On double covers of the generalized alternating group $\mathbb{Z}_{d} \succsim \mathfrak{A}_{m}$ as Galois groups over algebraic number fields

by
Martin Epkenhans (Paderborn)

Let $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ be the generalized alternating group. We prove that all double covers of \mathbb{Z}_{d} 觝 occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of $\mathbb{Q}(T)$. If d is odd and $m>7$, then every central extension of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ occurs as the Galois group of a regular extension of $\mathbb{Q}(T)$. We further improve some of our earlier results concerning double covers of the generalized symmetric group $\mathbb{Z}_{d} \backslash \mathfrak{S}_{m}$.

1. Introduction and notations. Serre's formula on trace forms [15], [16] relates the obstruction to certain embedding problems

$$
1 \rightarrow \mathbb{Z}_{2} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{G} \rightarrow 1
$$

of a finite group \mathcal{G} to invariants of the trace form of a field extension. Using this, N . Vila [19] realized the unique covering group $\widetilde{\mathfrak{A}}_{m}$ of $\mathfrak{A}_{m}, m \geq 8, m \equiv$ $0,1 \bmod 8$ as the Galois group of a regular extension of the rational function field $\mathbb{Q}(T)$. J. F. Mestre [11] extended this result to all $m \geq 4$. Following Mestre's ideas, J. Sonn [18] improved one of his previous results on covering groups of the symmetric group \mathfrak{S}_{m}. We can summarize these results as follows.

Every finite central extension of \mathfrak{S}_{m} and of $\mathfrak{A}_{m}, m \geq 4$, is realizable as the Galois group of a regular extension of $\mathbb{Q}(T)$.

Vila, Sonn and Schacher [19], [20], [17], [13] used trinomials $f(X)=$ $X^{m}+a X^{l}+b$ with Galois group \mathfrak{S}_{m}, resp. \mathfrak{A}_{m}. We know the trace form of a trinomial [15], [3]. The trace form of a trinomial with square discriminant depends only on l. It is not always possible to choose $l<n$ such that the obstruction vanishes. This explains why Vila's results are not complete.

[^0]Mestre gave a one-parameter deformation of a polynomial of odd degree to an irreducible polynomial with the same trace form. Völklein [21] obtained Mestre's result on $\widetilde{\mathfrak{A}}_{m}$ without trace form considerations.

In a previous paper [4] we realized some of the double covers of the generalized symmetric group $\mathbb{Z}_{d} \imath \mathfrak{S}_{m}$ as Galois groups over $K(T)$, where K is an algebraic number field which contains the d th roots of unity.

In this paper we investigate double covers of the generalized alternating group as a Galois group over number fields and over rational function fields. Using Ishanov's theorem we prove that all double covers of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ and of $\mathbb{Z}_{d} \backslash \mathfrak{S}_{m}$ occur as the Galois groups over any algebraic number field. If d is odd, then the unique non-trivial double cover of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ occurs as the Galois group of a regular extension of $\mathbb{Q}(T)$.

Kotlar, Schacher and Sonn [8, Theorem 6] reduced the question whether a central extension of \mathfrak{S}_{m} is a Galois group over K to certain pull-backs of stem covers of \mathfrak{S}_{m} with cyclic groups. Following their arguments we show that all central extensions of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ are the Galois groups of regular extensions of $\mathbb{Q}(T)$ if d is odd and $m>7$.

Let us fix some notation. Let \mathcal{G} be a finite group. Then \mathcal{G}^{\prime} denotes the commutator subgroup of \mathcal{G} and $\mathrm{M}(\mathcal{G})$ is the Schur multiplier of \mathcal{G}. Let $\pi_{1}: \mathcal{H}_{1} \rightarrow \mathcal{G}, \pi_{2}: \mathcal{H}_{2} \rightarrow \mathcal{G}$ be homomorphisms of groups. Then $\mathcal{H}_{1} \times \mathcal{G} \mathcal{H}_{2}$ is the associated pull-back.

Let K be a field. Then \bar{K} denotes an algebraic closure of $K . \mu_{d} \subset \bar{K}$ is the group of d th roots of unity. Let $f(X) \in K[X]$ be a polynomial. Then $\operatorname{dis}(f)$ is the discriminant of $f(X)$, and $\operatorname{Gal}(f)$ stands for its Galois group. Let T, U, V, X, Y denote indeterminates.
2. The embedding problem. Let K be a field of $\operatorname{char}(K) \neq 2, K_{\mathrm{s}}$ a separable closure of K, and $\Gamma_{K}:=G\left(K_{\mathrm{s}} / K\right)$ the absolute Galois group of K. Let L / K be a separable field extension of finite degree $n, N \supset L$ a normal closure of L / K inside K_{s}, and $\mathcal{G}=G(N / K)$ the Galois group of N / K. By Galois theory we have homomorphisms $\varrho: \Gamma_{K} \rightarrow \mathcal{G}$ and $e: \Gamma_{K} \rightarrow \mathfrak{S}_{n}$. Let

$$
0 \rightarrow \mathcal{A} \xrightarrow{\iota} \mathcal{E} \rightarrow \mathcal{G} \rightarrow 0
$$

be a group extension of \mathcal{G} with abelian kernel \mathcal{A}. We say the embedding problem with abelian kernel defined by the diagram

has a (proper) solution iff there is a (surjective) homomorphism $\varphi: \Gamma_{K} \rightarrow \mathcal{E}$ making the diagram commutative. If $\iota(\mathcal{A}) \subset Z(\mathcal{E})$, the center of \mathcal{E}, then
we call it a central embedding problem. An abelian embedding problem over an algebraic number field has a proper solution if it has a solution (Ikeda's Theorem [6]). If the order $|\mathcal{A}|$ of \mathcal{A} is a prime and if \mathcal{E} is a non-trivial extension of \mathcal{G}, then every solution of the embedding problem is a proper solution.

Let $\mathrm{H}^{m}(\mathcal{G}, \mathcal{A}), m \in \mathbb{Z}$, denote the m th cohomology group of the \mathcal{G} module \mathcal{A}. The group extension $1 \rightarrow \mathcal{A} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 1$ with abelian kernel \mathcal{A} defines an element $\varepsilon \in \mathrm{H}^{2}(\mathcal{G}, \mathcal{A})$. Let $\operatorname{Br}(K)$ be the Brauer group of K and let inf : $\mathrm{H}^{2}(\mathcal{G}, \mathcal{A}) \rightarrow \operatorname{Br}(K)$ be the inflation map induced by $\varrho: \Gamma_{K} \rightarrow \mathcal{G}$.

Hoechsmann's Theorem. The embedding problem associated with $\varepsilon \in$ $\mathrm{H}^{2}(\mathcal{G}, \mathcal{A})$ has a solution if and only if $\inf (\varepsilon)=0 \in \operatorname{Br}(K)$.

With the help of Serre's formula we are able to calculate the obstruction $\inf (\varepsilon)$ for some embedding problems. By Kummer theory we know $\mathrm{H}^{1}\left(\Gamma_{K}, \mathbb{Z}_{2}\right) \simeq \operatorname{Hom}\left(\Gamma_{K}, \mathbb{Z}_{2}\right) \simeq K^{\star} / K^{\star 2}$. For $a, b \in K^{\star},(a, b)_{K}$ denotes the generalized quaternion algebra generated over K by i, j and satisfying $i^{2}=a, j^{2}=b, i j=-j i$. The class of $(a, b)_{K}$ in $\operatorname{Br}(K)$ is also denoted by $(a, b)_{K}$. Let ψ be a (non-degenerate) quadratic form over K. The Hasse invariant (second Stiefel-Whitney class) is defined by

$$
w_{2} \psi:=\bigotimes_{1 \leq i<j \leq n}\left(a_{i}, a_{j}\right)_{K} \in \operatorname{Br}(K),
$$

where $\psi \simeq_{K}\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is a diagonalization of ψ. Here \simeq_{K} denotes the isometry of quadratic forms defined over K. The determinant of ψ is denoted by $\operatorname{det}_{K} \psi$.

Now we recall a definition of two covering groups of \mathfrak{S}_{n}. \mathfrak{S}_{n} has a standard presentation with generators $t_{1}, \ldots, t_{n-1}\left(t_{i}=(i, i+1)\right)$ and relations

$$
t_{i}^{2}=1, \quad\left(t_{i} t_{i+1}\right)^{3}=1, \quad t_{i} t_{j}=t_{j} t_{i} \quad \text { if }|i-j| \geq 2 .
$$

Let \mathfrak{S}_{n}^{-}be the group generated by $\omega, \widetilde{t}_{1}, \ldots, \widetilde{t}_{n-1}$ with relations

$$
\widetilde{t}_{i}^{2}=1=\omega^{2}, \quad \omega \widetilde{t}_{i}=\widetilde{t}_{i} \omega, \quad\left(\widetilde{t}_{i} \tilde{t}_{i+1}\right)^{3}=1, \quad \widetilde{t}_{i} \widetilde{t}_{j}=\omega \widetilde{t}_{j} \widetilde{t}_{i} \quad \text { if }|i-j| \geq 2 .
$$

Let \mathfrak{S}_{n}^{+}be the group generated by $\omega, \tilde{t}_{1}, \ldots, \tilde{t}_{n-1}$ with relations
$\widetilde{t}_{i}^{2}=\omega, \quad \omega^{2}=1, \quad \omega \widetilde{t}_{i}=\widetilde{t}_{i} \omega, \quad\left(\widetilde{t}_{i} \tilde{t}_{i+1}\right)^{3}=1, \quad \widetilde{t}_{i} \tilde{t}_{j}=\omega \widetilde{t}_{j} \tilde{t}_{i} \quad$ if $|i-j| \geq 2$.
Denote by $s_{n}^{-}, s_{n}^{+} \in \mathrm{H}^{2}\left(\mathfrak{S}_{n}, \mathbb{Z}_{2}\right)$ the cohomology classes associated with these group extensions. The signature homomorphism $\varepsilon_{n}: \mathfrak{S}_{n} \rightarrow \mathbb{Z}_{2}$ is the unique non-zero element of $\mathrm{H}^{1}\left(\mathfrak{S}_{n}, \mathbb{Z}_{2}\right)$ if $n \geq 2$. We know $\mathrm{H}^{2}\left(\mathfrak{S}_{n}, \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}=$ $\left\{0, s_{n}^{+}, s_{n}^{-}, \varepsilon_{n} \cup \varepsilon_{n}\right\}$ if $n \geq 4$. Here \cup denotes the usual cup product of cohomology classes.

The trace map $\operatorname{tr}_{L / K}: L \rightarrow K$ defines a quadratic form over K on the K-vector space L by $x \mapsto \operatorname{tr}_{L / K}\left(x^{2}\right)$. We denote the associated quadratic space by $\langle L\rangle$. This form is usually called trace form. The homomorphism
$e: \Gamma_{K} \rightarrow \mathfrak{S}_{n}$ defines a homomorphism $e^{\star}: \mathrm{H}^{2}\left(\mathfrak{S}_{n}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{Br}_{2}(K)$, where $\operatorname{Br}_{2}(K)$ is the subgroup of elements $x \in \operatorname{Br}(K)$ with $2 x=0$. Now Serre's formula asserts:

Proposition 1 (Serre [15]). 1. $e^{\star}\left(s_{n}^{+}\right)=\left(-2, \operatorname{det}_{K}\langle L\rangle\right)_{K} \otimes w_{2}\langle L\rangle$.
2. $e^{\star}\left(s_{n}^{-}\right)=\left(2, \operatorname{det}_{K}\langle L\rangle\right)_{K} \otimes w_{2}\langle L\rangle$.
3. $e^{\star}\left(\varepsilon_{n} \cup \varepsilon_{n}\right)=\left(\operatorname{det}_{K}\langle L\rangle,-1\right)_{K}$.

Let

$$
\inf : \mathrm{H}^{2}\left(\mathcal{G}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{H}^{2}\left(\Gamma_{K}, \mathbb{Z}_{2}\right)
$$

be the inflation homomorphism induced by ϱ and let

$$
\text { res : } \mathrm{H}^{2}\left(\mathfrak{S}_{n}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{H}^{2}\left(\mathcal{G}, \mathbb{Z}_{2}\right)
$$

be the restriction homomorphism induced by the injection $\mathcal{G} \hookrightarrow \mathfrak{S}_{n}$. Then $e^{\star}=\inf \circ$ res. Combining Serre's formula with Hoechsmann's result we get

Proposition 2. The embedding problem associated with the group extension $\operatorname{res}\left(s_{n}^{+}\right)\left(\right.$resp. res $\left.\left(s_{n}^{-}\right)\right)$has a solution iff

$$
w_{2}\langle L\rangle=\left(-2, \operatorname{det}_{K}\langle L\rangle\right)_{K}\left(\text { resp. } w_{2}\langle L\rangle=\left(2, \operatorname{det}_{K}\langle L\rangle\right)_{K}\right) .
$$

3. The wreath product. The generalized alternating group $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ is the wreath product of \mathbb{Z}_{d} and \mathfrak{A}_{m}. We now recall the definition of the wreath product of groups.

Definition 1. Let \mathcal{G} be a permutation group on a finite set Ω. Let \mathcal{H} be a finite group and set $\mathcal{H}^{\Omega}=\{f: \Omega \rightarrow \mathcal{H}\}$. Then $f \mapsto \pi_{f}=f \circ \pi^{-1}$, $\pi \in \mathcal{G}$, defines an action of \mathcal{G} on \mathcal{H}^{Ω}. Now the wreath product $\mathcal{H} \imath \mathcal{G}$ of \mathcal{H} and \mathcal{G} is the semidirect product of \mathcal{H}^{Ω} and \mathcal{G} induced by the action above.

In the sequel we need the commutator subgroup of a wreath product.
Lemma 1. Let \mathcal{G} be a permutation group of degree m, and $\mathcal{H}, \mathcal{H}_{1}, \mathcal{H}_{2}$ be groups.

1. If \mathcal{G} acts transitively, then

$$
(\mathcal{H} \backslash \mathcal{G})^{\prime}=\left\{\left(h_{1}, \ldots, h_{m} ; \sigma\right) \mid h_{1} \ldots h_{m} \in \mathcal{H}^{\prime}, \sigma \in \mathcal{G}^{\prime}\right\}
$$

and

$$
(\mathcal{H} \backslash \mathcal{G}) /(\mathcal{H} \backslash \mathcal{G})^{\prime} \simeq \mathcal{H} / \mathcal{H}^{\prime} \times \mathcal{G} / \mathcal{G}^{\prime} .
$$

3. If \mathcal{G}^{\prime} acts doubly transitively, then

$$
(\mathcal{H} \imath \mathcal{G})^{\prime \prime}=\left\{\left(h_{1}, \ldots, h_{m} ; \sigma\right) \mid h_{1} \ldots h_{m} \in \mathcal{H}^{\prime \prime}, \sigma \in \mathcal{G}^{\prime \prime}\right\} .
$$

3. $\left(\mathcal{H}_{1} \backslash \mathcal{G}\right) \times_{\mathcal{G}}\left(\mathcal{H}_{2} \backslash \mathcal{G}\right) \simeq\left(\mathcal{H}_{1} \times \mathcal{H}_{2}\right) \backslash \mathcal{G}$.

Proof. 1. Let $\pi_{1}: \mathcal{H} \rightarrow \mathcal{H} / \mathcal{H}^{\prime}$ and $\pi_{2}: \mathcal{G} \rightarrow \mathcal{G} / \mathcal{G}^{\prime}$ be the canonical projections. Let $[x, y]=x y x^{-1} y^{-1}$ be the commutator of x, y. Set $\mathcal{K}=$
$\left\{\left(h_{1}, \ldots, h_{m} ; \sigma\right) \mid h_{1} \ldots h_{m} \in \mathcal{H}^{\prime}, \sigma \in \mathcal{G}^{\prime}\right\}$. Since $\mathcal{H} / \mathcal{H}^{\prime}$ is abelian,
$\mathcal{H} \backslash \mathcal{G} \rightarrow \mathcal{H} / \mathcal{H}^{\prime} \times \mathcal{G} / \mathcal{G}^{\prime}:\left(h_{1}, \ldots, h_{m} ; \sigma\right) \mapsto\left(\pi_{1}\left(h_{1} \ldots h_{m}\right), \pi_{2}(\sigma)\right)$
is a homomorphism with kernel \mathcal{K}. Hence $(\mathcal{H} \backslash \mathcal{G})^{\prime} \subset \mathcal{K}$. Define $f_{i, a}$: $\Omega \rightarrow \mathcal{H}, a \in \mathcal{H}$, by $f_{i, a}(i)=a, f_{i, a}(k)=1$ if $k \neq i$. Let $i \neq j$. Since \mathcal{G} acts transitively, there is a permutation $\sigma \in \mathcal{G}$ with $\sigma(i)=j$. Then $\left[\left(f_{i, a} ; \mathrm{id}\right),(1 ; \sigma)\right]=\left(f_{i, a} \cdot f_{j, a^{-1}} ; \mathrm{id}\right)$. Hence $\left\{\left(h_{1}, \ldots, h_{m} ; \mathrm{id}\right) \mid h_{1} \ldots h_{m}=\right.$ $1\} \subset(\mathcal{H} \backslash \mathcal{G})^{\prime}$. If $h_{m} \in \mathcal{H}^{\prime}$, then $\left(1, \ldots, 1, h_{m} ;\right.$ id $) \in(\mathcal{H} \imath \mathcal{G})^{\prime}$. We get the assertion from $(h ; \mathrm{id})(1 ; \pi)=(h ; \pi)$.
2. If \mathcal{G}^{\prime} acts doubly transitively on Ω, then we can choose $\sigma \in \mathcal{G}^{\prime}$ with $\sigma(i)=i, \sigma(j)=k$, where $i \neq j, k$. Then

$$
\left[\left(f_{i, a} \cdot f_{j, a^{-1}} ; \mathrm{id}\right),(1 ; \sigma)\right]=\left(f_{k, a} \cdot f_{j, a^{-1}}, \mathrm{id}\right) \in(\mathcal{H} \backslash \mathcal{G})^{\prime \prime}
$$

3. Define

$$
\varphi:\left(\mathcal{H}_{1} \backslash \mathcal{G}\right) \times_{\mathcal{G}}\left(\mathcal{H}_{2} \backslash \mathcal{G}\right) \rightarrow\left(\mathcal{H}_{1} \times \mathcal{H}_{2}\right) \backslash \mathcal{G}
$$

by $((h ; \sigma),(g ; \sigma)) \mapsto\left(\left(h_{1}, h_{2}\right) ; \sigma\right)$, where $\left(h_{1}, h_{2}\right): \Omega \rightarrow \mathcal{H}_{1} \times \mathcal{H}_{2}: j \mapsto$ $\left(h_{1}(j), h_{2}(j)\right)$. Then φ is an isomorphism.

In the following two lemmas we study inflation maps.
Lemma 2. Let \mathcal{G} be a permutation group of degree m, and let \mathcal{H} be a finite group. Let \mathcal{A} be a finite abelian group, considered as a trivial \mathcal{G}-module. Then the inflation map

$$
\inf : \mathrm{H}^{2}(\mathcal{G}, \mathcal{A}) \rightarrow \mathrm{H}^{2}(\mathcal{H} \imath \mathcal{G}, \mathcal{A})
$$

induced by the canonical projection $\varrho: \mathcal{H} \backslash \mathcal{G} \rightarrow \mathcal{G}$ is injective.
Proof. An element $\varepsilon \in \mathrm{H}^{2}(\mathcal{G}, \mathcal{A})$ corresponds to a central extension of \mathcal{G} with kernel \mathcal{A}. The image of ε under the inflation map corresponds to a pull-back, i.e. there is a commutative diagram

We know $\inf (\varepsilon)=0$ if and only if the upper sequence splits. By the universal property of the pull-back this is equivalent to the existence of a homomorphism $\varphi: \mathcal{H} \imath \mathcal{G} \rightarrow \mathcal{E}$ making the above diagram commutative. We know $\iota: \mathcal{G} \rightarrow \mathcal{H} \imath \mathcal{G}: \sigma \mapsto(0 ; \sigma)$ is a monomorphism. Now $\varphi((0 ; \sigma))=e$ gives $\sigma=\varrho((0 ; \sigma))=$ id. Hence $\mathcal{G} \simeq \varphi \circ \iota(\mathcal{G})$ is a subgroup of \mathcal{E}. Let $x \in \mathcal{A} \cap \varphi \circ \iota(\mathcal{G})$. Then $x=\varphi((0 ; \sigma))$ and $\pi(x)=\mathrm{id}=\pi \circ \varphi((0 ; \sigma))=\sigma$ gives $x=e$. Hence $\mathcal{E} \simeq \mathcal{A} \times \mathcal{G}$.

The next lemma reduces our approach to double covers of $\mathbb{Z}_{d} \curlywedge \mathcal{G}$, where $d=2^{f} \geq 1$.

Lemma 3. Let \mathcal{G} be a permutation group of degree m. Let $\pi: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ be an epimorphism of finite groups $\mathcal{H}_{1}, \mathcal{H}_{2}$. Let \mathcal{A} be an abelian group with order relatively prime to the order of $\operatorname{ker}(\pi)$. Then the inflation map

$$
\inf : \mathrm{H}^{2}\left(\mathcal{H}_{2} \backslash \mathcal{G}, \mathcal{A}\right) \rightarrow \mathrm{H}^{2}\left(\mathcal{H}_{1} \backslash \mathcal{G}, \mathcal{A}\right)
$$

induced by $\varrho: \mathcal{H}_{1} \prec \mathcal{G} \rightarrow \mathcal{H}_{2} \backslash \mathcal{G}:(h ; \sigma) \mapsto(\pi \circ h ; \sigma)$ is an isomorphism.
Proof. The sequence

$$
1 \rightarrow \operatorname{ker}(\pi)^{m} \rightarrow \mathcal{H}_{1} \prec \mathcal{G} \rightarrow \mathcal{H}_{2} \prec \mathcal{G} \rightarrow 1
$$

is exact. Since the order of \mathcal{A} is relatively prime to the order of $\operatorname{ker}(\pi)$, we get $\mathrm{H}^{1}\left(\operatorname{ker}(\pi)^{m}, \mathcal{A}\right)=\mathrm{H}^{2}\left(\operatorname{ker}(\pi)^{m}, \mathcal{A}\right)=0$ (see [1, II.10.2]). Hence

$$
0 \rightarrow \mathrm{H}^{2}\left(\mathcal{H}_{2} \backslash \mathcal{G}, \mathcal{A}\right) \xrightarrow{\text { inf }} \mathrm{H}^{2}\left(\mathcal{H}_{1} \backslash \mathcal{G}, \mathcal{A}\right) \xrightarrow{\text { res }} \mathrm{H}^{2}\left(\operatorname{ker}(\pi)^{m}, \mathcal{A}\right)=0
$$

is an exact sequence (see [14, VII, $\S 7$, Proposition 5]).
4. The restriction map res: $\mathrm{H}^{2}\left(\mathfrak{S}_{m d}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{H}^{2}\left(\mathbb{Z}_{d} \downarrow \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)$. The image of the restriction map determines the double covers which can be shown to be Galois groups by the use of Serre's formula.

We know

$$
\mathrm{H}^{2}(\mathcal{G}, \mathcal{A}) \simeq\left(\left(\mathcal{G} / \mathcal{G}^{\prime}\right) \otimes \mathcal{A}\right) \times(\mathrm{M}(\mathcal{G}) \otimes \mathcal{A})
$$

with an abelian group \mathcal{A} (see [7, 2.1.20]). In [7, Theorem 6.3.13] we found a list of the relevant Schur multipliers. Together with Lemma 1 we get

$$
\mathrm{H}^{2}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right) \simeq \begin{cases}\mathbb{Z}_{2} & \text { if } d \equiv 1 \bmod 2, \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } d \equiv 0 \bmod 2,\end{cases}
$$

and $m \geq 4$. We further know

$$
\begin{array}{r}
\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}=\left\langle s_{1}, \ldots, s_{m-2}, w_{1}, \ldots, w_{m}\right| s_{1}^{3}=s_{j}^{2}=\left(s_{j-1} s_{j}\right)^{3}=1 \\
1<j \leq m-2 ;\left(s_{i} s_{j}\right)^{2}=1,1 \leq i<j-1, j \leq m-2 ; w_{j}^{d}=1 \\
w_{i} w_{j}=w_{j} w_{i} ; s_{i} w_{j}=w_{j} s_{i}, j \neq 1,2, i+1, i+2 \\
s_{i} w_{i+1}=w_{i+2} s_{i}, i=2, \ldots, m-2
\end{array} \quad \begin{array}{r}
\left.s_{1} w_{3}=w_{1} s_{1} ; s_{i} w_{1}=w_{2} s_{i}, i=1, \ldots, m-2\right\rangle
\end{array}
$$

Let $1 \rightarrow\{1, \omega\} \rightarrow \mathcal{E} \rightarrow \mathbb{Z}_{d} \backslash \mathfrak{A}_{m} \rightarrow 1$ be an exact sequence. Then $\widetilde{g} \in \mathcal{E}$ denotes a preimage of $g \in \mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ in \mathcal{E}. We can choose a set of generators $s_{1}, \ldots, s_{m-2} ; w_{1}, \ldots, w_{m}$ of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ such that

$$
\begin{array}{r}
\mathcal{E}=\left\langle\omega, \widetilde{s}_{1}, \ldots, \widetilde{s}_{m-2}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{m}\right| \omega^{2}=1 ; \omega \widetilde{s}_{i}=\widetilde{s}_{i} \omega ; \omega \widetilde{w}_{j}=\widetilde{w}_{j} \omega ; \\
\widetilde{s}_{1}^{3}=1 ; \widetilde{s}_{j}^{2}=\lambda_{3} ;\left(\widetilde{s}_{j-1} \widetilde{s}_{j}\right)^{3}=1, j=2, \ldots, m-2 ;\left(\widetilde{s}_{i} \widetilde{s}_{j}\right)^{2}=\lambda_{3}, \\
1 \leq i<j-1, j \leq m-2 ; \widetilde{w}_{j}^{d}=\lambda_{2} ; \widetilde{w}_{i} \widetilde{w}_{j}=\lambda_{4} \widetilde{w}_{j} \widetilde{w}_{i}, i \neq j ; \\
\widetilde{s}_{i} \widetilde{w}_{j}=\widetilde{w}_{j} \widetilde{s}_{i}, j \neq 1,2, i+1, i+2 ; \widetilde{s}_{i} \widetilde{w}_{i+1}=\widetilde{w}_{i+2} \widetilde{s}_{i}, i \neq 1 ; \\
\left.\widetilde{s}_{1} \widetilde{w}_{3}=\widetilde{w}_{1} \widetilde{s}_{1} ; \widetilde{s}_{i} \widetilde{w}_{1}=\widetilde{w}_{2} \widetilde{s}_{i}\right\rangle,
\end{array}
$$

where $\lambda_{2}, \lambda_{3}, \lambda_{4} \in\{1, \omega\}$ (our notation agrees with the notation in [4]). If d is odd, we can choose $\lambda_{2}=\lambda_{4}=1$. Therefore the one-to-one correspondence between all central extensions of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ with kernel \mathbb{Z}_{2} and all elements of $\mathrm{H}^{2}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)$ is given by $\mathcal{E} \mapsto\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ if d is even; and by $\mathcal{E} \mapsto \lambda_{3}$ if d is odd. If d is odd, then $\lambda_{3}=\omega$ gives the unique non-trivial extension of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ with kernel \mathbb{Z}_{2}.

Let $1 \rightarrow\{1, \omega\} \rightarrow \widetilde{\mathfrak{S}}_{n} \xrightarrow{\widetilde{\Phi}} \mathfrak{S}_{n} \rightarrow 1, n=m d$, be an exact sequence. We know

$$
\begin{array}{r}
\widetilde{S}_{n}=\left\langle\omega, \widetilde{t}_{1}, \ldots, \widetilde{t}_{n-1}\right| \omega^{2}=1, \omega \widetilde{t}_{i}=\widetilde{t}_{i} \omega, \widetilde{t}_{i}^{2}=\varepsilon_{1},\left(\widetilde{t}_{i} \widetilde{t}_{i+1}\right)^{3}=1, \\
\left.\left(\widetilde{t}_{i} \widetilde{t}_{j}\right)^{2}=\varepsilon_{2} \text { if }|i-j| \geq 2\right\rangle .
\end{array}
$$

If $n \geq 4$, we get $\mathfrak{S}_{n}^{-}=(1, \omega), \mathfrak{S}_{n}^{+}=(\omega, \omega)$ and $\mathfrak{S}_{n}^{0}:=(\omega, 1)$. If $\widetilde{\mathfrak{S}}_{n}=\mathfrak{S}_{n}^{+}$, then $\widetilde{\Phi}^{-1}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)=:\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{+} .\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{-}$and $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{0}$ are defined similarly.

Proposition 3. Let

$$
\text { res : } \mathrm{H}^{2}\left(\mathfrak{S}_{m d}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{H}^{2}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)
$$

be the restriction map, $m \geq 4$. Then res can be identified with the map

$$
\left(\varepsilon_{1}, \varepsilon_{2}\right) \mapsto \begin{cases}\lambda_{3}=\varepsilon_{1} & \text { if } d \equiv 1 \bmod 2 \\ \left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right)=\left(\varepsilon_{1}^{d / 2} \varepsilon_{2}^{d(d-2) / 8}, 0, \varepsilon_{2}\right) & \text { if } d \equiv 0 \bmod 2\end{cases}
$$

If $d \equiv 1 \bmod 2$, then res is surjective, but not injective. If $d \equiv 2 \bmod 4$, then res is injective, but not surjective.

If $d \equiv 0 \bmod 8$, then $\operatorname{res}\left(\mathfrak{S}_{m d}^{+}\right)=\operatorname{res}\left(\mathfrak{S}_{m d}^{-}\right)=(0,0, \omega)$.
If $d \equiv 4 \bmod 8$, then $\operatorname{res}\left(\mathfrak{S}_{m d}^{+}\right)=\operatorname{res}\left(\mathfrak{S}_{m d}^{-}\right)=(\omega, 0, \omega)$.
If d is odd, then $\tilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ is the unique non-trivial double cover of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ (see Lemma 2). If $m>7$ and if $m=5$ and $d \equiv 1,5 \bmod 6$ we get $\mathrm{M}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)=\mathbb{Z}_{2}$. Hence $\widetilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ is the unique covering group of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$. If d is even, then $\tilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ corresponds to the tuple $(0, \omega, 0) \in \mathrm{H}^{2}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)$.
5. The main theorems. We are now able to formulate the main results of this paper.

Theorem 1. Let K be an algebraic number field. Then all double covers of $\mathbb{Z}_{d} \imath \mathfrak{A}_{m}$ and of $\mathbb{Z}_{d} \imath \mathfrak{S}_{m}$ are realizable as Galois groups over K.

Theorem 2. Let $m \geq 5, d \in \mathbb{N}$ be integers. Let K be an algebraic number field.

1. The non-trivial double cover $\widetilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ occurs as the Galois group of a regular extension of the rational function field $K(T)$. This is the unique non-trivial double cover of $\mathbb{Z}_{d}\left\ulcorner\mathfrak{A}_{m}\right.$ if d is odd.
2. Let $d=2^{f} \cdot d^{\prime}, 2 \nmid d^{\prime}$.
(a) If $d \equiv 2 \bmod 4$, then $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{0}$ occurs as the Galois group of a regular extension of $K(T)$.
(b) If $d \equiv 2 \bmod 4$ and m is even, then $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{+}$and $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{-}$ occur as the Galois groups of regular extensions of $K(T)$.
(c) If $d \equiv 0 \bmod 4$ and $\mu_{2^{f}} \subset K^{\star}$, then $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{+}=\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{-}$ occurs as the Galois group of a regular extension of $K(T)$. The double cover which corresponds to the tuple $\left(\omega^{d / 4}, \omega, \omega\right)$ is the Galois group of a regular extension of $K(T)$.
Theorem 3. Let d be odd, $m>7$. Then every central extension of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ is the Galois group of a regular extension of $\mathbb{Q}(T)$.
3. Some reduction lemmas. First we recall a fact from group theory.

Lemma 4. A central extension of an abelian group is nilpotent.
Proof. Let $1 \rightarrow \mathcal{A} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 1$ be a central extension with \mathcal{G} an abelian group. Then $\mathcal{E}^{\prime} \subset \mathcal{A} \subset Z(\mathcal{E})$. By a theorem of Gaschütz (see [5, III.Satz 3.12]) we know $\mathcal{E}^{\prime}=\mathcal{E}^{\prime} \cap Z(\mathcal{E}) \subset \Phi(\mathcal{E})$, the Frattini subgroup of \mathcal{E}. Hence \mathcal{E} is nilpotent by a result of Wielandt ([5, Satz 3.11]).

Proposition 4. Let K be an algebraic number field. Let \mathcal{G} be a permutation group of degree m and let $\mathcal{H} \backslash \mathcal{G}$ be a wreath product of groups. Suppose

$$
1 \rightarrow \mathcal{A} \rightarrow \widetilde{\mathcal{H} \mathcal{G}} \xrightarrow{\pi} \mathcal{H} \backslash \mathcal{G} \rightarrow 1
$$

is a central extension with

1. the preimage \mathcal{N} of \mathcal{H}^{m} in $\widetilde{\mathcal{H} \backslash \mathcal{G}}$ nilpotent and
2. the preimage $\widetilde{\mathcal{G}}$ of \mathcal{G} in $\widetilde{\mathcal{H} \mathfrak{G}}$ realizable as a Galois group over K.

Then $\widetilde{\mathcal{H} \mathcal{G}}$ occurs as a Galois group over K.
Proof. Consider the semidirect product $\mathcal{N} \rtimes \widetilde{\mathcal{G}}$ defined by conjugation of $\widetilde{\mathcal{G}}$ on \mathcal{N}. Then

$$
\mathcal{N} \rtimes \widetilde{\mathcal{G}} \rightarrow \widetilde{\mathcal{H} l \mathcal{G}}:(n, g) \mapsto n g
$$

defines an epimorphism. If $\widetilde{n} \in \mathcal{N}$ and $\widetilde{g} \in \widetilde{\mathcal{G}}$, then $\pi(\widetilde{n})=(n$, id $)$ and $\pi(\widetilde{g})=$ $(1, g)$. We get $\pi\left(\widetilde{g} \widetilde{n} \widetilde{g}^{-1}\right)=(1, g)(n, \mathrm{id})\left(1, g^{-1}\right)=(1, g)\left(n, g^{-1}\right)=\pi(\widetilde{g}) \pi(\widetilde{n})$. The conditions 1 and 2 are the assumptions of Ishanov's theorem [16, Claim 2.2.5]. Hence $\mathcal{N} \rtimes \widetilde{\mathcal{G}}$ and its epimorphic image $\widetilde{\mathcal{H} \backslash \mathcal{G}}$ occur as Galois groups over K.

Let $\mathcal{A}=\mathbb{Z}_{2}$ and $\mathcal{H}=\mathbb{Z}_{d}$. Then condition 1 is satisfied by Lemma 4 . This reduces our approach to double covers of \mathcal{G}. By results of Mestre and of Sonn we are done if $\mathcal{G}=\mathfrak{A}_{m}, \mathfrak{S}_{m}$. This gives Theorem 1 .

Now we prove a regularity lemma.

Lemma 5. Let $N / K(T)$ be a regular Galois extension with Galois group \mathcal{G}. Let M / N be an abelian extension such that $M / K(T)$ is a Galois extension with Galois group \mathcal{H}.

1. Then $M / K(T)$ is a regular extension if and only if $M^{\mathcal{H}^{\prime}} / K(T)$ (the maximal abelian subextension of $M / K(T)$) and $N / K(T)$ are regular extensions.
2. If \mathcal{H} is a non-trivial double cover of $\mathcal{G}=\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, m \geq 5$, then $M / K(T)$ is a regular extension.

Proof. 1. Let $M / K(T)$ be a regular extension. Then $N / K(T)$ and $M^{\mathcal{H}^{\prime}} / K(T)$ are regular extensions [9, Corollary 1, p. 57]. Conversely let K^{\prime} be the algebraic closure of K in M. Then $K^{\prime} \cap N=K$. Hence $K^{\prime}(T) / K(T)$ is an abelian extension contained in $M^{\mathcal{H}^{\prime}}$.
2. If $G(M / N)<G(M / K(T))^{\prime}$, then $\mathcal{H} / \mathcal{H}^{\prime} \simeq \mathcal{G} / \mathcal{G}^{\prime}$. This gives $M^{\mathcal{H}^{\prime}}=$ $N^{\mathcal{G}^{\prime}}$. Now let \mathcal{H} be a double cover of \mathcal{G} with $G(M / N) \cap G(M / K(T))^{\prime}=\{\mathrm{id}\}$. The number of these extensions is $\left|\mathrm{H}^{2}\left(\mathcal{G} / \mathcal{G}^{\prime}, \mathbb{Z}_{2}\right)\right|=\left|\mathrm{H}^{2}\left(\mathbb{Z}_{d}, \mathbb{Z}_{2}\right)\right|=\operatorname{gcd}(d, 2)$ (see [7, 2.1.17]). If \mathcal{H} is a non-trivial extension, then $d \equiv 0 \bmod 2$, and \mathcal{H} corresponds to the tuple $(\omega, 0,0)$ (see Section 4). But then $\mathcal{H} / \mathcal{H}^{\prime} \simeq \mathbb{Z}_{2 d}$, which completes the proof.

Proposition 5. Let K be a field. Let \mathcal{G} be a transitive permutation group of degree m and let \mathcal{H} be a finite group. Let

$$
E: \quad 1 \rightarrow \mathcal{A} \rightarrow \widetilde{\mathcal{G}} \rightarrow \mathcal{G} \rightarrow 1
$$

be a non-trivial central group extension with $|\mathcal{A}|$ a prime. Let N / K be a Galois extension with Galois group \mathcal{G}.

1. Let \tilde{N} / K and L / K be Galois extensions with $N=L^{\mathcal{U}}, \mathcal{U}=\left\{\left(t_{1}, \ldots\right.\right.$ $\ldots, t_{m} ;$ id) $\left.\mid t_{i} \in \mathcal{H}\right\} \triangleleft \mathcal{H} \imath \mathcal{G}$, such that $\widetilde{N} \supset N$ and with Galois groups $G(\widetilde{N} / K) \simeq \widetilde{\mathcal{G}}$ and $G(L / K) \simeq \mathcal{H} \imath \mathcal{G}$ respectively. Then $G(\widetilde{N} L / K) \simeq \widetilde{\mathcal{G}} \times_{\mathcal{G}}$ \mathcal{H}, \mathcal{G}.
2. Let K be a Hilbertian field of characteristic 0 and let \mathcal{H} be a group which is realizable as the Galois group of a regular extension of K. Suppose there is a Galois extension \widetilde{N} / K with Galois group $\widetilde{\mathcal{G}}$. Then there is a Galois extension M / K with $G(M / K) \simeq \widetilde{\mathcal{G}} \times_{\mathcal{G}}(\mathcal{H} / \mathcal{G})$.

Let $\mathcal{A} \subset \widetilde{\mathcal{G}}^{\prime}$ and let K be a rational function field. If \tilde{N} / K is a regular extension, then we can choose a regular extension M / K.

Proof. 1. We prove $\tilde{N} \cap L=N$. Suppose $\widetilde{N} \cap L \neq N$. Then $\tilde{N} \subset L$, since $|G(\tilde{N} / N)|$ is a prime. Since $G(L / K) \simeq \mathcal{H} \imath \mathcal{G}$ is a semidirect product of $G(L / N)=\mathcal{H}^{m}$ and \mathcal{G}, there is a subgroup $\mathcal{G}_{0} \simeq \mathcal{G}$ of $G(L / K)$ such that $\mathcal{G}_{0} \cap G(L / N)=\{\operatorname{id}\}$ and $G(L / K)=\mathcal{G}_{0} \cdot G(L / N)$. Set $N_{0}=L^{\mathcal{G}_{0}}$. Obviously

$$
\varphi: \mathcal{G}_{0} \rightarrow G(\tilde{N} / K): \sigma \mapsto \sigma_{\mid \widetilde{N}}
$$

is a monomorphism. Now $\sigma \in G(L / K)$ with $\sigma_{\mid \widetilde{N}} \in \varphi\left(\mathcal{G}_{0}\right) \cap G(\widetilde{N} / N)$ implies $\sigma_{\mid N_{0} N}=$ id. Since $N_{0} N=L$, the sequence E splits, contrary to our hypothesis.
2. Set $N=\widetilde{N}^{\mathcal{A}}$. There is a (regular) Galois extension L / K with $L \supset N$ and $G(L / K) \simeq \mathcal{H} / \mathcal{G}($ see [10, Satz 1, Zusatz 1, p. 228]).
$\mathcal{A} \subset \widetilde{\mathcal{G}}^{\prime}$ implies $\left(\widetilde{\mathcal{G}} \times_{\mathcal{G}}(\mathcal{H} \backslash \mathcal{G})\right) /\left(\widetilde{\mathcal{G}} \times_{\mathcal{G}}(\mathcal{H} \backslash \mathcal{G})\right)^{\prime} \simeq \mathcal{H} / \mathcal{H}^{\prime} \times \mathcal{G} / \mathcal{G}^{\prime}$. Hence the maximal abelian subextensions of L / K and of N / K coincide. Now apply Lemma 5.

Let \mathcal{H} be an abelian group and let \mathcal{G} be a permutation group with trivial center. Then $\varphi: \mathcal{H} \backslash \mathcal{G} \rightarrow \mathcal{G}:\left(t_{1}, \ldots, t_{m} ; \sigma\right) \mapsto \sigma$ is the unique epimorphism from $\mathcal{H} \backslash \mathcal{G}$ onto \mathcal{G}. Hence $G(L / K) \simeq \mathcal{H} \imath \mathcal{G}$ and $N \subset L$ with $G(N / K) \simeq \mathcal{G}$ gives $G(L / N) \simeq \mathcal{H}^{m}$.

Proposition 6. Let K be a rational function field of characteristic 0. Let \mathcal{G} be a transitive permutation group of degree m, and let d_{0}, d_{1} be relatively prime integers. Let

$$
E: \quad 1 \rightarrow \mathcal{A} \rightarrow \mathcal{E} \rightarrow \mathbb{Z}_{d_{1}} \prec \mathcal{G} \rightarrow 1
$$

be a central group extension with $\operatorname{gcd}\left(|\mathcal{A}|, d_{0}\right)=1$. Let \widetilde{N} / K be a (regular) Galois extension with Galois group \mathcal{E}. Then there is a (regular) Galois extension M / K with Galois group

$$
G(M / K) \simeq\left(\mathbb{Z}_{d_{0} d_{1}} \backslash \mathcal{G}\right) \times_{\mathbb{Z}_{d_{1}} \mathcal{G}} \mathcal{E}
$$

The sequence

$$
1 \rightarrow \mathcal{A} \rightarrow G(M / K) \rightarrow \mathbb{Z}_{d_{0} d_{1}} \backslash \mathcal{G} \rightarrow 1
$$

corresponds to the image of the sequence E under the inflation map induced by the canonical projection $\mathbb{Z}_{d_{0} d_{1}} \prec \mathcal{G} \rightarrow \mathbb{Z}_{d_{1}} \prec \mathcal{G}$.

Proof. Set $N_{1}=\tilde{N}^{\mathcal{A}}$ and $N=N_{1}^{\mathcal{U}}$, where $\mathcal{U}=\left\{\left(t_{1}, \ldots, t_{m} ;\right.\right.$ id $\left.)\right\} \triangleleft \mathbb{Z}_{d_{1}} \curlywedge \mathcal{G}$. From [10, Satz 1, Zusatz 1, p. 228 and Satz 1, p. 224] we know that there is a (regular) Galois extension N_{0} / K with $N_{0} \supset N$ and $G\left(N_{0} / K\right) \simeq \mathbb{Z}_{d_{0}}$ 亿 \mathcal{G}. Since d_{0} and d_{1} are relatively prime, we get

$$
\begin{aligned}
G\left(N_{0} N_{1} / K\right) & \simeq G\left(N_{0} / K\right) \times_{G(N / K)} G\left(N_{1} / K\right) \\
& \simeq\left(\mathbb{Z}_{d_{0}} \backslash \mathcal{G}\right) \times_{\mathcal{G}} \mathcal{G}\left(\mathbb{Z}_{d_{1}} \backslash \mathcal{G}\right) \simeq \mathbb{Z}_{d_{0} d_{1}} \backslash \mathcal{G}
\end{aligned}
$$

Set $M:=\widetilde{N} N_{0}=\widetilde{N}\left(N_{0} N_{1}\right)$. Then M / K is a Galois extension. Since $\operatorname{gcd}\left(d_{0},|\mathcal{A}|\right)=1$, we get $\tilde{N} \cap N_{0} N_{1}=N_{1}$. Hence

$$
G(M / K) \simeq G\left(N_{0} N_{1} / K\right) \times_{G\left(N_{1} / K\right)} G(\tilde{N} / K) \simeq\left(\mathbb{Z}_{d_{0} d_{1}} \backslash \mathcal{G}\right) \times_{\mathbb{Z}_{d_{1}} \mathcal{G}} \mathcal{E}
$$

If \tilde{N} / K and N_{0} / K are regular extensions, then so is M / K, because d_{0} and the order of \mathcal{A} are relatively prime.

Corollary 1. Let K be a rational function field of characteristic 0 . Let d be an odd number, $f \in \mathbb{N}, f \geq 1, \mathcal{G}=\mathfrak{A}_{m}, \mathfrak{S}_{m}$.

1. If $\left(\mathbb{Z}_{2^{f}} \backslash \mathcal{G}\right)^{+},\left(\mathbb{Z}_{2^{f}} \backslash \mathcal{G}\right)^{-}$and $\left(\mathbb{Z}_{2^{f}} \backslash \mathcal{G}\right)^{0}$ are Galois groups over K, then so are $\left(\mathbb{Z}_{2 f \cdot d} \backslash \mathcal{G}\right)^{+},\left(\mathbb{Z}_{2^{f \cdot d}} \backslash \mathcal{G}\right)^{-}$and $\left(\mathbb{Z}_{2^{f \cdot d}} \backslash \mathcal{G}\right)^{0}$.
2. If every double cover of $\mathbb{Z}_{2^{f}} \backslash \mathfrak{A}_{m}$ occurs as the Galois group of a (regular) extension of K, then every double cover of $\mathbb{Z}_{2^{f \cdot d}} \backslash \mathfrak{A}_{m}$ with d odd is realizable as the Galois group of a (regular) extension of K.

Proof. We know $H^{2}\left(\mathbb{Z}_{2 f} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. With the notation as in Section 4 we get

$$
\inf : \mathrm{H}^{2}\left(\mathbb{Z}_{2^{f}} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right) \rightarrow \mathrm{H}^{2}\left(\mathbb{Z}_{2^{f \cdot d}} \backslash \mathfrak{A}_{m}, \mathbb{Z}_{2}\right)
$$

is defined by $\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right) \mapsto\left(\lambda_{2}, \lambda_{3}, \lambda_{4}\right)$. Now apply Proposition 6 . If $\mathcal{G}=$ \mathfrak{S}_{m}, then see [4, Section 4].
7. Trinomials, trace forms and the Galois group of $f\left(X^{d}\right)$. Let \mathcal{G} be a transitive permutation group of degree m. Then the wreath product $\mathbb{Z}_{d} \backslash \mathcal{G}$ appears in a natural way as the Galois group of a polynomial. For further details we refer to [2].

Proposition 7. Let K be a field and let $f(X) \in K[X]$ be an irreducible and separable polynomial of degree $m \geq 4$ with Galois group \mathcal{G}.

1. Let $d \in \mathbb{N}$ be an integer with $\mu_{d} \subset K^{\star}$ and $\operatorname{char}(K)=0$ or $\operatorname{char}(K) \nmid d$ and $\mu_{d} \subset K^{\star}$.
(a) Then $\operatorname{Gal}\left(f\left(X^{d}\right)\right)$ is a subgroup of $\mathbb{Z}_{d} \prec \mathcal{G}$.
(b) $\operatorname{Gal}\left(f\left(X^{d}\right)\right) \simeq \mathbb{Z}_{d} \prec \mathcal{G}$ if and only if $\operatorname{Gal}\left(f\left(X^{p}\right)\right) \simeq \mathbb{Z}_{p} \prec \mathcal{G}$ for all primes $p \mid d$.
2. Let p be a prime with $p \neq \operatorname{char}(K)$ and $\mu_{p} \subset K^{\star}$. Suppose $\mathcal{G} \simeq \mathfrak{A}_{m}$ or $\mathcal{G} \simeq \mathfrak{S}_{m}$. If $\mathcal{G} \simeq \mathfrak{A}_{4}, \mathfrak{A}_{5}$, then let $p \neq 3$. Let N_{0} be a splitting field of $f(X)$. Then $\operatorname{Gal}\left(f\left(X^{p}\right)\right) \simeq \mathbb{Z}_{p} \prec \mathcal{G}$ if and only if
(a) p divides m and $(-1)^{m} f(0) \notin N_{0}^{\star p}$ or
(b) $p \nmid m,(-1)^{m} f(0) \notin N_{0}^{\star p}$ and $f\left(X^{p}\right)$ is irreducible over the field $K\left(\sqrt[p]{(-1)^{m} f(0)}\right)$.
If $p \nmid m$, then $(-1)^{m} f(0) \notin N_{0}^{\star p}$ if and only if $\operatorname{Gal}\left(f\left(X^{p}\right)\right) \simeq \mathbb{Z}_{p} \times \mathcal{G}$ or $\operatorname{Gal}\left(f\left(X^{p}\right)\right) \simeq \mathbb{Z}_{p} \backslash \mathcal{G}$. Then $\operatorname{Gal}\left(f\left(X^{p}\right)\right) \simeq \mathbb{Z}_{p} \times \mathcal{G}$ iff $f\left(X^{p}\right)$ factors over $K\left(\sqrt[p]{(-1)^{m} f(0)}\right)$ into a product of p prime polynomials of degree m.

This is proven in [2, Corollary 1, Theorem 2 and Corollary 7].
Lemma 6. Let K be an algebraic number field. Let $m, l, d \in \mathbb{N}, s, t \in \mathbb{Z}$ be integers with $1 \leq l<m, \operatorname{gcd}(l, m)=1, m s+t l=1, \operatorname{gcd}(t, d) \in\{1,2\}$ and $\mu_{d} \subset K^{\star}$. Choose $u, D \in K^{\star}$. Set

$$
H(X, U, V)=X^{m}+m U^{m-l} V^{s+t} X^{l}+(m-l) U^{m} V^{t} \in K(U, V)[X] .
$$

Let $H(X, Y) \in K(Y)[X]$ be the polynomial obtained by making in $H(X, u, V)$ the substitution

$$
V= \begin{cases}l^{l} m D Y^{2}-l^{-l} & \text { if } m \text { is odd }, \\ \left((m-l) D Y^{2}+l^{l}\right)^{-1} & \text { if } m \text { is even } .\end{cases}
$$

Suppose $-(m-l) u,(-1)^{(m+1) / 2}(m-l) D u \notin K^{\star 2}$ if $m \not \equiv d \equiv t \equiv 0 \bmod 2$. The Galois group of $H\left(X^{d}, Y\right)$ over $K(Y)$ is isomorphic to $\mathbb{Z}_{d} \backslash \mathfrak{S}_{m}$ iff $(-1)^{m(m-1) / 2} D \notin K^{\star 2}$, and it is isomorphic to $\mathbb{Z}_{d} \mathfrak{A}_{m}$ iff $(-1)^{m(m-1) / 2} D \in$ $K^{\star 2}$. If t is odd, then the splitting field N of $H\left(X^{d}, Y\right)$ is a regular extension of $K\left(\sqrt{(-1)^{m(m-1) / 2} D}\right)(Y)$.

Proof. The polynomial $X^{m}+m V^{s+t} X^{l}+(m-l) V^{t} \in K(V)[X]$ is absolutely irreducible and has Galois group \mathfrak{S}_{m} over $K(V)$ (see [4, Proposition 6] and [19]). Set $L=K\left(\sqrt{(-1)^{m(m-1) / 2} D}\right)$. Let N and N_{d} be the splitting fields of $H(X, Y)$ and of $H\left(X^{d}, Y\right)$ over $K(Y)$ respectively. Then $N / L(Y)$ is a regular extension. From Lemma 1 we get $N_{d}^{\left(\mathbb{Z}_{d} \mathfrak{A}_{m}\right)^{\prime}}=$ $L\left(\sqrt[d]{(-1)^{m}(m-l) u^{m} V^{t}}, Y\right)$, which is regular over $L(Y)$ if $\operatorname{gcd}(t, d)=1$. Now apply Lemma 5.

Proposition 8. Let K be a field of characteristic 0 and consider the irreducible and separable polynomial $f(X):=X^{n}+a X^{k}+b \in K[X]$ with $a \neq 0$. Set $L:=K[X] /(f), d:=\operatorname{gcd}(n, k), m d:=n, l d:=k$. Let d be even. Then the quadratic space $\langle L\rangle$ factorizes as follows.

1. $\langle L\rangle \simeq_{K}\langle n, n k(n-k),-k(n-k) x,-b x\rangle \perp \frac{n-4}{2}\langle 1,-1\rangle$ if m is odd;
2. $\langle L\rangle \simeq_{K}\langle n,-n \cdot x,-k a b, k a x\rangle \perp \frac{n-4}{2}\langle 1,-1\rangle$ if m is even,
where

$$
\begin{aligned}
x & =n^{m} b^{m-1}+(-1)^{m-1}(n-k)^{m-l} k^{l} a^{m} b^{l-1} \\
& =(-1)^{m(m-1) / 2} d^{m} \cdot \operatorname{dis}\left(X^{m}+a X^{l}+b\right) .
\end{aligned}
$$

This is proven in [3, Theorem 1]. There we also find a diagonalization in the case of d odd, which we do not need in this context.
9. Proof of Theorem 2. 1. Mestre [11, Théorème 1] gave a polynomial $F_{T}(X) \in \mathbb{Q}(T)[X]$ with Galois group $\mathfrak{A}_{m}, m \geq 5$, such that the splitting field of $F_{T}(X)$ is a regular extension of $\mathbb{Q}(T)$, contained in a regular extension with Galois group $\widetilde{\mathfrak{A}}_{m}$ and such that

$$
\left\langle\mathbb{Q}(T)[X] /\left(F_{T}(X)\right)\right\rangle \simeq_{\mathbb{Q}(T)} m \cdot\langle 1\rangle .
$$

Now apply Proposition 5. Thus $\tilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ occurs as the Galois group of a regular extension of $K(T)$. If d is odd, then this is the unique non-trivial double cover of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ (see Lemma 3).
2. By Corollary 1 we can assume $d=2^{f} \geq 2$.
(b) $m \equiv 2 \bmod 4, d=2$. Choose $l \in \mathbb{N}$ with $1 \leq l<m, \operatorname{gcd}(l, m)=1$.

Step 1. Let $a, b, c, d \in K^{\star}$ be elements with

$$
a^{2}+c b^{2}=(m-l) l^{l}-\frac{c}{d}
$$

and $-d,-c \notin K^{\star 2}$. Set

$$
F(Y)=\left(Y^{2}+c\right)^{2}+d\left(\left(Y^{2}-c\right) b+2 a Y\right)^{2}
$$

Then $F(Y) \notin \overline{\mathbb{Q}}[Y]^{\star 2}$.
Proof. Assume $x F(Y)=(G(Y))^{2}$ for some $x \in K^{\star}$ and $G(Y) \in K[Y]$. Let $\alpha \in \bar{K}$ be a root of $F(Y) . F(0)=0$ contradicts $-d \notin K^{\star 2}$, and $\alpha^{2}+c=0$ gives $c b-a \alpha=0$, hence $\alpha \in K$, which contradicts $-c \notin K^{\star 2}$. The formal derivative of $F(Y)$ is

$$
F(Y)^{\prime}=4\left(Y^{2}+c\right) Y+4 d\left(\left(Y^{2}-c\right) b+2 a Y\right)(b Y+a)
$$

From $F(\alpha)=F(\alpha)^{\prime}=0$ we get

$$
\left(\alpha^{2}-c\right) b+2 a \alpha=-\frac{\alpha\left(\alpha^{2}+c\right)}{d(b \alpha+a)}
$$

and

$$
0=F(\alpha)=\left(\alpha^{2}+c\right)^{2}+\frac{d \alpha^{2}\left(\alpha^{2}+c\right)^{2}}{d^{2}(b \alpha+a)^{2}}
$$

which gives $d(b \alpha+a)^{2}+\alpha^{2}=0$. Since $-d \notin K^{\star 2}$ and $\alpha \neq 0$, the polynomial

$$
G(Y)=Y^{2}+d(b Y+a)^{2} \in K[Y]
$$

is irreducible and has root α, hence divides $F(Y)$. We get

$$
\left(1+d b^{2}\right) F(Y)=G(Y)^{2} .
$$

Hence $\left(1+d b^{2}\right) F(Y)^{\prime}=\left(G(Y)^{2}\right)^{\prime}=4\left(Y^{2}+d(b Y+a)^{2}\right)(Y+b d(b Y+a))$, which implies $\left(1+d b^{2}\right) F^{\prime}(0)=-4 a b c d\left(1+d b^{2}\right)=4 a^{3} b d^{2}$. Thus

$$
\frac{c}{d}+c b^{2}=-a^{2}=(m-l) l^{l}-a^{2},
$$

a contradiction.
Step 2. We consider $\left(\mathbb{Z}_{2} \backslash \mathcal{G}\right)^{+}$and $\left(\mathbb{Z}_{2} \backslash \mathcal{G}\right)^{-}$. Choose $s, t \in \mathbb{Z}$ with $m s+t l=1, s \equiv 1 \bmod 2$. Let $\varepsilon \in\{1,-1\}$. There is a prime $q \equiv 1 \bmod 4$ such that $q \nmid l m$ and

1. $q \not \equiv-m l \bmod \mathbb{Q}_{p}^{\star 2}$ if $p \mid l$;
2. $q \not \equiv-m(m-l) \bmod \mathbb{Q}_{p}^{\star 2}$ if $p \mid m$ and $p \neq 2$.

By [12, 71:19] there is an element $P \in \mathbb{Z}$ with $P \neq-1,0,1$ and

1. $(P,-m l q)_{\mathbb{Q}} \otimes(-1, \varepsilon l q)_{\mathbb{Q}}=0$,
2. $P,-l m q P \notin \mathbb{Q}^{\star 2}$.

Using the Hasse-Minkowski Principle we see there are elements a, b, c $\in \mathbb{Q}$ with

$$
a^{2}+l m q P b^{2}=(m-l) l^{l}-P c^{2} .
$$

We can choose $a, b, c \neq 0$. Set $V=\left(l^{l}-(m-l) T^{2}\right)^{-1}$ and

$$
T=(m-l)^{-1} \frac{\left(\left(Y^{2}-l m q P\right) a-2 l m q P b Y\right)^{2}}{\left(Y^{2}+l m q P\right)^{2}} .
$$

Then $-l m q,-l m q P \notin \mathbb{Q}^{\star 2}$ implies

$$
\begin{aligned}
(m-l) V^{-1} & =(m-l) l^{l}-(m-l)^{2} T^{2} \\
& =P c^{2}+l m q P \frac{\left(\left(Y^{2}-l m q P\right) b+2 a Y\right)^{2}}{\left(Y^{2}+l m q P\right)^{2}} \notin \overline{\mathbb{Q}}[Y]^{\star 2} .
\end{aligned}
$$

Now set $F\left(X^{2}, Y\right)=H\left(X^{2},-\varepsilon q, V\right)$ and $L=K(Y)[X] /\left(F\left(X^{2}, Y\right)\right)$. Proposition 8 gives

$$
w_{2}\langle L\rangle=(-1, \varepsilon l q)_{K(Y)} \otimes((m-l) V, 2 l m q \varepsilon)_{K(Y)}=\left(\operatorname{det}_{K(Y)}\langle L\rangle,-2 \varepsilon\right)_{K(Y)} .
$$

Hence $e^{\star}\left(s_{2 m}^{ \pm}\right)=0$.
(b), (c) $m \equiv 0 \bmod 2, m d \equiv 0 \bmod 8$. Let l be an integer with $1 \leq l<m$ and $\operatorname{gcd}(l, m)=1$. Choose $s, t \in \mathbb{Z}$ with $m s+t l=1, s \equiv 0 \bmod 2$. Set

$$
V=\left(l^{l}+(-1)^{m / 2}(m-l) Y^{2}\right)^{-1} \quad \text { and } \quad u^{ \pm}=\mp 2 m(m-l) l d .
$$

Then the splitting field of $F\left(X^{d}, Y\right)=H\left(X^{d}, u^{ \pm}, V\right)$ over $K(Y)$ is a regular extension of $K(Y)$ with Galois group $\mathbb{Z}_{d} \mathfrak{A}_{m}$. Set $L=K(Y)[X] /\left(F\left(X^{d}, Y\right)\right)$. Proposition 8 gives

$$
w_{2}\langle L\rangle=((m-l) V, \mp 2)_{K(Y)}=\left(\operatorname{dis}\left(F\left(X^{d}, Y\right)\right), \mp 2\right)_{K(Y)} .
$$

(c) $m \equiv 1 \bmod 2, d=2^{f} \geq 4$. Let $l \in \mathbb{N}$ be an element with $l \in \mathbb{Q}^{\star 2}$ and $1 \leq l<m, \operatorname{gcd}(l, m)=1$. Choose $s, t \in \mathbb{Z}$ with $m s+t l=1$ and t even. Set $V=(-1)^{(m-1) / 2} l^{l} m Y^{2}-l^{-l}$. The splitting field of

$$
G\left(X^{d}, U, Y\right)=H\left(X^{d},(m-l)\left(U^{2}-2\right), V\right)
$$

over $K(U, Y)$ is a regular extension with Galois group $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$. By Hilbert's Irreducibility Theorem there are elements $u, y \in K^{\star}$ such that $G\left(X^{d}, u, y\right)$ has Galois group $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ over K. Since

$$
\operatorname{Gal}\left(G\left(X^{d}, u, y\right)\right)=\mathbb{Z}_{d} \imath \mathfrak{A}_{m}<\operatorname{Gal}\left(G\left(X^{d}, u y^{-1} Y, Y\right)\right)<\mathbb{Z}_{d} \imath \mathfrak{A}_{m},
$$

the polynomial $G\left(X^{d}, u y^{-1} Y, Y\right)$ has Galois group $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$ over $K(Y)$. The splitting field of $G\left(\left(\left(u y^{-1} Y\right)^{2}-2\right) X, u y^{-1} Y, Y\right)$ over $K(Y)$ is a regular extension of $K(Y)$. Since t is even, $G\left(0, u y^{-1} Y, Y\right) \notin \bar{K}(Y)^{\star 2}$. Hence the splitting field of $G\left(X^{d}, u y^{-1} Y, Y\right)$ is a regular extension of $K(Y)$. Set $L=K(Y)[X] /\left(G\left(X^{d}, u y^{-1} Y, Y\right)\right)$. Proposition 8 gives

$$
w_{2}\langle L\rangle=\left(\left(u y^{-1} Y\right)^{2}-2,2^{f}\right)_{K(Y)}=\left(\operatorname{dis}\left(G\left(X^{d}, u y^{-1} Y, Y\right)\right), 2^{f}\right)_{K(Y)}=0,
$$

since $-1 \in K^{\star 2}$. Hence $e^{\star}\left(s_{m d}^{ \pm}\right)=0$.
Now consider the double cover $\left(\omega^{d / 4}, \omega, \omega\right)=(0, \omega, 0)+\left(\omega^{d / 4}, 0, \omega\right)=$ $(0, \omega, 0)+\operatorname{res}\left(\mathfrak{S}_{m d}^{-}\right)$. Set

$$
L^{\prime}=K(Y)[X] /(F(X, Y)), \quad L:=K(Y)[X] /\left(F\left(X^{d}, Y\right)\right)
$$

if m is even and $L^{\prime}=K(Y)[X] /(G(X, Y)), L:=K(Y)[X] /\left(G\left(X^{d}, Y\right)\right)$ if m is odd. Let N, N^{\prime} be normal closures of $L / K(Y), L^{\prime} / K(Y)$ resp. By the above $N / K(Y)$ and $N^{\prime} / K(Y)$ are regular extensions. We further know $G\left(N^{\prime} / K(Y)\right) \simeq \mathfrak{A}_{m}$ and $G(N / K(Y)) \simeq \mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$. Since $-1 \in K^{\star 2}$, Proposition 8 gives $w_{2}\left\langle L^{\prime}\right\rangle=0$. Hence $N^{\prime} / K(Y)$ is contained in a regular Galois extension $\tilde{N} / K(Y)$ with Galois group $\tilde{\mathfrak{A}}_{m}$. By Proposition $5, \widetilde{N} N / K(Y)$ is a solution of the embedding problem defined by $N / K(Y)$ and $(0, \omega, 0)$. We get $\inf ((0, \omega, 0))=0$. From $w_{2}\langle L\rangle=0$ we conclude $\inf \left(\left(\omega^{d / 4}, 0, \omega\right)\right)=0$. Hence $\left(\omega^{d / 4}, \omega, \omega\right)$ is in the kernel of the inflation map induced by $F\left(X^{d}, Y\right)$ resp. $G\left(X^{d}, Y\right)$.
(a) Consider $\left(\mathbb{Z}_{2} \backslash \mathfrak{A}_{m}\right)^{0}$. If $m \equiv 0 \bmod 2$, choose $a, b, c \in \mathbb{Q}^{\star}$ with

$$
a^{2}+b^{2}=(m-l) l^{l}-c^{2}
$$

and set
$V=\left(l^{l}+(-1)^{m / 2}(m-l) T^{2}\right)^{-1} \quad$ and $\quad T=(m-l)^{-1} \frac{\left(\left(Y^{2}-1\right) a-2 b Y\right)^{2}}{\left(Y^{2}+1\right)^{2}}$.
Then

$$
(m-l) V^{-1}=c^{2}+\frac{\left(\left(Y^{2}-1\right) b+2 a Y\right)^{2}}{\left(Y^{2}+1\right)^{2}} \notin \overline{\mathbb{Q}}[Y]^{\star 2}
$$

since $-1 \notin \mathbb{Q}^{\star 2}$. Thus $((m-l) V,-1)_{K(Y)}=0$. Now consider $F\left(X^{2}, Y\right)=$ $H\left(X^{2}, 1, V\right)$.

If $m \equiv 1 \bmod 2$, then use the polynomial $H\left(X^{2},-(m-l)\left(U^{2}+1\right), V\right), t$ even, $V=(-1)^{(m-1) / 2} l^{l} m Y^{2}-l^{-l}$ and proceed as in (c).
10. Central extensions of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, d$ odd. The unique non-trivial double cover of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$, where d is odd and $m>7$, is a covering group of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$. Following the arguments of Kotlar, Schacher and Sonn [8], we can reduce the question whether all central extensions of $\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}, d$ odd and $m>7$, are Galois groups over an algebraic number field to certain pull-backs. This method gives an affirmative answer to the problem.

The central extension $1 \rightarrow \mathcal{A} \rightarrow \mathcal{E} \rightarrow \mathcal{G} \rightarrow 1$ is called a stem extension of \mathcal{G} if $\mathcal{A} \subset \mathcal{E}^{\prime}$. If in addition $\mathcal{A} \simeq \mathrm{M}(\mathcal{G})$, then we call it a stem cover of \mathcal{G}. Theorem 6 of [8] generalizes as follows.

Proposition 9. Let \mathcal{G} be a group satisfying

1. $\mathcal{G}^{\prime}=\mathcal{G}^{\prime \prime}$.
2. $\mathcal{G} / \mathcal{G}^{\prime}$ is cyclic of order d and there is an element $\sigma \in \mathcal{G}$ of order d which generates $\mathcal{G} / \mathcal{G}^{\prime}$.

Let K be a (rational function) field with the following properties.

1. If the finite group \mathcal{H} is the Galois group of a (regular) extension of K, then so is $\mathcal{H} \times \mathcal{A}$ for every finite abelian group \mathcal{A}.
2. Every factor group of the Galois group of a (regular) extension of K is the Galois group of a (regular) extension of K.

If for every stem cover $\widetilde{\mathcal{G}}$ of \mathcal{G} and every d^{\prime} with $d \mid d^{\prime}$ and such that $p \mid d^{\prime}$ iff $p \mid d$ the pull-back

$$
\widetilde{\mathcal{G}} \times_{\mathcal{G} / \mathcal{G}^{\prime}} \mathbb{Z}_{d^{\prime}}
$$

is the Galois group of a (regular) extension of K, then every central extension of \mathcal{G} is the Galois group of a (regular) extension of K.

Here $\widetilde{\mathcal{G}} \times_{\mathcal{G} / \mathcal{G}^{\prime}} \mathbb{Z}_{d^{\prime}}$ stands for the pull-back of $\widetilde{\mathcal{G}}$ and $\mathbb{Z}_{d^{\prime}}$ along the homomorphisms $\widetilde{\mathcal{G}} \rightarrow \mathcal{G} \rightarrow \mathcal{G} / \mathcal{G}^{\prime}$ and $\mathbb{Z}_{d^{\prime}} \rightarrow \mathbb{Z}_{d} \simeq \mathcal{G} / \mathcal{G}^{\prime}$. We just have to imitate the proof of Theorem 6 in [8].

Proof of Theorem 3. $\sigma=(0, \ldots, 0,1 ;$ id $) \in \mathbb{Z}_{d} 1 \mathfrak{A}_{m}$ has order d and generates $\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right) /\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)^{\prime}$. Hence we can apply Proposition 9 (see [10, Zusatz 1, p. 226]). Let $d^{\prime} \in \mathbb{N}$ be any odd integer with $d \mid d^{\prime}$. By Lemma 3 and Section 4 the pull-back $\widetilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)$ is the unique stem cover of $\mathbb{Z}_{d} \succ \mathfrak{A}_{m}$. We already know that there is a regular Galois extension L / K with Galois group \mathfrak{A}_{m}, contained in regular Galois extensions $\tilde{N} / K, M / K$ with $G(\tilde{N} / K) \simeq \widetilde{\mathfrak{A}}_{m}$ and $G(M / K) \simeq \mathbb{Z}_{d^{\prime}} \backslash \mathfrak{A}_{m}$. We get $\tilde{N} \cap M=L$ and $G(\tilde{N} M / K) \simeq \tilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d^{\prime}}\left\{\mathfrak{A}_{m}\right)\right.$. Set $M_{a b}=M^{\left(\mathbb{Z}_{d^{\prime}} \mathfrak{Z}_{m}\right)^{\prime}}$ and $M_{0}=M^{\mathcal{U}}$, $\mathcal{U}=\left\{\left(t_{1}, \ldots, t_{m} ;\right.\right.$ id $\left.) \mid t_{i} \in \operatorname{ker}\left(\mathbb{Z}_{d^{\prime}} \rightarrow \mathbb{Z}_{d}\right)\right\}$. Then $G\left(M_{0} / K\right) \simeq \mathbb{Z}_{d} \backslash \mathfrak{A}_{m}$. We further get

$$
M_{0} \cap M_{a b}=M^{U \cdot\left(\mathbb{Z}_{d^{\prime}} \mathscr{A}_{m}\right)^{\prime}}=M_{0}^{\left(\mathbb{Z}_{d} \mathscr{A}_{m}\right)^{\prime}} .
$$

The Galois extension $\tilde{N} M_{a b} / K$ has Galois group $\left(\widetilde{\mathfrak{A}}_{m} \times_{\mathfrak{A}_{m}}\left(\mathbb{Z}_{d} \backslash \mathfrak{A}_{m}\right)\right) \times_{\mathbb{Z}_{d}}$ $\mathbb{Z}_{d^{\prime}}$.

References

[1] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982.
[2] M. Epkenhans, On the Galois group of $f\left(X^{d}\right)$, Comm. Algebra, to appear.
[3] -, Trace forms of trinomials, J. Algebra 155 (1993), 211-220.
[4] M. Epkenhans, On double covers of the generalized symmetric group $\mathbb{Z}_{d} \backslash \mathfrak{S}_{m}$ as Galois groups over algebraic number fields K with $\mu_{d} \subset K$, J. Algebra 163 (1994), 404-423.
[5] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967.
[6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131.
[7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987.
[8] D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198.
[9] S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972.
[10] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987.
[11] J. F. Mestre, Extensions régulières de $\mathbb{Q}(T)$ de groupe de Galois \tilde{A}_{n}, J. Algebra 131 (1990), 483-495.
[12] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
[13] M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250.
[14] J. P. Serre, Corps Locaux, Hermann, Paris, 1968.
[15] -, L'invariant de Witt de la forme $\operatorname{Tr}\left(x^{2}\right)$, Comment. Math. Helv. 59 (1984), 651-676.
[16] -, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992.
[17] J. Sonn, Central extensions of S_{n} as Galois groups via trinomials, J. Algebra 125 (1989), 320-330.
[18] -, Central extensions of S_{n} as Galois groups of regular extensions of $\mathbb{Q}(T)$, ibid. 140 (1991), 355-359.
[19] N. Vila, On central extensions of A_{n} as Galois group over \mathbb{Q}, Arch. Math. (Basel) 44 (1985), 424-437.
[20] -, On stem extensions of S_{n} as Galois group over number fields, J. Algebra 116 (1988), 251-260.
[21] H. Völklein, Central extensions as Galois groups, ibid. 146 (1992), 144-152.
Fb Mathematik
Universität-Gesamthochschule Paderborn
D-33095 Paderborn, Germany
E-mail: martine@uni-paderborn.de

[^0]: 1991 Mathematics Subject Classification: Primary 12F12.

