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1. Introduction. In this paper we study the Galois group G(f) of
an irreducible trinomial f(X) = X" 4+ aX*® + b with integral coefficients
(1 <s<n-—1, ab#0). Irreducibility has the effect that G(f) is a transitive
subgroup of the full symmetric group acting on the zeros of f(X). If n and
s are not coprime, then f(X) = g(X?), say, where d > 1 is the greatest
common divisor of n and s. Thus f(X) is functionally decomposable over Q
and, easily, G(f) is imprimitive as a permutation group. We shall show that
in fairly general circumstances, when n and s are co-prime, G(f) is not only
primitive but even doubly transitive. As we shall see, our results extend a
theorem of Osada [18] who proved, under stronger conditions, that G(f) is
the full symmetric group S, itself. See also [17] for a related result.

We denote by (u,v) the greatest common divisor of two integers u and
v. For any prime p and non-zero integer ¢, we use v,(c) to denote the p-adic
valuation of ¢. Our first result is as follows.

THEOREM 1.1.  Let f(X) = X" +aX® + b be an irreducible trinomial
with integral coefficients where (n,as) = (a(n — s),b) = 1. Suppose there is
a prime divisor p of b such that (s,v,(b)) = 1. Then the Galois group G(f)
of f(X) over Q is doubly transitive.

A doubly transitive group of degree n which contains a transposition is
the full symmetric group S,,. Accordingly, under the hypotheses of The-
orem 1.1, for G(f) to be S,, it suffices to guarantee the existence of a
transposition in G(f). In particular, this is the case when there exists a
prime p not dividing (b, s) such that v,(Do(f)) is odd, where

Do(f) =n"b""* + (—1)""'s*(n — 5)" " a™.
Indeed, the discriminant D(f) of f is given [21] by
D(f) = (~1)" D25 Dy ),
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Thus, the above prime p, not dividing b, divides D(f) to an odd power,
which shows that p is ramified in the splitting field L of f(X). Hence, as
shown in Lemma 2.1 below, the group G(f) contains a transposition.

We comment on the relationship of Theorem 1.1 to Osada’s work. Firstly,
there is the minor observation that he allowed the existence of an integer ¢
such that (a,b) = ¢ and b/c" coprime to ¢, but, then, replacing f(X) by
f(eX)/c™ we may suppose that ¢ = 1.

Next, Theorem 1.1 significantly extends Theorem 1 of [18]; its state-
ment is similar except that our hypothesis about the existence of a prime
divisor p of b such that (s,v,(b)) = 1 is replaced by the stronger condition
(b,s) =1 and v,(b) = 1 for a prime p. Moreover, in [18], it was assumed
that |Dg(f)| is a non-square integer, which, as remarked above, ensures the
existence of a transposition in G(f). Thus, we recover Theorem 1 of [18] un-
der lesser constraints. Furthermore, whereas the weakening of “v,(b) = 17
to “(s,vp(b)) = 1”7 may not rank as a major improvement, we claim that
the omission of the hypothesis (b, s) = 1 is of some significance. For, as we
shall see, a prime p such that p divides (b,s) and (s,v,(b)) = 1 is wildly
ramified in the splitting field L of f(X); whereas, to our knowledge, wild
ramification has been excluded in preceding works on this subject. Thus the
demonstration that G(f) is doubly transitive, even though several primes
are wildly ramified in L, appears to represent significant progress.

Further, it is useful to be able to derive double transitivity without
prescribing |Do(f)| be a non-square, since it is possible to find examples of
trinomials satisfying the hypotheses of Theorem 1.1 for which |Dg(f)] is a
square (see Example 8 in Section 5).

We remark that, when no prime p satisfies the condition (s, v, (b)) = 1, it
is still possible in some circumstances to obtain the primitivity of the Galois
group G(f) as in [13].

In Theorem 1.1 although the hypotheses do not preclude wild ramifica-
tion, we have, however, assumed that p{n — s for every prime p dividing b.
The possibility that p | (n — s,b) is particularly difficult to treat. Neverthe-
less, in our other main result (which we now state) we allow this to occur
for a single prime p in the case in which n — s = p* (¢t > 0).

THEOREM 1.2.  Let f(X) = X" +aX® + b be an irreducible trinomial
with integral coefficients where (n,s) = 1. Suppose that there exists a prime
divisor p of b, but not of a, such that

() n=s+pt, >0,

(i) vp(f(—a)) =1,

(iii) (s,vp(b)) = 1.

Then G(f) is doubly transitive.
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Note that when v, (b) = 1, then the condition “v,(f(—a)) = 1" is auto-
matically satisfied if

a= 4+1or —1 (mod p?) for p odd;
a= —1 (mod 4) for p = 2.

Next, we state some results which are used in the proofs of Theorems 1.1
and 1.2 and also may be employed in conjunction with these theorems to
provide yet stronger conclusions.

For a subset (e.g. a subgroup) H of G(f) we denote by supp H (the
support of H) the set of roots a of f(X) such that o(a) # « for some o € H.
Our results assert that, under appropriate conditions, there are subgroups
H of G(f) transitive on supp H.

THEOREM 1.3. Let f(X)= X"+aX*+b be an irreducible trinomial with
integral coefficients with (n,s) = 1. Suppose there exists a prime p dividing
b but not a(n — s) such that (s,v,(b)) = 1. Then G(f) contains a subgroup
H acting transitively on s roots of f(X) and fizing each of the other roots.
Furthermore, if pts, then the subgroup H is generated by an s-cycle.

THEOREM 1.4. Let f(X)= X"+aX*4b be an irreducible trinomial with
integral coefficients with (n,s) = 1. Suppose there exists a prime p dividing
b, but not a, such that

(i)n—s=p' t>1,

(i) vp(f(—a)) = 1.
Then G(f) contains a subgroup H acting transitively on p' roots of f(X)
and fizing each of the other roots.

Theorems 1.3 and 1.4 may sometimes be used together. For example, for
a trinomial satisfying the hypotheses of Theorem 1.2, Theorem 1.4 always
applies, but for the same trinomial there may exist another prime p’ such
that (s,v, (b)) = 1 and then the conclusion of Theorem 1.3 is also valid.
More generally, by combining the conclusions of Theorems 1.1 and 1.2 with
such facts as Theorems 1.3 and 1.4 and the classification of doubly transitive
groups [2], we can show that in most of the cases described in Theorems 1.1
and 1.2 (without assuming that | Dy (f)| or D(f) is a non-square), G(f) = A,
or S, (see Theorems 4.3 and 4.4). We leave the details of this procedure
to a further paper but give some examples which illustrate our result in
Section 5.

Finally, we comment briefly on some of the literature on the Galois
groups of trinomials other than that which climaxed in Osada’s papers.
In [13] it is proved that G(f) is primitive in certain cases under conditions
like those of Theorem 1.1 except that b is assumed to be coprime to s but,
on the other hand, (v,(b), s) may be greater than 1 for each prime p.
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Usually, if d = (a,b) > 1, ramification of a prime divisor of d is of a
rather different nature than that considered here and in [13]. Thus, for
example, Komatsu [6-8] and Movahhedi [12] have studied trinomials of the
form X" + aX + a.

An interesting example of Trinks [22] with (n,a) > 1is G(X"—7X +3) =
PSLy(7), where PSLy(7) is the projective special linear group of degree 2
over the finite field of 7 elements. But generally not many trinomials for
which A,, ¢ G(f) are known; perhaps the results of the paper and its sequel
may help to narrow the search for such examples to a smaller area. The
paper [4] contains serious errors (e.g. the claim to establish primitivity in
Lemma 3 is false); therefore the examples given there are not justified. The
present paper establishes modified results in a similar direction. The main
difference in the proof is that, instead of concentrating on the ramification
of a single prime p dividing b as there, in Theorem 1.1 all ramification is
taken into account. The only effect of these additional considerations in the
hypotheses of Theorem 1.1 is the inclusion of the assumption that (a,b) = 1.

2. Inertia groups. Let f(X) = X" +aX®+b be an irreducible trinomial
with integral coefficients (1 < s < n — 1,ab # 0). Let a := a1, qs,...,qy
be the different roots of f(X) in an algebraic closure of Q. We denote by
K = Q(«) the field obtained by adjoining the root « to the field Q, and by
L:= Q(a,a,...,ay) the splitting field of f(X).

For a given prime p, we choose a fixed prime ideal p of L dividing p
and denote by L, the corresponding completion with respect to the p-adic
valuation. Write I, for the inertia group of p and L; the inertia field of p:
we have I, = Gal(L,/Ly).

In this section we first describe the factorization of f(X) in the p-adic
field Q, and in some of the sub-extensions of L, and then prove Theo-
rems 1.3 and 1.4.

LEMMA 2.1.  Suppose (n,as) = 1. Let p be a prime which does not
divide b but is ramified in K. Then the inertia group I, is generated by a
transposition.

Proof. We necessarily have p| Dy(f) and pta. So, by Theorem 2 of
[11], the prime p divides the absolute discriminant of the field K = Q(«)
exactly once. The rest of the proof is similar to that of Lemma 5 of [13]. m

Next, let p be a prime divisor of b but not of a. By Hensel’s Lemma,
f(X) =g(X)h(X)  over Zj,
where

g(X)=X*® (mod p) and h(X)=X""°+a (mod p).
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Throughout the rest of the paper, this notation will be retained for the
factors of f(X) over Z,.

LEMMA 2.2.  Suppose (n,s) = 1 and p is a prime dividing b but not
a(n — s). Then h(X) splits completely over the inertia field Ly and the
support of the inertia group I, has at most s elements.

Proof. Let @ be a root of h(X) having h1(X) as minimal polynomial
over Q,. The reduction h;(X) of hy(X) modulo p is, by Hensel’s Lemma, a
power of an irreducible polynomial. On the other hand, since by hypothesis
pta(n — s), h(X), the reduction of h(X) modulo p, has no multiple root.
So the same is true of hy(X). Thus h;(X) is irreducible, showing that the
local extension Q,()/Q, is unramified. Hence the splitting field of h(X)
is an unramified extension of (Q, which therefore must be contained in the
maximal unramified extension L;. m

LEMMA 2.3. Let p be a prime divisor of b but not of a such that
(s,vp(b)) = 1. Then, for each root a of g(X), the extension Q,(c)/Q, is
totally ramified. Furthermore, g(X) is irreducible over the inertia field Ly.

Proof. Let w be the normalized valuation of the local field Q, (). Then
w(p) = e, where e is the ramification index of the extension Q, (a)/Q,. Since
g(X) = X* (mod p), we have w(a) > 0 and, since f(a) = a" +aa’+b =0,
we necessarily have

sw(a) = w(b) = evy(b).
Now, since (s,v,(b)) = 1 by hypothesis, s must divide e. As

e <[Q, () : Qy] < s = degree of g(X),

we obtain simultaneously that the extension Q,(a)/Q, is totally ramified
and the polynomial g(X) is irreducible over @,. The unramified extension
L; being linearly disjoint over @, with the totally ramified extension Q, (),
the polynomial g(X) remains irreducible over L;. m

Proof of Theorem 1.3. By the preceding two lemmas, over the field
Ly, g(X) is irreducible while h(X) splits completely. Hence I, =Gal(L,/L)
is transitive on its support which consists of the roots of g(X). This proves
the first part of Theorem 1.3. If, additionally, we suppose that p{s, then
L, = Li(a) for any root « of g(X). Indeed, let 5 be another root of g(X).
Then by Lemma 2.3, and Abhyankar’s lemma [14, Chapter 5, Corollary 4
to Theorem 5.11] the extension Ly (. $)/L(c) is unramified. Since L,/L;
is totally ramified, we must have L(«, 8) = Li(«). Thus L,/L; is a totally
and tamely ramified extension of degree s. So its Galois group I, is cyclic
[3, Chapter I, Section 8, Proposition 1] of order s acting transitively on the
s roots of g(X), and as such must necessarily be generated by an s-cycle. m
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Proof of Theorem 1.4. Let go(X) = g(X —a), ho(X) = h(X — a).

Then
ho(X) = x?' 4 (—a)pt ta=X? (mod p),

and 1 = v,(f(—a)) = vp(ho(0)go(0)). Hence v,(ho(0)) = 1 and so hg is an
Eisenstein polynomial of degree p* with respect to p. Thus the polynomial
h(X) is irreducible of degree p' over Q, and the field Q, (), obtained by
adjunction of a root 7y of h(X) to Q,, is a totally and wildly ramified ex-
tension of Q,. Hence Q, () is linearly disjoint over @@, with the maximal
tamely ramified extension L7 of @@, contained in L,. This proves that the
polynomial h(X) is irreducible over L.

Now we apply results of Ore (see the Appendix below) to find the prime
decomposition of p in K. The factorization of f(X) mod p is

f(X)=X°(X —I—a)pt (mod p).

The principal part of the (p, X)-polygon of f(X) is made up of a unique side
S which joins the point (n — s,0) to the point (n,v,(b)), and the associated
polynomial of it is
Fs(Y) =Y " +bp "y,

where 7 := (s,v,(b)) and a; is an integer such that aa; =1 (mod p). Like-
wise, since v,(f(—a)) =1 and f(X) = X*(X + a)?" (mod p), the principal
part of the (p, X +a)-polygon of f(X) is made up of a unique side S, joining
the point (s,0) to the point (n, 1), hence with a linear associated polynomial
Fs (Y). Now by Theorem A.2, it follows that

t
p=AlA;,
where ¢ := s/r and A;, Ay are two integral ideals of K which are relatively
prime and which have absolute norms

Nk(A1) =p".  Ng(A2) =p.
Moreover, since the polynomials Fs(Y) and Fg, (Y) are separable modulo
p, Theorem A.2 also yields
./41 - 731732 e Pm,

where the P;’s are distinct prime ideals of K, and A, is a prime ideal Q.
Hence the exact prime decomposition of p in K is the following

p=QV PIPL...PL.
To each prime ideal P; corresponds an irreducible factor g;(X) which is the
minimal polynomial of « in the tamely ramified extension Kp,/Q,, where
Kp, is the completion of K with respect to the P;-adic valuation. The

product []!_; g:(X) is necessarily g(X) since each g;(X) is different from
the irreducible polynomial h(X). This implies that g(X) splits completely
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over Lp. Now, in this situation, the first ramification group G(L, /L) acts
transitively on the p' roots of h(X) and fixes the roots of g(X). m

When (s,v,(b)) = 1, the preceding proof can be carried out without
using Ore’s result as it follows from Lemma 2.3 that g(X) splits completely
over L.

A doubly transitive group with a subgroup like those described in The-
orems 1.3 and 1.4 has been called a Jordan group, and these have been
classified (see [15]). This is the starting point for our sequel.

3. Primitivity of G(f). The crucial part of our method is to show that,
in the situation of Theorems 1.1 and 1.2, G(f) is primitive. We assume the
notation of the previous sections.

LEMMA 3.1. Let f(X) = X" +aX?®+b be an irreducible trinomial with
integral coefficients such that (n,as) = (a(n — s),b) = 1. Suppose there is a
prime divisor p of b such that (s,v,(b)) = 1. Then G(f) is primitive.

Proof. Suppose G(f) is imprimitive. Let Aq,..., A; be a system of
imprimitivity of G(f) with &k := n/l the cardinality of each of the blocks A;.
By Theorem 1.3 there exists a subgroup H of G(f) which acts transitively
on a set S consisting of s roots of f(X) and fixes each of the other roots.
Since (k,s) = 1, we see that S is not a union of some of the blocks. Hence
there is a block A; such that A; has a non-empty intersection with S but
is not contained in S. Because it contains a point fixed by H, the block A,
is fixed by H. On the other hand, since A; contains a point of S and H is
transitive on S, we see that A; must actually (strictly) contain S. Hence
s < k.

Since G(f) is transitive, and, crucially, generated by all inertia groups,
there exists a prime ideal p of L such that for an element o € I, we have
o(Ay) # Aq. In particular, [supp I, > |A; Uo (A1) = 2k > 4. This clearly
implies that ¢ cannot be a transposition and so by Lemma 2.1, necessarily
p|b. Therefore, by Lemma 2.2,

|supp Ip| < s.
Thus 2k < s < k, which is impossible. m

LEMMA 3.2.  Let f(X) be an irreducible trinomial satisfying all the
conditions of Theorem 1.2. Then G(f) is primitive.

Proof. Suppose G(f) is imprimitive. Let Aq,..., A; be a system of
imprimitivity of G(f) with k& := n/l the cardinality of each of the blocks A;.
We consider two cases.

First suppose that ¢ > 1. Let f(X) = g(X)h(X) be the factorization of
f(X) in @, and p a prime ideal of L dividing p as in Section 2. As shown
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in the proof of Theorem 1.4, there exists a subgroup H of G(f) which acts
transitively on the set R, of the p’ roots of h(X) and fixes each of the other
roots. Since ptk, the set Ry, is not a union of blocks and so the set R, of
the s roots of g(X) also cannot be a union of blocks.

Now let A; be a block that has a non-empty intersection with R; but
is not contained in Rj. Because A; contains a point fixed by H (a root
of g(X)), the block A; is fixed by H. Further, because it contains a point
of R, and H is transitive on Ry, the block A; strictly contains Rj. Let
B1 € A1\Rp, and B3 ¢ A; be two roots of g(X). By Lemma 2.3 we know
that g(X) remains irreducible over the inertia field Lj, so that there exists
o in the inertia group I, for which o(8;) = f2. But this is impossible, since
o(Rp) = Ry, and consequently o(A;) = A;.

Suppose finally that ¢ = 0. In that case, using Theorem 1.3, we see that
G(f) is not only primitive but even doubly transitive. m

Note. If s < n/2, a contradiction is already reached in the above proof
at the point where it is shown that R, C A;. Thus, in this situation,
Lemma 2.3, and so the assumption that (s,v,(b)) = 1, are not needed.

4. Double transitivity. We quote the following theorem of Jordan ([5]
or explicitly in [23, Theorem 13.1]).

LEMMA 4.1. Let G be a primitive group of degree n such that the
stabilizer of some set of m points (where 1 < m < n —2) is transitive on the
remaining n — m points. Then G is doubly transitive.

Proof of Theorem 1.1. When s = 1, Lemmas 2.1 and 2.2 show
that the Galois group G(f) is generated by transpositions, so G(f) is not
only doubly transitive but the full symmetric group S,, [19, Lemma 4.4.4,
p. 40]. For s > 1, the proof follows by applying Lemma 4.1 to the Galois
group G(f) (which is primitive by Lemma 3.1) and the subgroup H with
|supp H| = s whose existence was shown in Theorem 1.3. m

Proof of Theorem 1.2. When t = 0, the double transitivity of
G(f) is a consequence of Theorem 1.3. When ¢ > 1, the proof follows
by applying Lemma 4.1 to the Galois group G(f) (which is primitive by
Lemma 3.2) and the subgroup H of Theorem 1.4. m

Notes. 1. By the note following Lemma 3.2, in Theorem 1.2 as an
alternative to (iii), it suffices to assume that s < n/2.

2. As the following example shows, if the hypothesis (ii) of Theorem 1.2
is dropped, then we no longer get the double transitivity of G(f) in general.
Take f(X) = X® —5X + 12 and p = 2. The hypotheses of Theorem 1.2
are satisfied except that vy(f(5)) = 3. According to [20, Table II], G(f)
is the dihedral group Dy of order 10. For this example the polynomial
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h(X) = f(X)/g(X) is not irreducible over Q; (as was the case in the proof
of Theorem 1.4). Indeed, the Newton polygon of f(X + 5) with respect to
p = 2 has three sides (see diagram).

oD W

01 2 3 4 5

Therefore f(X) has at least three factors over Q.

As we have already observed, the main difference between the proofs of
Theorems 1.1 and 1.2 is that, for the former, inertia groups corresponding
to all ramified primes have to be taken into account to establish primitivity,
whereas for the latter only those relating to a single prime divisor of b need
be considered. In fact, by imposing a suitable condition on a, we can show
that, even if the conditions (a,n) = (a(n — s),b) = 1 are not met but there
does exist a prime divisor p of b (with pta(n — s)) such that (s,v,(b)) =1,
then G(f) is doubly transitive. We illustrate this with one kind of condition
on a.

THEOREM 4.2.  Let f(X) = X" +aX® + b be an irreducible trinomial
with integral coefficients where (n,s) = 1. Suppose there exists a prime
divisor p of b such that

(i) pta(n - s),
(i) (5,0, (b)) = 1.

(iii) X" * + a is irreducible modulo p.

Then G(f) is doubly transitive.

Proof. With p a prime divisor of p in L, consider, as in Section 2, the
factorization f(X) = g(X) h(X) in Z,. The case s = 1 is straightforward,
since by hypothesis (iii), the polynomial h(X) is irreducible over Q, and,
the stabilizer in Gal(L,/Q,) of the root of g(X) acts transitively on the
roots of A(X). Now assume that s > 1. By Lemma 2.3, the polynomial
g(X) is irreducible over the inertia field L;, whereas the polynomial h(X)
splits completely over L; by Lemma 2.2. We may apply a similar argument
to the proof of Lemma 3.2 with Gal(L,/Q,) and I, in place of I, and
Gal(Ly,/Lr), respectively, and the roles of g(X) and h(X) interchanged to
yield a contradiction to the supposition that G(f) is imprimitive. Finally,
applying Lemma 4.1 with I,,, we obtain the double transitivity of G(f). m
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Notes. 1. If s > n/2, a contradiction is already reached in the above
proof on showing that R, is contained in a block of imprimitivity. Hence,
in the statement of Theorem 4.2, it suffices to assume s > n/2 in place of
the condition (iii).

2. The hypothesis “X™ % + a is irreducible modulo p” in Theorem 4.2
can be replaced by the three following:

o 4+(p+ lan o S)a
. ("T;l,n — s) = 1, where r is the order of —a modulo p,
e each prime divisor of n — s divides r,

which are its equivalent because p does not divide a [10, Theorem 3.75].

Another modification to Theorem 1.1 is to assume that pts for at least
one prime p such that (s,v,(b)) = 1. Then, by Theorem 1.3, G(f) contains
an s-cycle and so, since it is primitive, provided s > 2 we have that G(f) is
(n — s + 1)-transitive by Marggraff’s theorem ([1] or [9]). In particular, if
2 < s <m—3, then G(f) is at least 4-transitive and so, if A,, Z G(f) , then
using the classification of finite simple groups (see [2]), G(f) must be one of
the Mathieu groups M,,, n = 11,12,23,24 with s = n—3 or n—4. Since M1,
and Masg are not 5-transitive, the only possibilities for this (having in mind
that » and s are coprime) are (n,s) = (11,8) or (23,20). But the Mathieu
groups M1 and Ms3 consisting of even permutations do not possess cycles
of length 8 and 20 respectively. Thus, granted the classification of finite
simple groups, we have the following consequence of Theorem 1.1 (note that
when s = 1, by Lemmas 2.1 and 2.2, G(f) is generated by transpositions
and G(f) = S, [19, Lemma 4.4.4, p. 40]).

THEOREM 4.3.  Let f(X) = X" + aX?® + b be an irreducible trinomial
with integral coefficients where (n,as) = (a(n — s),b) =1 and s < n — 3.
Suppose there is a prime divisor p of b but not of s such that (s,v,(b)) = 1.
Then G(f) is either A, or S,.

It is not hard to see that for s < n — 3, the preceding theorem improves
Theorem 1 of [18].

There is a similar consequence of Theorem 1.2 (or Lemma 3.2) when
t=1.

THEOREM 4.4. Let f(X) = X" + aX?® + b be an irreducible trinomial
with integral coefficients with (n,s) = 1. Suppose that n — s = p is a prime
satisfying p|b, pta, v,(f(—a)) =1 and (s,v,(b)) = 1. If s > 3 then G(f)
contains A,,.

Proof. Follows from Lemma 3.2, Theorem 1.4 and Theorem 13.9
of [23]. m
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5. Examples

1. If (n,s) = 1, we see from Lemma 9 of [17] that the trinomial X" £
X*® £ p is irreducible for a prime p, unless p = 2 and X + 1 is a factor (this
fact is also used in Examples 3 and 8 below). Except in this last situation,
it follows from our results that G(X™ + X* +p) is doubly transitive provided
the two following conditions are satisfied:

« (ns) =1,
eptn—sorn=s+p.

In particular, if n is odd, then X™ + X2 + 2 is irreducible and G(X™ +
X2 + 2) is the full symmetric group since it contains a transposition by
Theorem 1.3. Similarly, if n is odd, G(X™ — X" 2 +2) = §,,.

Actually, when (n,s) =1 and X £ 1 is not a factor of X™ + X* £ p for
p = 2, the Galois group G(X" + X*+p) contains A,, in each of the following
cases:

(a) s <n—3, pts(n —s),
(b) s <n—3andp=s,
(c)s>3andp=mn—s.

It is easy to see that (a) follows from Theorem 4.3; (b) follows from
Theorem 13.9 of [23] and Theorem 1.3 which guarantees the existence of a
cycle of length p in the Galois group (take any element of order p in the
subgroup H occurring in Theorem 1.3); and (c) follows from Theorem 4.4.

2. Let (n,s) =1 and s < n — 3. Take two distinct prime numbers p and
q such that

(pa S) = (pqan o S) =1
If f(X) = X"+ X*® % pq is irreducible over QQ, then G(f) = A,, or S,, by
Theorem 4.3.

3. If pts, then the trinomial
Xpt+s - X*+p

is irreducible over Q, and its Galois group is doubly transitive by Theo-
rem 1.2.

4. Let p and g be two distinct primes. Then by Theorem 1.2 the Galois
group G(Xpt"fqr ~- X9 4 pq) is doubly transitive provided the polynomial
is irreducible. Indeed, by Theorems 1.3 and 1.4, the Galois group contains
subgroups H; and H, transitive on their supports which have sizes ¢", p'.
By using the classification of doubly transitive groups and the nature of
these groups, it can be shown that such subgroups H; and H, cannot exist
simultaneously unless the Galois group is A, or S,,. We leave the details
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of this, as such group theoretical arguments will form the substance of our
ensuing paper.

5. Let n be odd and p a prime =3 (mod 4). By Theorem 4.2 the Galois
group of the trinomial X™ 4+ X"~2 4 2p is doubly transitive provided it is
irreducible.

6. Let n = s+ 2% (s odd, ¢ > 1) and p, q be distinct primes with p = 1
(mod 4) and ¢ a quadratic non-residue (mod p). By Theorem 4.2 and the
Eisenstein criterion, G(X™ — ¢X*® + ¢p) is doubly transitive. For example,
G(X'3 — ¢gX1'5 4+ 5q), g =2 or 13, is doubly transitive.

7. Let p be a prime and a a rational integer such that pta. Then by
Theorem 4.2 the Galois group of X" + aX"~! 4+ ap is doubly transitive
provided it is irreducible. For instance, G(X™ + ¢X" ' + gp) is doubly
transitive if p and ¢ are two distinct primes.

8. Let f(X) = X8 + X7 + p where p := 246767749 is a prime. By
Theorem 1.1 its Galois group G is doubly transitive. In fact, G = Ag, since
Dy(f) is a square and the factorization of f(X) modulo 19 shows that G
contains a 3-cycle.

6. Appendix on Ore’s theorem. This section has been added at the
suggestion of the referee. Since a careful reading of [16] is required to extract
the precise version of the theorem of Ore needed in the proof of Theorem 1.4,
we give here a formulation of the appropriate result.

Let p be a fixed prime number and let ¢(X) € Z[X] be a monic poly-
nomial of degree m > 1 such that ¢ mod p is irreducible. Given a monic
polynomial f(X) € Q,[X], by Euclidean division we expand f(X) according
to powers of ¢(X); that is, we write

) FX) = 3 0@y (X)p(X)"

with polynomials Q;(X) € Z,[X] and degree Q; < m for each j. In this
equality (1), p does not divide all the coefficients of ();, except when @); = 0,
in which case we omit the corresponding term. Since f and ¢ are monic,
the polynomial (g is monic and ag = 0. The integer ¢ is the largest integer
< n/m, where n = deg(f). This expansion will be called the canonical
decomposition of f(X).

DEFINITION A.1. The (p,¢)-polygon of f(X) is the boundary of the
upper convex envelope of the set of points (j, @;) minus the two vertical sides.
The (p, p)-polygon, minus the (possible) horizontal part, is, by definition,
the principal part of it.
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Let Sq,..., Sk be the sides of the principal part of the (p, ¢)-polygon of
f(X) with increasing slopes. Define
Iy := the length of the horizontal side;
l; := the length of the projection of S; to the z-axis;
h; := the length of the projection of S; to the y-axis.
Set
g = (liyhy), Xi:=1;/e; and k; := h;/e;.
We fix a side S; of the (p, p)-polygon of f(X). In the canonical decom-

position of f(X), consider the sum of the terms p® Q;(X)p(X)*7 corre-
sponding to the points (4, ;) € S;. In this sum, we separate

QO(X)t—lg—...—liphq—|—...—|—hi,1’
thus making apparent a factor
R o(X)@(X)" + Rij1 (X)p™ p(X)H ™
+ Rip(X)p* p(X)H 72N L+ Ry (X)p™,
where the polynomials R; o(X),...,R;.,(X) are of degree < m. In partic-
ular R, o and ¢(X) (considered as polynomials of [, [X]) are co-prime. So
there exists A;(X) € Z[X] such that
R;o(X)A;(X) =1 mod (p, p(X)).
Define
The associated polynomial of the ith side is by definition
Fi(X,Y)=Y% + 81 (X)Y" '+ ...+ 5., (X).

F;(X,Y) depends on the choice of A;, but its class modulo the ideal
(p, (X)) does not.

Theorem 5, Chapter 2 of [16] and the paragraph following this theorem
can now be stated as follows.

THEOREM A.2 (Ore). Let f(X) = X" +a; X" '+ ... +a, € Z[X] be
an irreducible polynomial, and let 6 be a root of f(X) in a fized algebraic
closure of Q. Assume that f(X) = p1(X)* ... ps(X)% mod p, where each
0, (X) € Z[X], is the factorization of f(X) modulo p. Denote by m, the
degree of ¢, (X). Then

p=a;...04
where a, are coprime integer ideals of K := Q(0), with Nk(a,) = p®™
(N stands for the absolute norm of the number field K ).

In order to factorize each ideal a := a,, corresponding to the irreducible
factor ¢ := ¢,, we construct the (p,p)-polygon of f(X). For each side S;
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of the principal part of this polygon, we consider the factorization modulo
(p, ) of the associated polynomial F;(X,Y):

af®

F(x,Y) = KO, v)a” L ED (X, Y)Y mod (p, ).

Then a = Hle H;Ll[cgi)])‘i, where A; :=1;/(l;, hi) is the parameter defined
above and where the cg-i are coprime integer ideals of K = Q(0). Moreover,

NK(c_g-i)) =p" m;i)a;”, 'mgz) = degreeYF}(i)(X,Y).

Furthermore, if a_g-i) =1, then the ideal c_g-i) 18 prime.

Acknowledgements. The authors are indebted to the referee for his
careful reading of the manuscript and valuable suggestions.
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