Errata to the paper
 "On a functional equation satisfied by
 certain Dirichlet series"

(Acta Arith. 71 (1995), 265-272)
by
E. Carletti and G. Monti Bragadin (Genova)

We have to point out that formula (5) in [1] is wrong, as well as the formula for $\Phi_{L}(s)$ given in the statement of the Theorem in [1]. The following lemma will take the place of formula (5) in [1].

Lemma 0.1. The following formula for derivatives of higher order of $z^{\nu} I_{\nu}(z)$ holds:

$$
\begin{equation*}
\frac{d^{p}}{d z^{p}}\left(z^{\nu} I_{\nu}(z)\right)=\sum_{l=0}^{[p / 2]}(2 l-1)!!\binom{p}{2 l} z^{\nu-l} I_{\nu-(p-l)}(z) \tag{0.1}
\end{equation*}
$$

if we put $(-1)!!=1$.
Proof. From the well known formula (see [2])

$$
\begin{equation*}
\frac{d}{d z}\left(z^{\nu} I_{\nu}(z)\right)=z^{\nu} I_{\nu-1}(z) \tag{0.2}
\end{equation*}
$$

we derive, by induction, that if $p \geq 1$ then

$$
\begin{equation*}
\frac{d^{p}}{d z^{p}}\left(z^{\nu} I_{\nu}(z)\right)=\sum_{l=0}^{[p / 2]} \beta_{p, l} z^{\nu-l} I_{\nu-(p-l)}(z) \tag{0.3}
\end{equation*}
$$

By a direct computation we get $\beta_{p, 0}=1$ for all $p \geq 1$. Comparing

$$
\frac{d^{p+1}}{d z^{p+1}}\left(z^{\nu} I_{\nu}(z)\right)=\sum_{t=0}^{[(p+1) / 2]} \beta_{p+1, t} z^{\nu-t} I_{\nu-(p+1-t)}(z)
$$

with

$$
\frac{d}{d z}\left(\frac{d^{p}}{d z^{p}}\left(z^{\nu} I_{\nu}(z)\right)\right)
$$

developed by (0.2) from (0.3), we obtain the following recurrence formula:

$$
\begin{equation*}
\beta_{p+1, t}=(p-2 t+2) \beta_{p, t-1}+\beta_{p, t}, \tag{0.4}
\end{equation*}
$$

where $p \geq 1,0 \leq t \leq[(p+1) / 2]$ and $\beta_{p, i}=0$ if $i>[p / 2]$ or $i<0$. From (0.4) for $t \geq 2$ due to the well known formula

$$
\sum_{k=0}^{m}\binom{n+k}{n}=\binom{n+m+1}{n+1}
$$

we obtain, for all $p \geq 1$,

$$
\begin{equation*}
\beta_{p+1, t}=(2 t-1)!!\binom{p+1}{2 t} . \tag{0.5}
\end{equation*}
$$

We note that $\beta_{1,0}=1$, so (0.5) holds if $p=0$. If $t=0$, taking $(-1)!!=1$ the above formula holds by a direct computation. For $t=1$, (0.5) follows directly from (0.4).

By using formula (0.1) we obtain the corrected form for the function $\Phi_{L}(s)$ given in the statement of the Theorem in [1].

In the proof of the Theorem of [1] we have to replace page 270, from the fifth line starting with "By Cauchy's theorem..." up to the end of the page, with the following:

By Cauchy's theorem we have

$$
I_{N}(s)=-\sum_{\substack{-N \leq 2 n \leq N \\ n \neq 0}} \operatorname{Res}\left(H(z) I_{s-1 / 2}\left(\frac{\delta}{2} z\right) z^{s-1 / 2} ; 2 \pi n i\right) .
$$

If we put

$$
A(z)=I_{s-1 / 2}\left(\frac{\delta}{2} z\right) z^{s-1 / 2}
$$

its Taylor series at $s=2 \pi n i, n \neq 0$, is

$$
A(z)=\sum_{m=0}^{\infty} \frac{1}{m!} A^{(m)}(2 \pi n i)(z-2 \pi n i)^{m} .
$$

Then we have

$$
\operatorname{Res}(H(z) A(z) ; 2 \pi n i)
$$

$$
=\sum_{\substack{p+l=-1 \\ p \geq-(d+1) \\ l \geq 0}} \frac{1}{l!} \alpha_{p}^{n} A^{(l)}(2 \pi n i)=\sum_{p=0}^{d} \frac{1}{p!} \alpha_{-p-1}^{n} A^{(p)}(2 \pi n i) .
$$

By (0.1),

$$
A^{(p)}(z)=\sum_{l=0}^{[p / 2]}(2 l-1)!!\binom{p}{2 l}\left(\frac{\delta}{2}\right)^{p-l} z^{s-1 / 2-l} I_{s-1 / 2-(p-l)}\left(\frac{\delta}{2} z\right)
$$

Therefore

$$
\begin{aligned}
I_{N}(s)=-\sum_{\substack{-N \leq 2 n \leq N \\
n \neq 0}} \sum_{p=0}^{d} & \sum_{l=0}^{[p / 2]} \frac{(2 l-1)!!}{p!}\binom{p}{2 l}\left(\frac{\delta}{2}\right)^{p-l} \\
& \times \alpha_{-p-1}^{n}(2 n \pi i)^{s-1 / 2-l} I_{s-1 / 2-(p-l)}(\delta n \pi i)
\end{aligned}
$$

By (2) and (3) of [1] the series

$$
\sum_{\substack{n \in \mathbb{Z} \\ n \neq 0}} \alpha_{-p-1}^{n}(2 \pi n i)^{s-1 / 2-l} I_{s-1 / 2-(p-l)}(\delta n \pi i)
$$

converges absolutely and uniformly on compact subsets of $\sigma<0$. Thus, for $\sigma<0$, we have

$$
\begin{aligned}
& I(s)=-\sum_{\substack{n \in \mathbb{Z} \\
n \neq 0}} \sum_{p=0}^{d} \sum_{l=0}^{[p / 2]} \frac{(2 l-1)!!}{p!}\binom{p}{2 l}\left(\frac{\delta}{2}\right)^{p-l} \\
& \quad \times \alpha_{-p-1}^{n}(2 \pi n i)^{s-1 / 2-l} I_{s-1 / 2-(p-l)}(\delta n \pi i)
\end{aligned}
$$

Then we derive the final formula for $\Phi_{L}(s)$ in $\sigma>1$:

$$
\begin{aligned}
& \Phi_{L}(s)=I(1-s)=-\sum_{p=0}^{d} \sum_{l=0}^{[p / 2]} \\
& \sum_{\substack{n \in \mathbb{Z} \\
n \neq 0}} \frac{(2 l-1)!!}{p!}\binom{p}{2 l}\left(\frac{\delta}{2}\right)^{p-l} \\
& \times \alpha_{-p-1}^{n}(2 \pi n i)^{1 / 2-s-l} I_{1 / 2-s-(p-l)}(\delta n \pi i)
\end{aligned}
$$

References

[1] E. Carlettiand G. Monti Bragadin, On a functional equation satisfied by certain Dirichlet series, Acta Arith. 71 (1995), 265-272.
[2] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, fifth ed., Academic Press, 1993.

Dipartimento di Matematica
Università di Genova
Via Dodecaneso 35
I-16146 Genova, Italy
E-mail: carletti@dima.unige.it
monti@dima.unige.it

