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On decimal and continued fraction
expansions of a real number

by

C. Faivre (Marseille)

0. Introduction. Let x be an irrational number. We deal with the
problem of finding from the decimal expansion of x, the first k (where k is a
given integer) partial quotients of the regular continued fraction expansion
of x. More precisely, for each n ≥ 1, denote by xn, yn with xn < x < yn

the two consecutive nth decimal approximations of x. We assume that the
integer n is such that the numbers xn and yn have finite continued fraction
expansions which coincide up to order k, i.e., xn = [α0;α1, . . . , αk, . . .] and
yn = [α0;α1, . . . , αk, . . .] for some integers αi. Since the set of numbers
which have a continued fraction which begins with α0, . . . , αk is an interval,
it follows that x = [α0;α1, . . . , αk, . . .], in other words α0, α1, . . . , αk are
precisely the first k partial quotients of x. Writing the two rationals xn, yn

as a quotient p/q of two integers, i.e., writing

xn =
[10nx]
10n

and yn = xn +
1

10n
,

where [y] denotes the largest integer ≤ y for each real number y, their con-
tinued fraction expansion may be computed exactly. In fact, for a rational
number p/q, the continued fraction algorithm shows that we only have to
perform operations on integers. This gives a practical method to compute
the first k partial quotients of an irrational number if we know as above the
n digits of its decimal expansion.

We can believe that for most irrational numbers x, the integer n must
be very large compared to k. Denote precisely by kn = kn(x) the largest
integer k ≥ 0 such that we can write xn = [α0;α1, . . . , αk, . . .] and yn =
[α0;α1, . . . , αk, . . .] for some integers αi with α0 = [x]. Note that such a
representation is always possible. In fact, [xn] = [x] = α0 and [yn] = α0 or
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yn = α0 + 1 and in this last case we can write yn = [α0; 1]. Hence, xn, yn

will give kn partial quotients of x.
In [2] Lochs has proved the following beautiful and surprising result.

Theorem (Lochs). For almost all irrationals x, with respect to Lebesgue
measure, we have

lim
n→∞

kn(x)
n

=
6 log 10 log 2

π2
' 0.9702.

Since the constant 0.9702 . . . of the above theorem is rather close to 1,
one can almost say that for large n, the n decimals determine the n first
partial quotients.

Consider two examples. For x = 3
√

2 = 1.259921 . . . , we have

x5 = 1.25992 and y5 = 1.25993.

A computation shows that

x5 = [1; 3, 1, 5, 1, 1, 4, 2, 5, 1, 3] and y5 = [1; 3, 1, 5, 1, 1, 5, 5, 1, 2, 1, 4, 3].

Therefore k5(x) = 5 and x = [1; 3, 1, 5, 1, 1, . . .]. Thus we obtain from the
five decimals of x the first five partial quotients. As another example, the
first 1000 decimals of π give exactly 968 partial quotients (see [3]).

In this paper we improve the above theorem of Lochs.
Denote by z0 the constant (6 log 10 log 2)/π2. As probability measure on

[0,1] we will consider the Lebesgue measure denoted by P in this paper. We
prove the following theorem.

Theorem 1 (main theorem). For all ε > 0, the probability of the set of x
for which the distance of kn(x)/n to z0 is greater than or equal to ε decreases
geometrically to 0, i.e., there exist positive constants C, λ (depending on ε)
with 0 < λ < 1 such that

P

(∣∣∣∣kn

n
− z0

∣∣∣∣ ≥ ε

)
≤ Cλn

for all integers n ≥ 1.

The above theorem yields immediately that
∑

P (|kn/n− z0| ≥ ε) < ∞
for all ε > 0. Then with the Borel–Cantelli lemma, we deduce easily as a
corollary the theorem of Lochs.

The proof of the main theorem will show more precisely that

lim sup
n→∞

1
n

log P

(
kn

n
≤ z0 − ε

)
≤ θ1(ε) (0 < ε < z0),

lim sup
n→∞

1
n

log P

(
kn

n
≥ z0 + ε

)
≤ θ2(ε),
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with

θ1(ε) = inf
0<t<1/2

1
t + 1

(−t log 10 + (z0 − ε) log λ(2− 2t)) < 0

and
θ2(ε) = inf

α>0
(α log 10 + (z0 + ε) log λ(2 + 2α)) < 0.

In the above formulas λ(2 − 2t) and λ(2 + 2α) are the dominant eigen-
values of some operators Ls, s > 1 (transfer operators) defined in Section 2.

The formulas giving θ1 and θ2 are interesting. If it is possible to extract
further information about the location of the eigenvalues of the operators
Ls then we will have more precise estimates of θ1 and θ2.

We will also prove a result on approximation. For some irrationals x
it may happen that some decimals xn are better approximations of x than
pn/qn, i.e., x − xn < |x − pn/qn|. We may take for example x = 3

√
2 and

n = 1, 3, 4, 5. However, the probability of this to happen decreases quickly
to 0 as n →∞ according to the following theorem.

Theorem 2. There exist positive constants C, µ with 0 < µ < 1 such
that

P

(
x− xn ≤

∣∣∣∣x− pn

qn

∣∣∣∣) ≤ Cµn (n ≥ 1).

The proof of the above theorem will show more precisely that

lim sup
n→∞

1
n

log P

(
x− xn ≤

∣∣∣∣x− pn

qn

∣∣∣∣) ≤ θ

with

θ = inf
α>0

1
α + 1

(α log 10 + log λ(2 + 2α)) < 0.

The following sections are devoted to the proof of Theorems 1 and 2.

1. Conditional probabilities. If α1, . . . , αi are given integers ≥ 1,
the set of numbers in [0, 1] which have a continued fraction expansion which
begins with α1, . . . , αi is an interval (a fundamental interval) denoted here
as I(α1, . . . , αi). More precisely,

I(α1, . . . , αi) =


[
pi

qi
,
pi + pi−1

qi + qi−1

]
if i is even,[

pi + pi−1

qi + qi−1
,
pi

qi

]
if i is odd,

where as usual
pi

qi
= [0; α1, . . . , αi].
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In the following we will write I(α1, . . . , αi) = [bi, ci] for short. Let rni =
[10nbi] and r′ni = [10nci], thus

rni

10n
≤ bi <

rni + 1
10n

and
r′ni

10n
≤ ci <

r′ni + 1
10n

.

Let x ∈ [0, 1] be an irrational number. If x ∈ [bi, ci], then kn(x) ≥ i only
when xn, yn both belong to [bi, ci]. If (rni + 1)/10n > ci then yn = (rni +
1)/10n, thus yn 6∈ [bi, ci]. But if (rni + 1)/10n ≤ ci, we will have xn, yn ∈
[bi, ci] only when x ∈ [(rni + 1)/10n, r′ni/10n] in the case rni/10n < bi and
when x ∈ [bi, r

′
ni/10n] in the case rni/10n = bi. Since

ci − bi =
1

qi(qi + qi−1)
,

we see that the conditional probability

P (kn < i | a1 = α1, . . . , ai = αi)

is given by

1 if
rni + 1

10n
> ci,(

rni + 1
10n

− bi + ci −
r′ni

10n

)
qi(qi + qi−1) if

rni + 1
10n

≤ ci and
rni

10n
< bi,(

ci −
r′ni

10n

)
qi(qi + qi−1) if

rni + 1
10n

≤ ci and
rni

10n
= bi.

For all n ≥ 1, let tn and vn be the functions defined by

tn(y) = 10ny − [10ny] and vn(y) = 1− tn(y).

Since
rni + 1

10n
− bi =

vn(bi)
10n

,

we can write P (kn < i | a1 = α1, . . . , ai = αi) as

(1)



1 if vn(bi)
qi(qi + qi−1)

10n
> 1,

(vn(bi) + tn(ci))
qi(qi + qi−1)

10n

if vn(bi)
qi(qi + qi−1)

10n
≤ 1 and

rni

10n
< bi,

tn(ci)
qi(qi + qi−1)

10n
if vn(bi)

qi(qi + qi−1)
10n

≤ 1 and
rni

10n
= bi.
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Note that P (kn < i | a1 = α1, . . . , ai = αi) is also equal to

(2)


1 if

qi(qi + qi−1)
10n

> 1,

(vn(bi) + tn(ci))
qi(qi + qi−1)

10n
if

qi(qi + qi−1)
10n

≤ 1 and
rni

10n
< bi,

tn(ci)
qi(qi + qi−1)

10n
if

qi(qi + qi−1)
10n

≤ 1 and
rni

10n
= bi.

In fact, if vn(bi)qi(qi + qi−1)/10n ≤ 1 and qi(qi + qi−1)/10n > 1, or equiva-
lently if

rni + 1
10n

≤ ci and ci − bi <
1

10n
,

then we will necessarily have rni/10n < bi and (rni +1)/10n = r′ni/10n, thus

vn(bi) + tn(ci)
10n

= ci − bi =
1

qi(qi + qi−1)
.

Let Tni be the random variable

Tni = P (kn < i | a1, . . . , ai),

so, for the expectation of Tni we have

E(Tni) = P (kn < i).

2. Transfer operators. Let E = A∞(D) be the Banach space of
bounded holomorphic functions on the disk D={z : |z−1| < 3/2}. The space
E is naturally endowed with the supremum norm ‖f‖∞=supz∈D |f(z)|. For
each complex number s with Re(s) > 1, we consider the following operator
on E:

Ls(f)(z) =
∞∑

n=1

1
(n + z)s

f

(
1

n + z

)
(z ∈ D).

Note that for s = 2, Ls is the “analogue in E” of the Perron–Frobenius
operator of the Gauss transformation of continued fractions.

We recall in the following theorem some known properties of these op-
erators Ls (see for example [4] and [1]).

Theorem 3. (a) Ls is a nuclear operator of order 0 (hence it is compact
in particular).

(b) For all real s > 1, Ls has a dominant eigenvalue λ(s) > 0 of multi-
plicity 1.

(c) The map s → λ(s) is analytic.
(d) λ(2) = 1 and λ′(2) = −π2/(12 log 2).
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A computation shows that the iterates of Ls are given by the formula

Ln
s (f)(z) =

∑
k1,...,kn

1
(zqn−1 + qn)s

f

(
zpn−1 + pn

zqn−1 + qn

)
,

where k1, . . . , kn run over the integers ≥ 1 and
pn

qn
= [0; k1, . . . , kn].

In particular, we have

Ln
s (f)(0) =

∑
k1,...,kn

1
qs
n

f

(
pn

qn

)
.

Using the well-known formula
qn−1

qn
= [0; kn, . . . , k1],

we see by inverting the order of summation that we also have

(3) Ln
s (f)(0) =

∑
k1,...,kn

1
qs
n

f

(
qn−1

qn

)
.

We use the operators Ls to prove some probabilistic estimates about the
denominators of the convergents qn which will be useful later. The letter E
denotes as usual the expectation operator.

Proposition 1. (i) For each α > 0, there exists a constant C = Cα

such that

E

(
1

q2α
n

)
≤ Cλn(2α + 2) (n ≥ 1).

(ii) For each t < 1/2, there exists a constant C = Ct such that

E(q2t
n ) ≤ Cλn(2− 2t) (n ≥ 1).

P r o o f. (i) The expectation of 1/q2α
n is given by

E

(
1

q2α
n

)
=

∑
k1,...,kn

1
q2α
n

· 1
qn(qn + qn−1)

=
∑

k1,...,kn

1
q2α+2
n

· 1
1 + qn−1/qn

,

thus from (3), E(q−2α
n ) = Ln

2α+2(f)(0), where f(z) = 1/(1+z). From (b) of
Theorem 3, we deduce that |Ln

2α+2(f)(0)| ≤ Cλn(2α + 2) for some constant
C > 0, thus (i) is proved.

(ii) Following the lines of (i), the expectation of q2t
n is given by E(q2t

n ) =
Ln

2−2t(f)(0) for t<1/2, with the same function f . This proves the result.
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3. Proof of the main theorem. First part. Since 0 ≤ Tni ≤ 1, we
have for all a > 0,

(4) E(Tni) ≤ a + P (Tni ≥ a).

From (1), we have

Tni ≤ (vn(bi) + tn(ci))
qi(qi + qi−1)

10n
,

thus

Tni ≤
4q2

i

10n
.

Note that E(q2
i ) = ∞. Hence we cannot obtain a majorization of E(Tni)

directly from the above inequality by taking expectations. However, we
deduce

P (Tni ≥ a) ≤ P

(
q2
i

10n
≥ a

4

)
.

From the Markov inequality, for all t > 0,

P

(
q2
i

10n
≥ a

4

)
≤

(
4
a

)t

10−ntE(q2t
i ).

Hence from (4) and Proposition 1, where we restrict 0 < t < 1/2, we get
the inequality

P (kn < i) = E(Tni) ≤ a +
C4t10−ntλi(2− 2t)

at
.

Taking a = A1/(t+1) with A = C4t10−ntλi(2− 2t), we obtain

P (kn < i) ≤ 2A1/(t+1).

Let (in) be a sequence of integers ≥ 1 such that

lim
n→∞

in
n

= z0 − ε

and
in
n

> z0 − ε for all n ≥ 1.

From the last inequality for P (kn < i) we obtain for all 0 < t < 1/2,

lim sup
n→∞

1
n

log P (kn < in) ≤ 1
t + 1

(−t log 10 + (z0 − ε) log λ(2− 2t)).

Thus

lim sup
n→∞

1
n

log P

(
kn

n
≤ z0 − ε

)
≤ θ1(ε)

with

θ1(ε) = inf
0<t<1/2

1
t + 1

(−t log 10 + (z0 − ε) log λ(2− 2t)),
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since P (kn/n ≤ z0− ε) ≤ P (kn < in) from the choice of (in). Now we show
that θ1(ε) < 0. In fact, consider for u < 1/2 the function h defined by

h(u) = −u log 10 + (z0 − ε) log λ(2− 2u).

By (d) of Theorem 3, h(0) = 0 and h′(0) = − log 10+(z0−ε)π2/(6 log 2) < 0.
Thus if t is sufficiently small, then h(t) < 0, which implies that θ1(ε) < 0 as
asserted.

4. Proof of the main theorem. Second part. From (2) we have

P

(
qi(qi + qi−1)

10n
> 1

)
≤ P (Tni = 1) ≤ E(Tni) = P (kn < i),

thus

P (kn ≥ i) ≤ P

(
10n

qi(qi + qi−1)
≥ 1

)
.

This last inequality can also be proved by noticing that if kn ≥ i then xn, yn

are in the same i-fundamental interval as x, thus

yn − xn =
1

10n
≤ 1

qi(qi + qi−1)
,

and this gives as above

P (kn ≥ i) ≤ P

(
10n

qi(qi + qi−1)
≥ 1

)
.

We can write

P (kn ≥ i) ≤ P

(
10n

q2
i

≥ 1
)

.

From the Markov inequality and Proposition 1, we get for all α > 0,

P (kn ≥ i) ≤ 10nαE

(
1

q2α
i

)
≤ C10nαλi(2 + 2α).

Now take a sequence (in) of integers ≥ 1 such that

lim
n→∞

in
n

= z0 + ε

and
in
n
≤ z0 + ε for all n ≥ 2.

We have

lim sup
n→∞

1
n

log P

(
kn

n
≥ z0 + ε

)
≤ θ2(ε)

with
θ2(ε) = inf

α>0
(α log 10 + (z0 + ε) log λ(2 + 2α)).
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Now we prove that θ2(ε) < 0. As in the first part of the proof, consider
the function

h(u) = u log 10 + (z0 + ε) log λ(2 + 2u) (u > −1/2),

and note that h(0) = 0 and h′(0) < 0, thus h(α) < 0 for α sufficiently close
to 0 and θ2(ε) < 0.

5. Proof of Theorem 2. From x− xn = tn(x)/10n and∣∣∣∣x− pn

qn

∣∣∣∣ <
1
q2
n

,

we deduce

P

(
x− xn ≤

∣∣∣∣x− pn

qn

∣∣∣∣) ≤ P

(
tn <

10n

q2
n

)
.

For all ε > 0 and α > 0, we can write

P

(
tn <

10n

q2
n

)
≤ P (tn ≤ ε) + P

(
10n

q2
n

> ε

)
≤ ε +

C10nαλn(2 + 2α)
εα

.

The last inequality follows from the Markov inequality, Proposition 1, and
the fact that for all n ≥ 1, tn is distributed according to the uniform law
on [0, 1]. Taking

ε = (C10nαλn(2 + 2α))1/(α+1),

we have

P

(
tn <

10n

q2
n

)
≤ 2(C10nαλn(2 + 2α))1/(α+1),

thus

lim sup
n→∞

1
n

log P

(
tn <

10n

q2
n

)
≤ θ

with

θ = inf
α>0

1
α + 1

(α log 10 + log λ(2 + 2α)) < 0,

which proves the theorem.
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Centre de Mathématiques et Informatique
de l’Université de Provence
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