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Double transitivity of Galois groups of trinomialsbyS. D. Cohen (Glasgow), A. Movahhedi (Limoges) andA. Salinier (Limoges)1. Introdu
tion. In this paper we study the Galois group G(f) ofan irredu
ible trinomial f(X) = Xn + aXs + b with integral 
oeÆ
ients(1 � s � n�1; ab 6= 0). Irredu
ibility has the e�e
t that G(f) is a transitivesubgroup of the full symmetri
 group a
ting on the zeros of f(X). If n ands are not 
oprime, then f(X) = g(Xd), say, where d > 1 is the greatest
ommon divisor of n and s. Thus f(X) is fun
tionally de
omposable over Qand, easily, G(f) is imprimitive as a permutation group. We shall show thatin fairly general 
ir
umstan
es, when n and s are 
o-prime, G(f) is not onlyprimitive but even doubly transitive. As we shall see, our results extend atheorem of Osada [18℄ who proved, under stronger 
onditions, that G(f) isthe full symmetri
 group Sn itself. See also [17℄ for a related result.We denote by (u; v) the greatest 
ommon divisor of two integers u andv. For any prime p and non-zero integer 
, we use vp(
) to denote the p-adi
valuation of 
. Our �rst result is as follows.Theorem 1.1. Let f(X) = Xn + aXs + b be an irredu
ible trinomialwith integral 
oeÆ
ients where (n; as) = (a(n � s); b) = 1: Suppose there isa prime divisor p of b su
h that (s; vp(b)) = 1. Then the Galois group G(f)of f(X) over Q is doubly transitive.A doubly transitive group of degree n whi
h 
ontains a transposition isthe full symmetri
 group Sn. A

ordingly, under the hypotheses of The-orem 1.1, for G(f) to be Sn, it suÆ
es to guarantee the existen
e of atransposition in G(f). In parti
ular, this is the 
ase when there exists aprime p not dividing (b; s) su
h that vp(D0(f)) is odd, whereD0(f) = nnbn�s + (�1)n�1ss(n� s)n�san:Indeed, the dis
riminant D(f) of f is given [21℄ byD(f) = (�1)n(n�1)=2bs�1D0(f):1991 Mathemati
s Subje
t Classi�
ation: 11R32, 11S15, 12F10.[1℄



2 S. D. Cohen et al.Thus, the above prime p, not dividing b, divides D(f) to an odd power,whi
h shows that p is rami�ed in the splitting �eld L of f(X). Hen
e, asshown in Lemma 2.1 below, the group G(f) 
ontains a transposition.We 
omment on the relationship of Theorem 1.1 to Osada's work. Firstly,there is the minor observation that he allowed the existen
e of an integer 
su
h that (a; b) = 
n and b=
n 
oprime to 
, but, then, repla
ing f(X) byf(
X)=
n we may suppose that 
 = 1.Next, Theorem 1.1 signi�
antly extends Theorem 1 of [18℄; its state-ment is similar ex
ept that our hypothesis about the existen
e of a primedivisor p of b su
h that (s; vp(b)) = 1 is repla
ed by the stronger 
ondition(b; s) = 1 and vp(b) = 1 for a prime p. Moreover, in [18℄, it was assumedthat jD0(f)j is a non-square integer, whi
h, as remarked above, ensures theexisten
e of a transposition in G(f). Thus, we re
over Theorem 1 of [18℄ un-der lesser 
onstraints. Furthermore, whereas the weakening of \vp(b) = 1"to \(s; vp(b)) = 1" may not rank as a major improvement, we 
laim thatthe omission of the hypothesis (b; s) = 1 is of some signi�
an
e. For, as weshall see, a prime p su
h that p divides (b; s) and (s; vp(b)) = 1 is wildlyrami�ed in the splitting �eld L of f(X); whereas, to our knowledge, wildrami�
ation has been ex
luded in pre
eding works on this subje
t. Thus thedemonstration that G(f) is doubly transitive, even though several primesare wildly rami�ed in L, appears to represent signi�
ant progress.Further, it is useful to be able to derive double transitivity withoutpres
ribing jD0(f)j be a non-square, sin
e it is possible to �nd examples oftrinomials satisfying the hypotheses of Theorem 1.1 for whi
h jD0(f)j is asquare (see Example 8 in Se
tion 5).We remark that, when no prime p satis�es the 
ondition (s; vp(b)) = 1, itis still possible in some 
ir
umstan
es to obtain the primitivity of the Galoisgroup G(f) as in [13℄.In Theorem 1.1 although the hypotheses do not pre
lude wild rami�
a-tion, we have, however, assumed that p -n� s for every prime p dividing b.The possibility that p j (n� s; b) is parti
ularly diÆ
ult to treat. Neverthe-less, in our other main result (whi
h we now state) we allow this to o

urfor a single prime p in the 
ase in whi
h n� s = pt (t � 0).Theorem 1.2. Let f(X) = Xn + aXs + b be an irredu
ible trinomialwith integral 
oeÆ
ients where (n; s) = 1. Suppose that there exists a primedivisor p of b, but not of a, su
h that(i) n = s+ pt; t � 0,(ii) vp(f(�a)) = 1,(iii) (s; vp(b)) = 1.Then G(f) is doubly transitive.



Galois groups of trinomials 3Note that when vp(b) = 1, then the 
ondition \vp(f(�a)) = 1" is auto-mati
ally satis�ed ifa = + 1 or � 1 (mod p2) for p odd;a = � 1 (mod 4) for p = 2:Next, we state some results whi
h are used in the proofs of Theorems 1.1and 1.2 and also may be employed in 
onjun
tion with these theorems toprovide yet stronger 
on
lusions.For a subset (e.g. a subgroup) H of G(f) we denote by suppH (thesupport ofH) the set of roots � of f(X) su
h that �(�) 6= � for some � 2 H.Our results assert that, under appropriate 
onditions, there are subgroupsH of G(f) transitive on suppH.Theorem 1.3. Let f(X)= Xn+aXs+b be an irredu
ible trinomial withintegral 
oeÆ
ients with (n; s) = 1. Suppose there exists a prime p dividingb but not a(n� s) su
h that (s; vp(b)) = 1. Then G(f) 
ontains a subgroupH a
ting transitively on s roots of f(X) and �xing ea
h of the other roots.Furthermore, if p - s, then the subgroup H is generated by an s-
y
le.Theorem 1.4. Let f(X)= Xn+aXs+b be an irredu
ible trinomial withintegral 
oeÆ
ients with (n; s) = 1. Suppose there exists a prime p dividingb, but not a, su
h that(i) n� s = pt; t � 1,(ii) vp(f(�a)) = 1.Then G(f) 
ontains a subgroup H a
ting transitively on pt roots of f(X)and �xing ea
h of the other roots.Theorems 1.3 and 1.4 may sometimes be used together. For example, fora trinomial satisfying the hypotheses of Theorem 1.2, Theorem 1.4 alwaysapplies, but for the same trinomial there may exist another prime p0 su
hthat (s; vp0(b)) = 1 and then the 
on
lusion of Theorem 1.3 is also valid.More generally, by 
ombining the 
on
lusions of Theorems 1.1 and 1.2 withsu
h fa
ts as Theorems 1.3 and 1.4 and the 
lassi�
ation of doubly transitivegroups [2℄, we 
an show that in most of the 
ases des
ribed in Theorems 1.1and 1.2 (without assuming that jD0(f)j orD(f) is a non-square), G(f) = Anor Sn (see Theorems 4.3 and 4.4). We leave the details of this pro
edureto a further paper but give some examples whi
h illustrate our result inSe
tion 5.Finally, we 
omment brie
y on some of the literature on the Galoisgroups of trinomials other than that whi
h 
limaxed in Osada's papers.In [13℄ it is proved that G(f) is primitive in 
ertain 
ases under 
onditionslike those of Theorem 1.1 ex
ept that b is assumed to be 
oprime to s but,on the other hand, (vp(b); s) may be greater than 1 for ea
h prime p.



4 S. D. Cohen et al.Usually, if d = (a; b) > 1, rami�
ation of a prime divisor of d is of arather di�erent nature than that 
onsidered here and in [13℄. Thus, forexample, Komatsu [6{8℄ and Movahhedi [12℄ have studied trinomials of theform Xn + aX + a.An interesting example of Trinks [22℄ with (n; a) > 1 is G(X7�7X+3) =PSL2(7), where PSL2(7) is the proje
tive spe
ial linear group of degree 2over the �nite �eld of 7 elements. But generally not many trinomials forwhi
h An 6� G(f) are known; perhaps the results of the paper and its sequelmay help to narrow the sear
h for su
h examples to a smaller area. Thepaper [4℄ 
ontains serious errors (e.g. the 
laim to establish primitivity inLemma 3 is false); therefore the examples given there are not justi�ed. Thepresent paper establishes modi�ed results in a similar dire
tion. The maindi�eren
e in the proof is that, instead of 
on
entrating on the rami�
ationof a single prime p dividing b as there, in Theorem 1.1 all rami�
ation istaken into a

ount. The only e�e
t of these additional 
onsiderations in thehypotheses of Theorem 1.1 is the in
lusion of the assumption that (a; b) = 1.2. Inertia groups. Let f(X) = Xn+aXs+b be an irredu
ible trinomialwith integral 
oeÆ
ients (1 � s � n � 1; ab 6= 0). Let � := �1; �2; : : : ; �nbe the di�erent roots of f(X) in an algebrai
 
losure of Q . We denote byK = Q(�) the �eld obtained by adjoining the root � to the �eld Q , and byL := Q(�; �2 ; : : : ; �n) the splitting �eld of f(X).For a given prime p, we 
hoose a �xed prime ideal p of L dividing pand denote by Lp the 
orresponding 
ompletion with respe
t to the p-adi
valuation. Write Ip for the inertia group of p and LI the inertia �eld of p:we have Ip = Gal(Lp=LI).In this se
tion we �rst des
ribe the fa
torization of f(X) in the p-adi
�eld Qp and in some of the sub-extensions of Lp, and then prove Theo-rems 1.3 and 1.4.Lemma 2.1. Suppose (n; as) = 1. Let p be a prime whi
h does notdivide b but is rami�ed in K. Then the inertia group Ip is generated by atransposition.P r o o f. We ne
essarily have p jD0(f) and p - a. So, by Theorem 2 of[11℄, the prime p divides the absolute dis
riminant of the �eld K = Q(�)exa
tly on
e. The rest of the proof is similar to that of Lemma 5 of [13℄.Next, let p be a prime divisor of b but not of a. By Hensel's Lemma,f(X) = g(X)h(X) over Zp;where g(X) � Xs (mod p) and h(X) � Xn�s + a (mod p):



Galois groups of trinomials 5Throughout the rest of the paper, this notation will be retained for thefa
tors of f(X) over Zp.Lemma 2.2. Suppose (n; s) = 1 and p is a prime dividing b but nota(n � s). Then h(X) splits 
ompletely over the inertia �eld LI and thesupport of the inertia group Ip has at most s elements.P r o o f. Let � be a root of h(X) having h1(X) as minimal polynomialover Qp . The redu
tion h1(X) of h1(X) modulo p is, by Hensel's Lemma, apower of an irredu
ible polynomial. On the other hand, sin
e by hypothesisp - a(n � s), h(X), the redu
tion of h(X) modulo p, has no multiple root.So the same is true of h1(X). Thus h1(X) is irredu
ible, showing that thelo
al extension Qp (�)=Qp is unrami�ed. Hen
e the splitting �eld of h(X)is an unrami�ed extension of Qp whi
h therefore must be 
ontained in themaximal unrami�ed extension LI .Lemma 2.3. Let p be a prime divisor of b but not of a su
h that(s; vp(b)) = 1. Then, for ea
h root � of g(X), the extension Qp (�)=Qp istotally rami�ed. Furthermore, g(X) is irredu
ible over the inertia �eld LI .P r o o f. Let w be the normalized valuation of the lo
al �eld Qp (�). Thenw(p) = e, where e is the rami�
ation index of the extension Qp (�)=Qp . Sin
eg(X) � Xs (mod p), we have w(�) > 0 and, sin
e f(�) = �n+a�s+ b = 0,we ne
essarily have sw(�) = w(b) = evp(b):Now, sin
e (s; vp(b)) = 1 by hypothesis, s must divide e. Ase � [Qp (�) : Qp ℄ � s = degree of g(X);we obtain simultaneously that the extension Qp (�)=Qp is totally rami�edand the polynomial g(X) is irredu
ible over Qp . The unrami�ed extensionLI being linearly disjoint over Qp with the totally rami�ed extension Qp (�),the polynomial g(X) remains irredu
ible over LI .P r o o f o f Th e o r em 1.3. By the pre
eding two lemmas, over the �eldLI , g(X) is irredu
ible while h(X) splits 
ompletely. Hen
e Ip=Gal(Lp=LI)is transitive on its support whi
h 
onsists of the roots of g(X). This provesthe �rst part of Theorem 1.3. If, additionally, we suppose that p - s, thenLp = LI(�) for any root � of g(X). Indeed, let � be another root of g(X).Then by Lemma 2.3, and Abhyankar's lemma [14, Chapter 5, Corollary 4to Theorem 5.11℄ the extension LI(�; �)=LI (�) is unrami�ed. Sin
e Lp=LIis totally rami�ed, we must have LI(�; �) = LI(�). Thus Lp=LI is a totallyand tamely rami�ed extension of degree s. So its Galois group Ip is 
y
li
[3, Chapter I, Se
tion 8, Proposition 1℄ of order s a
ting transitively on thes roots of g(X), and as su
h must ne
essarily be generated by an s-
y
le.



6 S. D. Cohen et al.P r o o f o f Th e o r em 1.4. Let g0(X) = g(X � a); h0(X) = h(X � a).Then h0(X) � Xpt + (�a)pt + a � Xpt (mod p);and 1 = vp(f(�a)) = vp(h0(0)g0(0)). Hen
e vp(h0(0)) = 1 and so h0 is anEisenstein polynomial of degree pt with respe
t to p. Thus the polynomialh(X) is irredu
ible of degree pt over Qp and the �eld Qp (
), obtained byadjun
tion of a root 
 of h(X) to Qp , is a totally and wildly rami�ed ex-tension of Qp . Hen
e Qp (
) is linearly disjoint over Qp with the maximaltamely rami�ed extension LT of Qp 
ontained in Lp. This proves that thepolynomial h(X) is irredu
ible over LT .Now we apply results of Ore (see the Appendix below) to �nd the primede
omposition of p in K. The fa
torization of f(X) mod p isf(X) � Xs(X + a)pt (mod p):The prin
ipal part of the (p;X)-polygon of f(X) is made up of a unique sideS whi
h joins the point (n� s; 0) to the point (n; vp(b)), and the asso
iatedpolynomial of it is FS(Y ) = Y r + bp�vp(b)a1;where r := (s; vp(b)) and a1 is an integer su
h that aa1 � 1 (mod p). Like-wise, sin
e vp(f(�a)) = 1 and f(X) � Xs(X + a)pt (mod p), the prin
ipalpart of the (p;X+a)-polygon of f(X) is made up of a unique side Sa joiningthe point (s; 0) to the point (n; 1), hen
e with a linear asso
iated polynomialFSa(Y ). Now by Theorem A.2, it follows thatp = Aq1Apt2 ;where q := s=r and A1;A2 are two integral ideals of K whi
h are relativelyprime and whi
h have absolute normsNK(A1) = pr; NK(A2) = p:Moreover, sin
e the polynomials FS(Y ) and FSa(Y ) are separable modulop, Theorem A.2 also yields A1 = P1P2 : : :Pm;where the Pi's are distin
t prime ideals of K, and A2 is a prime ideal Q.Hen
e the exa
t prime de
omposition of p in K is the followingp = QptPq1Pq2 : : :Pqm:To ea
h prime ideal Pi 
orresponds an irredu
ible fa
tor gi(X) whi
h is theminimal polynomial of � in the tamely rami�ed extension KPi=Qp , whereKPi is the 
ompletion of K with respe
t to the Pi-adi
 valuation. Theprodu
t Qni=1 gi(X) is ne
essarily g(X) sin
e ea
h gi(X) is di�erent fromthe irredu
ible polynomial h(X). This implies that g(X) splits 
ompletely



Galois groups of trinomials 7over LT . Now, in this situation, the �rst rami�
ation group G(Lp=LT ) a
tstransitively on the pt roots of h(X) and �xes the roots of g(X).When (s; vp(b)) = 1, the pre
eding proof 
an be 
arried out withoutusing Ore's result as it follows from Lemma 2.3 that g(X) splits 
ompletelyover LT .A doubly transitive group with a subgroup like those des
ribed in The-orems 1.3 and 1.4 has been 
alled a Jordan group, and these have been
lassi�ed (see [15℄). This is the starting point for our sequel.3. Primitivity of G(f). The 
ru
ial part of our method is to show that,in the situation of Theorems 1.1 and 1.2, G(f) is primitive. We assume thenotation of the previous se
tions.Lemma 3.1. Let f(X) = Xn+ aXs+ b be an irredu
ible trinomial withintegral 
oeÆ
ients su
h that (n; as) = (a(n� s); b) = 1: Suppose there is aprime divisor p of b su
h that (s; vp(b)) = 1. Then G(f) is primitive.P r o o f. Suppose G(f) is imprimitive. Let A1; : : : ; Al be a system ofimprimitivity of G(f) with k := n=l the 
ardinality of ea
h of the blo
ks Ai.By Theorem 1.3 there exists a subgroup H of G(f) whi
h a
ts transitivelyon a set S 
onsisting of s roots of f(X) and �xes ea
h of the other roots.Sin
e (k; s) = 1, we see that S is not a union of some of the blo
ks. Hen
ethere is a blo
k A1 su
h that A1 has a non-empty interse
tion with S butis not 
ontained in S. Be
ause it 
ontains a point �xed by H, the blo
k A1is �xed by H. On the other hand, sin
e A1 
ontains a point of S and H istransitive on S, we see that A1 must a
tually (stri
tly) 
ontain S. Hen
es < k.Sin
e G(f) is transitive, and, 
ru
ially, generated by all inertia groups,there exists a prime ideal p of L su
h that for an element � 2 Ip we have�(A1) 6= A1. In parti
ular, jsupp Ipj � jA1 [ �(A1)j = 2k � 4. This 
learlyimplies that � 
annot be a transposition and so by Lemma 2.1, ne
essarilyp j b. Therefore, by Lemma 2.2,jsupp Ipj � s:Thus 2k � s < k, whi
h is impossible.Lemma 3.2. Let f(X) be an irredu
ible trinomial satisfying all the
onditions of Theorem 1.2. Then G(f) is primitive.P r o o f. Suppose G(f) is imprimitive. Let A1; : : : ; Al be a system ofimprimitivity of G(f) with k := n=l the 
ardinality of ea
h of the blo
ks Ai.We 
onsider two 
ases.First suppose that t � 1. Let f(X) = g(X)h(X) be the fa
torization off(X) in Qp and p a prime ideal of L dividing p as in Se
tion 2. As shown



8 S. D. Cohen et al.in the proof of Theorem 1.4, there exists a subgroup H of G(f) whi
h a
tstransitively on the set Rh of the pt roots of h(X) and �xes ea
h of the otherroots. Sin
e p - k, the set Rh is not a union of blo
ks and so the set Rg ofthe s roots of g(X) also 
annot be a union of blo
ks.Now let A1 be a blo
k that has a non-empty interse
tion with Rh butis not 
ontained in Rh. Be
ause A1 
ontains a point �xed by H (a rootof g(X)), the blo
k A1 is �xed by H. Further, be
ause it 
ontains a pointof Rh and H is transitive on Rh, the blo
k A1 stri
tly 
ontains Rh. Let�1 2 A1nRh and �2 62 A1 be two roots of g(X). By Lemma 2.3 we knowthat g(X) remains irredu
ible over the inertia �eld LI , so that there exists� in the inertia group Ip for whi
h �(�1) = �2. But this is impossible, sin
e�(Rh) = Rh and 
onsequently �(A1) = A1.Suppose �nally that t = 0. In that 
ase, using Theorem 1.3, we see thatG(f) is not only primitive but even doubly transitive.N o t e. If s < n=2, a 
ontradi
tion is already rea
hed in the above proofat the point where it is shown that Rh � A1. Thus, in this situation,Lemma 2.3, and so the assumption that (s; vp(b)) = 1, are not needed.4. Double transitivity. We quote the following theorem of Jordan ([5℄or expli
itly in [23, Theorem 13.1℄).Lemma 4.1. Let G be a primitive group of degree n su
h that thestabilizer of some set of m points (where 1 � m � n�2) is transitive on theremaining n�m points. Then G is doubly transitive.P r o o f o f Th e o r em 1.1. When s = 1, Lemmas 2.1 and 2.2 showthat the Galois group G(f) is generated by transpositions, so G(f) is notonly doubly transitive but the full symmetri
 group Sn [19, Lemma 4.4.4,p. 40℄. For s > 1, the proof follows by applying Lemma 4.1 to the Galoisgroup G(f) (whi
h is primitive by Lemma 3.1) and the subgroup H withjsuppHj = s whose existen
e was shown in Theorem 1.3.P r o o f o f Th e o r em 1.2. When t = 0, the double transitivity ofG(f) is a 
onsequen
e of Theorem 1.3. When t � 1, the proof followsby applying Lemma 4.1 to the Galois group G(f) (whi
h is primitive byLemma 3.2) and the subgroup H of Theorem 1.4.N o t e s. 1. By the note following Lemma 3.2, in Theorem 1.2 as analternative to (iii), it suÆ
es to assume that s < n=2.2. As the following example shows, if the hypothesis (ii) of Theorem 1.2is dropped, then we no longer get the double transitivity of G(f) in general.Take f(X) = X5 � 5X + 12 and p = 2. The hypotheses of Theorem 1.2are satis�ed ex
ept that v2(f(5)) = 3. A

ording to [20, Table II℄, G(f)is the dihedral group D5 of order 10. For this example the polynomial



Galois groups of trinomials 9h(X) = f(X)=g(X) is not irredu
ible over Q2 (as was the 
ase in the proofof Theorem 1.4). Indeed, the Newton polygon of f(X + 5) with respe
t top = 2 has three sides (see diagram).
Therefore f(X) has at least three fa
tors over Q2 .As we have already observed, the main di�eren
e between the proofs ofTheorems 1.1 and 1.2 is that, for the former, inertia groups 
orrespondingto all rami�ed primes have to be taken into a

ount to establish primitivity,whereas for the latter only those relating to a single prime divisor of b needbe 
onsidered. In fa
t, by imposing a suitable 
ondition on a, we 
an showthat, even if the 
onditions (a; n) = (a(n� s); b) = 1 are not met but theredoes exist a prime divisor p of b (with p - a(n� s)) su
h that (s; vp(b)) = 1,then G(f) is doubly transitive. We illustrate this with one kind of 
onditionon a.Theorem 4.2. Let f(X) = Xn + aXs + b be an irredu
ible trinomialwith integral 
oeÆ
ients where (n; s) = 1. Suppose there exists a primedivisor p of b su
h that(i) p - a(n� s),(ii) (s; vp(b)) = 1,(iii) Xn�s + a is irredu
ible modulo p.Then G(f) is doubly transitive.P r o o f. With p a prime divisor of p in L, 
onsider, as in Se
tion 2, thefa
torization f(X) = g(X) h(X) in Zp. The 
ase s = 1 is straightforward,sin
e by hypothesis (iii), the polynomial h(X) is irredu
ible over Qp and,the stabilizer in Gal(Lp=Qp ) of the root of g(X) a
ts transitively on theroots of h(X). Now assume that s > 1. By Lemma 2.3, the polynomialg(X) is irredu
ible over the inertia �eld LI , whereas the polynomial h(X)splits 
ompletely over LI by Lemma 2.2. We may apply a similar argumentto the proof of Lemma 3.2 with Gal(Lp=Qp ) and Ip in pla
e of Ip andGal(Lp=LT ), respe
tively, and the roles of g(X) and h(X) inter
hanged toyield a 
ontradi
tion to the supposition that G(f) is imprimitive. Finally,applying Lemma 4.1 with Ip, we obtain the double transitivity of G(f).



10 S. D. Cohen et al.No t e s. 1. If s > n=2, a 
ontradi
tion is already rea
hed in the aboveproof on showing that Rg is 
ontained in a blo
k of imprimitivity. Hen
e,in the statement of Theorem 4.2, it suÆ
es to assume s > n=2 in pla
e ofthe 
ondition (iii).2. The hypothesis \Xn�s + a is irredu
ible modulo p" in Theorem 4.2
an be repla
ed by the three following:� 4 - (p+ 1; n� s),� �p�1r ; n� s� = 1, where r is the order of �a modulo p,� ea
h prime divisor of n� s divides r,whi
h are its equivalent be
ause p does not divide a [10, Theorem 3.75℄.Another modi�
ation to Theorem 1.1 is to assume that p - s for at leastone prime p su
h that (s; vp(b)) = 1. Then, by Theorem 1.3, G(f) 
ontainsan s-
y
le and so, sin
e it is primitive, provided s � 2 we have that G(f) is(n � s + 1)-transitive by Marggra�'s theorem ([1℄ or [9℄). In parti
ular, if2 � s � n� 3, then G(f) is at least 4-transitive and so, if An 6� G(f) , thenusing the 
lassi�
ation of �nite simple groups (see [2℄), G(f) must be one ofthe Mathieu groupsMn, n = 11; 12; 23; 24 with s = n�3 or n�4. Sin
eM11and M23 are not 5-transitive, the only possibilities for this (having in mindthat n and s are 
oprime) are (n; s) = (11; 8) or (23; 20). But the Mathieugroups M11 and M23 
onsisting of even permutations do not possess 
y
lesof length 8 and 20 respe
tively. Thus, granted the 
lassi�
ation of �nitesimple groups, we have the following 
onsequen
e of Theorem 1.1 (note thatwhen s = 1, by Lemmas 2.1 and 2.2, G(f) is generated by transpositionsand G(f) = Sn [19, Lemma 4.4.4, p. 40℄).Theorem 4.3. Let f(X) = Xn + aXs + b be an irredu
ible trinomialwith integral 
oeÆ
ients where (n; as) = (a(n � s); b) = 1 and s � n � 3.Suppose there is a prime divisor p of b but not of s su
h that (s; vp(b)) = 1.Then G(f) is either An or Sn.It is not hard to see that for s � n� 3, the pre
eding theorem improvesTheorem 1 of [18℄.There is a similar 
onsequen
e of Theorem 1.2 (or Lemma 3.2) whent = 1.Theorem 4.4. Let f(X) = Xn + aXs + b be an irredu
ible trinomialwith integral 
oeÆ
ients with (n; s) = 1. Suppose that n� s = p is a primesatisfying p j b, p - a, vp(f(�a)) = 1 and (s; vp(b)) = 1. If s � 3 then G(f)
ontains An.P r o o f. Follows from Lemma 3.2, Theorem 1.4 and Theorem 13.9of [23℄.



Galois groups of trinomials 115. Examples1. If (n; s) = 1, we see from Lemma 9 of [17℄ that the trinomial Xn �Xs � p is irredu
ible for a prime p, unless p = 2 and X � 1 is a fa
tor (thisfa
t is also used in Examples 3 and 8 below). Ex
ept in this last situation,it follows from our results that G(Xn�Xs�p) is doubly transitive providedthe two following 
onditions are satis�ed:� (n; s) = 1,� p -n� s or n = s+ pt.In parti
ular, if n is odd, then Xn +X2 + 2 is irredu
ible and G(Xn +X2 + 2) is the full symmetri
 group sin
e it 
ontains a transposition byTheorem 1.3. Similarly, if n is odd, G(Xn �Xn�2 + 2) = Sn.A
tually, when (n; s) = 1 and X � 1 is not a fa
tor of Xn �Xs � p forp = 2, the Galois group G(Xn�Xs�p) 
ontains An in ea
h of the following
ases:(a) s � n� 3, p - s(n� s),(b) s � n� 3 and p = s,(
) s � 3 and p = n� s.It is easy to see that (a) follows from Theorem 4.3; (b) follows fromTheorem 13.9 of [23℄ and Theorem 1.3 whi
h guarantees the existen
e of a
y
le of length p in the Galois group (take any element of order p in thesubgroup H o

urring in Theorem 1.3); and (
) follows from Theorem 4.4.2. Let (n; s) = 1 and s � n� 3. Take two distin
t prime numbers p andq su
h that (p; s) = (pq; n� s) = 1:If f(X) = Xn � Xs � pq is irredu
ible over Q , then G(f) = An or Sn byTheorem 4.3.3. If p - s, then the trinomialXpt+s �Xs + pis irredu
ible over Q , and its Galois group is doubly transitive by Theo-rem 1.2.4. Let p and q be two distin
t primes. Then by Theorem 1.2 the Galoisgroup G(Xpt+qr � Xqr + pq) is doubly transitive provided the polynomialis irredu
ible. Indeed, by Theorems 1.3 and 1.4, the Galois group 
ontainssubgroups H1 and H2 transitive on their supports whi
h have sizes qr, pt.By using the 
lassi�
ation of doubly transitive groups and the nature ofthese groups, it 
an be shown that su
h subgroups H1 and H2 
annot existsimultaneously unless the Galois group is An or Sn. We leave the details
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h group theoreti
al arguments will form the substan
e of ourensuing paper.5. Let n be odd and p a prime � 3 (mod 4). By Theorem 4.2 the Galoisgroup of the trinomial Xn + Xn�2 + 2p is doubly transitive provided it isirredu
ible.6. Let n = s + 2t (s odd, t � 1) and p; q be distin
t primes with p � 1(mod 4) and q a quadrati
 non-residue (mod p). By Theorem 4.2 and theEisenstein 
riterion, G(Xn � qXs + qp) is doubly transitive. For example,G(X143 � qX15 + 5q), q = 2 or 13, is doubly transitive.7. Let p be a prime and a a rational integer su
h that p - a. Then byTheorem 4.2 the Galois group of Xn + aXn�1 + ap is doubly transitiveprovided it is irredu
ible. For instan
e, G(Xn + qXn�1 + qp) is doublytransitive if p and q are two distin
t primes.8. Let f(X) = X8 + X7 + p where p := 246767749 is a prime. ByTheorem 1.1 its Galois group G is doubly transitive. In fa
t, G = A8, sin
eD0(f) is a square and the fa
torization of f(X) modulo 19 shows that G
ontains a 3-
y
le.6. Appendix on Ore's theorem. This se
tion has been added at thesuggestion of the referee. Sin
e a 
areful reading of [16℄ is required to extra
tthe pre
ise version of the theorem of Ore needed in the proof of Theorem 1.4,we give here a formulation of the appropriate result.Let p be a �xed prime number and let '(X) 2 Z[X℄ be a moni
 poly-nomial of degree m � 1 su
h that ' mod p is irredu
ible. Given a moni
polynomial f(X) 2 Qp [X℄, by Eu
lidean division we expand f(X) a

ordingto powers of '(X); that is, we write(1) f(X) = tXj=0 p�jQj(X)'(X)t�jwith polynomials Qj(X) 2 Zp[X℄ and degree Qj < m for ea
h j. In thisequality (1), p does not divide all the 
oeÆ
ients of Qj , ex
ept when Qj � 0,in whi
h 
ase we omit the 
orresponding term. Sin
e f and ' are moni
,the polynomial Q0 is moni
 and �0 = 0. The integer t is the largest integer� n=m, where n = deg(f). This expansion will be 
alled the 
anoni
alde
omposition of f(X).Definition A.1. The (p; ')-polygon of f(X) is the boundary of theupper 
onvex envelope of the set of points (j; �j) minus the two verti
al sides.The (p; ')-polygon, minus the (possible) horizontal part, is, by de�nition,the prin
ipal part of it.



Galois groups of trinomials 13Let S1; : : : ; Sk be the sides of the prin
ipal part of the (p; ')-polygon off(X) with in
reasing slopes. De�nel0 := the length of the horizontal side;li := the length of the proje
tion of Si to the x-axis;hi := the length of the proje
tion of Si to the y-axis.Set "i := (li; hi); �i := li="i and �i := hi="i:We �x a side Si of the (p; ')-polygon of f(X). In the 
anoni
al de
om-position of f(X), 
onsider the sum of the terms p�jQj(X)'(X)t�j 
orre-sponding to the points (j; �j) 2 Si: In this sum, we separate'(X)t�l0�:::�liph1+:::+hi�1 ;thus making apparent a fa
torRi;0(X)'(X)li +Ri;1(X)p�i'(X)li��i+Ri;2(X)p2�i'(X)li�2�i + : : : +Ri;"i(X)phi ;where the polynomials Ri;0(X); : : : ; Ri;"i(X) are of degree < m: In parti
-ular Ri;0 and '(X) (
onsidered as polynomials of Fp [X℄) are 
o-prime. Sothere exists Ai(X) 2 Z[X℄ su
h thatRi;0(X)Ai(X) � 1 mod (p; '(X)):De�ne Si;j(X) := Ai(X)Ri;j(X):The asso
iated polynomial of the ith side is by de�nitionFi(X;Y ) = Y "i + Si;1(X)Y "i�1 + : : :+ Si;"i(X):Fi(X;Y ) depends on the 
hoi
e of Ai, but its 
lass modulo the ideal(p; '(X)) does not.Theorem 5, Chapter 2 of [16℄ and the paragraph following this theorem
an now be stated as follows.Theorem A.2 (Ore). Let f(X) = Xn + a1Xn�1 + : : : + an 2 Z[X℄ bean irredu
ible polynomial , and let � be a root of f(X) in a �xed algebrai

losure of Q : Assume that f(X) � '1(X)a1 : : : 's(X)as mod p, where ea
h'�(X) 2 Z[X℄, is the fa
torization of f(X) modulo p: Denote by m� thedegree of '�(X): Then p = a1 : : : aswhere a� are 
oprime integer ideals of K := Q(�), with NK(a�) = pa�m�(NK stands for the absolute norm of the number �eld K ).In order to fa
torize ea
h ideal a := a� , 
orresponding to the irredu
iblefa
tor ' := '� , we 
onstru
t the (p; ')-polygon of f(X). For ea
h side Si
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ipal part of this polygon, we 
onsider the fa
torization modulo(p; ') of the asso
iated polynomial Fi(X;Y ):Fi(X;Y ) � F (i)1 (X;Y )a(i)1 : : : F (i)ti (X;Y )a(i)ti mod (p; '):Then a =Qki=1 Qtij=1[
(i)j ℄�i , where �i := li=(li; hi) is the parameter de�nedabove and where the 
(i)j are 
oprime integer ideals of K = Q(�). Moreover ,NK(
(i)j ) = pmm(i)j a(i)j ; m(i)j := degreeY F (i)j (X;Y ):Furthermore, if a(i)j = 1, then the ideal 
(i)j is prime.A
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