let z = xs. Then (24) can be
written as

(27) zm′
+ 1 = dy2

1 , zn′
+ 1 = dy2

2 .
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Since r | s, 2 - s/r and z + 1 = xs + 1 ≡ 0 (mod xr + 1), we derive from (27)
that z + 1 = d1d

′y′2 and

(28)
zm′

+ 1
z + 1

= d′y′21 ,
zn′

+ 1
z + 1

= d′y′22 ,

where d′, y′, y′1, y′2 are positive integers satisfying d′y′y′1 = y1 and d′y′y′2
= y2. Since gcd(m′, n′) = 1, we have gcd((zm′

+1)/(z+1), (zn′
+1)/(z+1))

= 1. Hence, by (28), we get d′ = 1 and

(29)
zn′

+ 1
z + 1

= y′22 , n′ > 1, 2 - n′.

However, by Lemma 3, (29) is impossible. So we have d = 2. Then (24) can
be written as

(30) xm + 1 = 2y2
1 , xn + 1 = 2y2

2 .

Let s, m′, n′ be defined as in (26), and let z = xs. If m ≡ n ≡ 1
(mod 2), then from (30) we get

(31) z + 1 = 2dy2
11,

zm′
+ 1

z + 1
= dy2

12,
zn′

+ 1
z + 1

= dy2
22,

where d, y11, y12, y22 are positive integers satisfying dy11y12 = y1 and
dy11y22 = y2. Since gcd(m′, n′) = 1 and gcd((zm′

+1)/(z+1), (zn′
+1)/(z+

1)) = 1, we see from (31) that d = 1. Since n′ > 1 and 2 - n′, by Lemma 3,
(31) is impossible for d = 1. On the other hand, if m ≡ n ≡ 0 (mod 2), then
n > 2 and 2 |n. By Lemma 15, this is impossible. Therefore, the parities of
m and n are distinct. Furthermore, by Lemma 15, we conclude from (30)
that either m = 1 and n = 2, or m = 2 and 2 - n.

If m = 1 and n = 2, then from (30) we get

(32) x + 1 = 2y2
1 , x2 + 1 = 2y2

2 .

Let % = 1 +
√

2 and % = 1−
√

2. For any nonnegative integer k, let Uk, Vk

be defined as in (6). We see from the second equality of (32) that

(33) x =
%k + %k

2
=

%k + %k

% + %
,

for some odd positive integers k. From (33), we get

x + 1 =
%k + %k

% + %
+ (−%%)(k−1)/2(34)

=
{

2U(k+1)/2U(k−1)/2 if k ≡ 1 (mod 4),
4V(k+1)/2V(k−1)/2 if k ≡ 3 (mod 4).

Notice that gcd(U(k+1)/2, U(k−1)/2)= 1 by (ii) of Lemma 8. If k≡1 (mod 4),
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then from (34) and the first equality of (32) we get

(35) U(k+1)/2 = y2
11, U(k−1)/2 = y2

12, y11y12 = y1, y11, y12 ∈ N.

However, by (vi) of Lemma 8, (35) is impossible. Similarly, if k ≡ 3 (mod 4),
then from (32) and (35) we get

(36) V(k+1)/2 = 2y2
11, V(k−1)/2 = y2

12, 2y11y12 = y1, y11, y12 ∈ N,

since 2 - (k − 1)/2 and 2 - V(k−1)/2. Therefore, by (vii) of Lemma 8, we
see from (36) that (k, y11, y12) = (3, 1, 1). Further, by (32), we obtain
(x, y,m, n) = (7, 20, 1, 2).

If m = 2 and 2 - n, then from (30) we get

x2 + 1 = 2y2
1 ,(37)

xn + 1 = 2y2
2 , n > 2, 2 - n.(38)

By the proof of [3, Theorem 2], we see from (38) that x+1 = 2ny′2 for some
positive integer y′. Further, by Lemma 6, we get 2 | y′ and

(39) x + 1 = 8ny2
21,

xn + 1
x + 1

= ny2
22, 2ny21y22 = y2, y21, y22 ∈ N.

By Lemma 7 we find from (39) that n is squarefree.
On the other hand, since x ≡ 7 (mod 8), by (iii) of Lemma 8, we see

from (37) that

(40) x = U4k+3, k ≥ 0, k ∈ Z.

Combination of the first equality of (39) and (40) yields

(41) V2k+1V2k+2 = 2ny2
21.

Notice that gcd(V2k+1, V2k+2) = 1 and 2 - V2k+1. From (39) we get

V2k+2 = 2n1y
2
3 ,(42)

V2k+1 = n2y
2
4 ,(43)

where n1, n2, y3, y4 are positive integers satisfying

(44) n1n2 = n, y3y4 = y21.

Since n ≥ 3, by (vii) of Lemma 8, we see from (39) and (41)–(44) that if
n2 = 1, then k = 3, n = n1 = 51, y3 = 2, y4 = 13 and x = 275807. Then
the second equality of (39) is false. Moreover, if n1 = 1, then from (42) we
get

(45) 2y2
3 = V2k+2 = 2Uk+1Vk+1.

Since gcd(Uk+1, Vk+1) = 1, we find from (45) that Uk+1 and Vk+1 are both
squares. Hence, by (vi) and (vii) of Lemma 8, we deduce from (39), (40),
(42), (43) and (45) that k = 0, Uk+1 = Vk+1 = y3 = y4 = 1, x = U3 = 7
and n = 1, a contradiction. So we have n1 > 1 and n2 > 1.



On the diophantine equation (xm + 1)(xn + 1) = y2 25

From (42), we get

Uk+1 = n3y
2
5 ,(46)

Vk+1 = n4y
2
6 ,(47)

where n3, n4, y5, y6 are positive integers satisfying

(48) gcd(n3, n4) = 1, n3n4 = n1, y5y6 = y3.

By using the same method, we can prove that n3 > 1 and n4 > 1.
We now consider the case where 2 | k. By Lemma 10, we see from (46)

that n3 ≥ 23. Moreover, we observe that if y4 = 1 and n2 is a prime with
n2 < 1000, then (39) is false. Recall that n is squarefree. Therefore, by
Lemma 11, either n2 has at least two distinct prime factors or n2 is a prime
with n2 > 1000. Similarly, we see from (47) that n4 has the same property.
Since gcd(V2k+1, V2k+2) = 1, we have gcd(Vk+1, V2k+1) = 1. Hence, by
(43) and (47), we get gcd(n2, n4) = 1. Notice that every prime factor p of
Vk+1V2k+1 satisfies p ≡ 1 (mod 4). So we have

(49) n = n1n2 = n2n3n4 ≥ 23n2n4 ≥ 23 min(5 · 13 · 17 · 29, 106) ≥ 482885.

But, by Lemma 14, from (38) and (39) we get n < 330000, a contradiction.
For the case where 2 - k, we have Vk+1 = 2U(k+1)/2V(k+1)/2. Therefore,

by much the same argument as in the proof of the case where 2 | k, we
can obtain a lower bound n ≥ 482885 as in (49). By Lemma 14, this is
impossible. The proof is complete.

Acknowledgements. The author is grateful to the referee for his valu-
able suggestions.

References

[1] C. Ko, On the diophantine equation x2 = yn + 1, xy 6= 0, Sci. Sinica 14 (1964),
457–460.

[2] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux loga-
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