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The class number one problem for the
non-abelian normal CM-fields of degree 16

by

Stéphane Louboutin (Caen)

1. Introduction. We determine in Theorems 1–3 all the non-abelian
normal CM-fields N of degree 16 with class number one which are composita
of two normal octic CM-fields N1 and N2 with the same maximal totally real
subfield K: there are exactly seven such composita. According to [LouOka 2],
this enables us to complete the determination of all the non-abelian normal
CM-fields of degree 16 with class number one: there are twenty five such CM-
fields (seventeen of them being dihedral). Indeed, according to [LouOka 2]
the determination of all the non-abelian normal CM-fields of degree 16 with
relative class number one is reduced to the determination of all the non-
abelian normal CM-fields N of degree 16 with relative class number one
which are composita of two normal octic CM-fields N1 and N2 with the
same maximal totally real subfield. Note that each extension Ni/Q is either
quaternionic, dihedral or abelian. Moreover, we proved:

Theorem 1. Let N = N1N2 be a non-abelian normal CM-field of degree
16 which is a compositum of two normal octic CM-fields N1 and N2 with
the same maximal totally real subfield , and assume that one of the Ni’s is a
quaternion CM-field , say N2. Then the relative class number of N = N1N2

is equal to one if and only if

N1 = Q(
√
−1,

√
−2,

√
−3) and N2 = Q(

√
2,
√

3,

√
−(2 +

√
2)(3 +

√
3)).

Moreover , this number field N = N1N2 has class number one.

Therefore, we may now assume that none of the Ni’s is a quaternion
octic CM-field, and there are two cases left to cope with: both the Ni’s
are dihedral octic CM-fields (see Section 2), or one of the Ni’s is a dihedral
octic CM-field and the other is an abelian imaginary octic number field (see
Section 3). We will prove:
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Theorem 2. Let N = N1N2 be a non-abelian normal CM-field of degree
16 which is a compositum of two dihedral octic CM-fields N1 and N2 with
the same maximal totally real subfield. Then the relative class number h−N

of N is equal to one if and only if N1 = Q(
√

2,
√

17,
√
−(5 +

√
17)/2) (a

dihedral octic CM-field , cyclic over Q(
√

34)) and either

N+ = Q(
√

2,

√
17 + 4

√
17) and N2 = Q(

√
2,
√

17,

√
−(17 + 3

√
17)/2)

(N+ is abelian, N2 is a dihedral octic CM-field , cyclic over Q(
√

2), hN2
= 2

and dN2
= 212 · 176), or

N+ = Q(
√

2,
√

5,
√

17) and N2 = Q(
√

2,
√

17,

√
−5(5 +

√
17)/2)

(N+ is abelian, N2 is a dihedral octic CM-field , cyclic over Q(
√

34), hN2
= 2

and dN2
= 212 · 54 · 174). Moreover , both these number fields N have class

number one.

Theorem 3. Let N = N1N2 be a non-abelian normal CM-field of degree
16 which is a compositum of an abelian octic CM-field N1 and of a dihedral
octic CM-field N2 with the same maximal totally real subfield. Then the
class number hN of N is equal to one if and only if either

N1 = Q(
√
−1,

√
−2,

√
−3) and N2 = Q(

√
2,
√

3,

√
−(3 +

√
3))

(note that N2 is cyclic over Q(
√

2), hN2
= 2 and dN2

= 222 · 36), or

N1 = Q(
√
−1,

√
−3,

√
−11) and N2 = Q(

√
3,
√

11,

√
−(15 + 8

√
3))

(note that N2 is cyclic over Q(
√

11), hN2
= 2 and dN2

= 28 · 36 · 114), or

N1 = Q(
√
−3,

√
2,
√

17) and N2 = Q(
√

2,
√

17,

√
−(5 +

√
17)/2)

(note that N2 is cyclic over Q(
√

34), hN2
= 1 and dN2

= 212 · 174), or

N1 = Q(
√

17,

√
−(13 + 2

√
13)) and N2 = Q(

√
13,

√
17,

√
−(9 +

√
13)/2)

(note that N2 is cyclic over Q(
√

221), hN2
= 1 and dN2

= 134 · 174).

Note that in [LouOka 1] we proved that there are exactly seventeen
non-abelian normal CM-fields of degree 8 with class number one, that in
[LOO] we proved that there are exactly nine non-abelian normal CM-fields
of degree 12 with class number one, and that one can easily see that a
non-abelian normal CM-field of degree ≤ 16 must have degree 8, 12 or 16.
Therefore, this paper completes the determination of all the non-abelian
normal CM-fields of degree ≤ 16 with class number one: there are exactly
thirty nine such CM-fields.
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Note also that due to A. Odlyzko’s [Odl] and J. Hoffstein’s [Hof] results,
we know that there are only finitely many normal CM-fields with class num-
ber one, and their degrees satisfy 2n ≤ 436. Moreover, K. Yamamura [Yam]
determined all the abelian CM-fields with class number one: there are ex-
actly 172 such CM-fields. Finally, according to [LOO] a non-abelian normal
CM-field of degree 2n < 32 must have degree 8, 12, 16, 20, 24 or 28, and
if it has degree 20 or 28 then it must be a dihedral CM-field. However,
according to [Lef] we know that there is only one dihedral CM-field of de-
gree 4p > 12 with class number one and it has degree 20. Therefore, up
to now, we have determined all the non-abelian normal CM-fields of degree
2n < 32 and 2n 6= 24 with class number one. Moreover (see [LLO]), we have
lately started working on the determination of all the non-abelian normal
CM-fields of degree 2n = 24 with class number one. Note that there are
nine non-abelian groups of order 16, twelve non-abelian groups of order 24
and forty four non-abelian groups of order 32. Hence, it seems reasonable
to be able to settle soon the class number one problem for the non-abelian
normal CM-fields of degree 24. However, settling the same problem for those
of degree 32 seems much more difficult, and it is quite clear that prior to
solving the class number one problem for all the normal CM-fields, we need
a much better upper bound on their degrees than that given by J. Hoffstein.

1.1. Notation. For any number field E we let dE, ζE, hE, WE and wE

denote the absolute value of its discriminant, its Dedekind zeta function, its
class number, its group of roots of unity and the order of this finite group,
respectively. If E = Q(

√
α) for some algebraic number α, we let PE(X)

denote the minimal polynomial of α over Q. Moreover, if E is a CM-field,
we let h−E , QE ∈ {1, 2} and E+ denote its relative class number, its Hasse
unit index and its maximal totally real subfield, respectively. Therefore,
E/E+ is a quadratic extension and h−E = hE/hE+ .

Lemma 4. Let E be a CM-field.

1 (see [LouOka 1, proof of Proposition 2]). If t prime ideals of E+ ramify
in the quadratic extension E/E+ then 2t−1 divides h−E.

2 (see [Wa, Remark p. 185 and Exercise 10.7] and [Lou 6, Proposition 6]).
If QE = 2 and h−E is odd then hE is odd and E/E+ is unramified at all the
finite places.

3 (see [CH, Lemma (13.5) p. 70]). If a prime ideal of E+ lying above an
odd rational prime is ramified in E/E+ then QE = 1.

4 (see [Lou 6, Proposition 13]). If E = E1E2 is a compositum of two
CM-fields E1 and E2 with the same maximal totally real subfield E+

1 = E+
2 ,

then

(1) h−E =
QE

QE1
QE2

· wE

wE1
wE2

h−E1
h−E2

.
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We also refer the reader to [Wa] for the various well known results on
CM-fields we will be freely using.

If p is a positive odd prime and n a relative integer, we let (n/p) denote
the Legendre symbol.

Let p be any prime. A cyclic number field is called p-primary if its
conductor is a power of the prime p. We let Cp denote a p-primary cyclic
number field. If q ≡ 1 (mod 8) is prime and if we write q = A2 + B2 with
A ≥ 1, B ≥ 1 and B even, then

Cq = Q(
√

q + B
√

q)

is the only q-primary real cyclic quartic field. It is real and has conductor q.
If q ≡ 5 (mod 8) is prime and if we write q = A2 + B2 with A ≥ 1, B ≥ 1
and B even, then

Cq = Q(
√
−(q + B

√
q))

is the only q-primary cyclic quartic field. It is imaginary and has conductor
q. Note that in both cases our generator βq of Cq is primary in Q(

√
q), i.e.,

is equal to some square modulo the principal ideal (4) of Q(
√

q). In fact, we
have βq ≡ 1 (mod (4)).

In the same way,

C2 = Q(
√

2 +
√

2)
is the only 2-primary real cyclic quartic field. It has conductor 16. Moreover,

C2 = Q(
√
−(2 +

√
2))

is the only 2-primary imaginary cyclic quartic field. It has conductor 16.

1.2. On Galois groups of extensions. Let M/K and K/k be two
quadratic extensions; assume that M = K(

√
α) where α ∈ K is not a

square in K. Let {1, σ} denote the Galois group of the quadratic extension
K/k. It is easily seen that the quartic extension M/k is normal if and only
if ασ−1 is a square in K, i.e., if and only if NK/k(α) is a square in K. Now,
assume that ασ−1 = β2 in K. Then we have βσ+1 = ±1, and we will use
the following result first to check whether a given normal octic field N is di-
hedral, and second to determine the only quadratic subfield L of a dihedral
octic field N such that N/L is cyclic quartic:

Lemma 5 (see also [Lem, Lemma 1]). The extension M/k is cyclic quar-
tic if and only if βσ+1 = −1, and the extension M/k is bicyclic quartic if
and only if βσ+1 = +1.

P r o o f. If M/k is cyclic quartic with Galois group of order 4 generated
by τ , then (τ(

√
α))2 = τ(α) = σ(α) = β2α, which yields τ(

√
α) = εβ

√
α

with ε = ±1. Then, as τ2 is the non-trivial element of the Galois group of the
quadratic extension M/K, we get −

√
α = τ2(

√
α) = τ(εβ

√
α) = βσ+1

√
α
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and βσ+1 = −1. In the same way, if M/k is bicyclic quartic and if τ in the
Galois group of this extension satisfies τ/K = σ, then τ2 = 1 and τ(

√
α) =

εβ
√

α with ε = ±1, and we get
√

α = τ2(
√

α) = τ(εβ
√

α) = βσ+1
√

α and
βσ+1 = +1.

In particular, let k = Q(
√

D) be a quadratic number field, take α ∈ k
which is not a square in k and set D′ = Nk/Q(α). Then the quartic field
K = k(

√
α) is normal if and only if D′ is a square in k. Moreover, if D′

is not a square in k then the normal closure N of K is a dihedral octic
field, N = Q(

√
D,
√

D′,
√

α) and N is cyclic over L = Q(
√

DD′) (apply
Lemma 5). Conversely, as any dihedral octic field is the normal closure of
any one of its four non-normal quartic subfields, we have:

Lemma 6. Let N+ = Q(
√

D1,
√

D2) be a given real bicyclic quartic field ,
where D1 > 0 and D2 > 0 are positive square-free integers. Then N+ is
the maximal abelian subfield of some dihedral octic field which is cyclic over
L = Q(

√
D1D2) if and only if the ternary quadratic form X2−D1Y

2−D2Z
2

represents zero non-trivially , which amounts to asking

• (D1/p2) = +1 for all odd primes p2 which divide D2 but do not divide
D1,

• (D2/p1) = +1 for all odd primes p1 which divide D1 but do not divide
D2, and

•
(
− D1D2

p2 /p
)

= +1 for all odd primes p which divide both D1 and D2.

We conclude this subsection by quoting the following lemma which we
will be using in Subsection 2.1 and whose proof readily follows from Lem-
ma 5:

Lemma 7. Let N1 = K(
√
−α1) and N2 = K(

√
−α2) be two non-abelian

normal octic CM-fields with the same maximal totally real subfield K (where
α1 and α2 are totally positive elements of K), let k be any quadratic subfield
of K, and set N = N1N2. Then N is a normal CM-field of degree 16,
N+ = K(

√
α1α2), and N+/k is cyclic (quartic) if and only if exactly one

of the two quartic extensions N1/k and N2/k is cyclic (quartic).

1.3. On dihedral octic CM-fields. Let M be a dihedral octic CM-field.
Let K denote any of the four non-normal quartic subfields of M. According
to [Lou 2], these four K’s are CM-fields, they have Hasse unit index equal
to one and

(2) h−M = (QM/2)(h−K)2.

Therefore, these four K’s have the same relative class number, and h−M = 1 if
and only if h−K = 1, and h−M = h−K = 1 implies QM = 2. In the same way, h−M
is odd if and only if h−K is odd, and h−M odd implies QM = 2. Using [LouOka
1, Th. 4] [Lou 5, Th. 10] and point (4) p. 52 of [LouOka 1, Th. 4], we get:
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Theorem 8. Let M be a dihedral octic CM-field. Then hM is odd if and
only if h−M is odd and h−M is odd if and only if h−K is odd. Moreover , h−M
is odd if and only if M is some N(p,q). Here, p and q denote two distinct
primes not equal to 3 modulo 4 such that (p/q) = +1 (Kronecker symbol)
and such that 4 does not divide the class number of the real quadratic field
k+ = Q(

√
pq), and N(p,q) denotes the narrow Hilbert 2-class field of k+. We

have N+
(p,q) = Q(

√
p,
√

q), and N(p,q)/Q(
√

p) and N(p,q)/Q(
√

q) are bicyclic
quartic, whereas N/Q(

√
pq) is cyclic quartic.

Let K(p,q) denote any of the two non-normal quartic subfields of N(p,q)

containing Q(
√

p), let K(q,p) denote any of the two non-normal quartic sub-
fields of N(p,q) containing Q(

√
q) and let hp denote the class number of

Q(
√

p). Then the diophantine equation x2 − py2 = 4qhp has integral solu-
tions coprime with q, and for any integral solutions x ≥ 1 and y ≥ 1 coprime
with q of this equation we have K(p,q) = Q(

√
−α(p,q)) and N(p,q) = N(q,p) =

Q(
√

p,
√

q,
√
−α(p,q)) = Q(

√
p,
√

q,
√
−α(q,p)), where α(p,q) = (x + y

√
p)/2.

Corollary 9. Let M be a dihedral octic CM-field. Then hM = 2 implies
h−M = 2.

Let us also remind the reader of the following determination:

Theorem 10 (see [LouOka 1]). There are exactly 38 non-isomorphic non-
normal quartic CM-fields with relative class number 1, namely the K(p,q)’s
and K(q,p)’s with

(p, q) ∈ {(2, 17), (2, 73), (2, 89), (2, 233), (2, 281),

(5, 41), (5, 61), (5, 109), (5, 149), (5, 269), (5, 389),

(13, 17), (13, 29), (13, 157), (13, 181),

(17, 137), (17, 257), (29, 53), (73, 97)}.

2. First case: N1 and N2 are dihedral. The aim of this section is
to prove Theorem 2. For the remainder of this section we let N = N1N2

denote a non-abelian normal CM-field of degree 16 which is a compositum
of two dihedral octic CM-fields N1 and N2 with the same maximal totally
real subfield. Hence, N+ is a totally real normal octic number field and
N = N+N2. We let Ki denote any one of the four non-normal quartic
CM-subfields of Ni, we let ki denote the quadratic subfield of Ki (therefore,
ki = K+

i ) and we let Li denote the quadratic subfield of Ni such that Ni/Li

is cyclic quartic.

2.1. Description of N+ when h−N is odd . The following lemma shows
that N+ is abelian, and Proposition 13 will then give a precise description
of N+ when h−N is odd.
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Lemma 11. The totally real octic number field N+ is a non-cyclic abelian
octic number field. Moreover , Gal(N+/Q) is isomorphic to (Z/2Z)3 if N1

and N2 are cyclic over the same quadratic subfield , and Gal(N+/Q) is iso-
morphic to (Z/2Z)× (Z/4Z) otherwise.

P r o o f. Use Lemmas 5 and 7. See also [Lem, Lemma 1].

Since wN = wN1 = wN2 = 2, according to point 3 of Lemma 4 we have

(3) h−N =
QN

2QN1QN2

h−N1
h−N2

.

Using (2) and (3) yields

(4) h−N =
QN

8
(h−K1

h−K2
)2.

Proposition 12. 1. We may , and will , choose notation so that h−N
is odd if and only if h−K1

is odd and h−K2
≡ 2 (mod 4). In that situation

QN = 2, hN is odd , N/N+ is unramified at all the finite places, N+
1 =

N+
2 = Q(

√
p,
√

q) with p and q two distinct primes not equal to 3 modulo 4,
and N1/Q(

√
pq) is cyclic quartic.

2. h−N = 1 if and only if h−K1
= 1 and h−K2

= 2.

P r o o f. Assume that h−N is odd. Using (4) gives QN = 2, which accord-
ing to point 2 of Lemma 4 yields hN odd and N/N+ is unramified at all
the finite places, and Theorem 8 yields the desired description of N+

1 .

Proposition 13. Assume that h−N is odd. Then the abelian octic field
N+ is its own narrow genus field and one of the following two assertions
holds:

1. N+ = CpCq is the compositum of two primary real cyclic fields, one of
them being quadratic and the other quartic. We choose notation so that Cp is
quadratic and Cq is cyclic quartic (which implies q = 2 or q ≡ 1 (mod 8)).
Then N1/Q(

√
pq) and N2/Q(

√
p) are cyclic quartic. Therefore, we may

assume that both K1 and K2 are quadratic extensions of Q(
√

q), i.e., we may
assume that K+

1 = K+
2 = Q(

√
q). Therefore, K1 = K(q,p) = Q(

√
−α(q,p))

with α(q,p) ∈ K+
1 = Q(

√
q) as in Theorem 8, and if Cq = Q(

√
βq) with

βq = q + B
√

q as in Subsection 1.1 then K2 = Q(
√
−α(q,p)βq).

2. N+ = Q(
√

p,
√

q,
√

l) for some prime l not equal to 3 modulo 4.
Then N1/Q(

√
pq) and N2/Q(

√
pq) are both cyclic quartic, and l is inert in

both Q(
√

p) and Q(
√

q). Therefore, we may assume that both K1 and K2

are quadratic extensions of Q(
√

p), i.e., we may assume that K+
1 = K+

2 =
Q(
√

p). Therefore, K1 = K(p,q) = Q(
√
−α(p,q)) with α(p,q) ∈ K+

1 = Q(
√

p)
as in Theorem 8, and K2 = Q(

√
−lα(p,q)).
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P r o o f. Let G denote the narrow genus field of N+, i.e., G is the
maximal abelian number field containing N+ and such that the extension
G/N+ is unramified at all the finite places. Since the degree of N+ is a
power of two, so is the degree of G. Since the class number of N is odd
(first point of Proposition 12), G is included in N. Indeed, GN/N being
an abelian extension of 2-power degree unramified at all places, we have
GN ⊆ N and G ⊆ N. Since N+ ⊆ G ⊆ N and since N is non-abelian,
we get G = N+. Finally, using N+

2 = N+
1 ⊆ N+ and the description of

N+
1 = N+

2 in the first point of Proposition 12 we get the desired results on
the description of N+. Finally, as N1/Q(

√
pq) is cyclic quartic (first point

of Proposition 12), using Lemma 7 we can easily determine which quadratic
field L out of the three quadratic subfields of N+

2 = N+
1 = Q(

√
p,
√

q) is
the one such that N2/L is cyclic quartic. It now only remains to prove
that l is inert both in Q(

√
p) and Q(

√
q) when N+ is as in point 2 of this

Proposition 13. Clearly, it suffices to prove that l is inert in Q(
√

p).
Hence, we assume that

N+ = Q(
√

p,
√

q,
√

l).

Since N/N+ is unramified at all the finite places (first point of Proposi-
tion 12), the index of ramification of any prime which is ramified in N/Q
is equal to 2. In particular, N+

i /Li is unramified. Therefore, L1 = L2 =
Q(
√

pq) and we may choose K1 and K2 such that k1 = k2 = Q(
√

p). Now,
let L denote any prime ideal of N2 lying above l. Since l is not ramified in
N+

2 /Q, N+
2 is the inertia field of L. Therefore, for any subfield M of N2, L

is ramified in N2/M if and only if M ⊆ N+
2 . Hence, all the prime ideals

of k2 lying above l are ramified in K2/k2. Moreover, as 2t2−1 divides h−K2

where t2 denotes the number of prime ideals of k2 which are ramified in the
quadratic extension K2/k2, it follows that h−K2

≡ 2 (mod 4) implies t2 ≤ 2
(point 1 of Lemma 4). Since one of the prime ideals of k2 lying above q
(which splits in k2/Q and is ramified in N+/Q) is ramified in K2/k2, the
congruence h−K2

≡ 2 (mod 4) implies that l is inert in k2.

Therefore, to prove Theorem 2, for each possible K1 with h−K1
= 1 (given

in Theorem 10), we determine all the possible K2’s with h−K2
= 2, and we

finally compute hN+ . According to Proposition 13, the determination of all
the possible K2’s falls naturally into two subcases:

1. N+ = CpCq, in which case K2 is well determined by K1. Subsec-
tion 2.2 is devoted to settling this case.

2. N+ = Q(
√

p,
√

q,
√

l), in which case K2 is well determined by K1 and
l, so that we will need an upper bound on l when h−K2

= 2 to end up with
a finite list of K2’s. Subsection 2.3 is devoted to settling this case.
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2.2. Determination of all N’s with h−N = 1 and N+ as in Proposition
13, point 1. Since h−K1

= 1 (second point of Proposition 12) and since we
have assumed that both K1 and K2 are quadratic extensions of Q(

√
q) (first

point of Proposition 13), we have K1 = K(q,p) = Q(
√
−α(q,p)), with α(q,p) ∈

Q(
√

q) as in Theorem 8, where (p, q) or (q, p) must appear in Theorem 10 and
where we must have q = 2 or q ≡ 1 (mod 8) (first point of Proposition 13).
Therefore, there are only 18 possible values for the pair (p, q):

(p, q) ∈ {(2, 17), (2, 73), (2, 89), (2, 233), (2, 281),
(17, 2), (73, 2), (89, 2), (233, 2), (281, 2),
(5, 41), (13, 17), (17, 137), (17, 257),
(73, 97), (97, 73), (137, 17), (257, 17)}.

Moreover, N+ = CpCq with Cp quadratic and Cq = Q(
√

βq) cyclic quartic
(with βq = q + B

√
q as in Subsection 1.1), and K2 = Q(

√
−α(q,p)βq) (see

Proposition 13). Now, using [Lou 4], we can easily compute the relative
class numbers of all these possible K2’s and we get Table 1 of Section 4
according to which h−N = 1 if and only if (p, q) = (2, 17). In that case, we
have

N1 = Q(
√

2,
√

17,
√
−α(17,2)) = Q(

√
2,
√

17,

√
−(5 +

√
17)/2),

N2 = Q(
√

2,
√

17,
√
−α(17,2)β17) = Q(

√
2,
√

17,

√
−(153 + 37

√
17)/2)

= Q(
√

2,
√

17,

√
−(17 + 3

√
17)/2)

for we have 153 + 37
√

17 = (4 +
√

17)2(17− 3
√

17), and

N+ = Q(
√

2,
√

β17) = Q(
√

2,

√
17 + 4

√
17),

dN+ = 212 · 176, and hN+ = 1.

2.3. Determination of all N’s with h−N = 1 and N+ as in Proposition 13,
point 2. In this case, since the requirement h−K1

= 1 only determines p and
q (use Theorem 10), we need an upper bound on l to get a finite list of
possible fields K2. We will get it thanks to lower bounds on relative class
numbers of non-normal quartic CM-fields. The lower bounds of the next
subsection are much better than the ones we got in [Lou 2].

2.3.1. Lower bounds on relative class numbers of some octic
and quartic CM-fields

Theorem 14. Let M be a dihedral octic CM-field. Then dM ≥ 7 · 1014

implies

(5) h−M ≥
QM

√
dM/dM+

9(log dM+ + 0.14)3 log dM
.
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P r o o f. First, according to [Lou 3, Proposition A], β ∈ [1−(2/ log dM), 1[
and ζM(β) ≤ 0 imply

(6) Ress=1(ζM) ≥ εM
1− β

e
,

where εM = 1− (8πe1/4/d
1/8
M ) is very close to 1 when dM is large. Second,

set c = (2 + γ − log(4π))/2 = 0.0230957 . . . where γ = 0.577215 . . . de-
notes Euler’s constant. Then, according to [Lou 1], for any even, primitive
Dirichlet character modulo f > 1 we have

(7) L(1, χ) ≤ 1
2

log f + c.

Third, according to [Lou 7], for any even, primitive Dirichlet character mod-
ulo f > 1, β ∈ ]1/2, 1[ and L(β, χ) = 0 imply

(8) L(1, χ) ≤ 1− β

8
log2 f.

Fourth, we have

(9) h−M =
QMwM

(2π)4

√
dM

dM+

· Ress=1(ζM)
Ress=1(ζM+)

.

Here, QM ∈ {1, 2} denotes the Hasse unit index of M and wM ≥ 2 denotes
the number of roots of unity in M. In fact, we have wM = 2.

Now, assume that ζM+(1− (2/ log dM)) ≤ 0. Since ζM/ζM+ = (ζK/ζk)2

where k is the quadratic subfield of any one of the four non-normal quartic
subfields K of M (see [Lou 2]), we have ζM(s) ≤ 0 and using (6) we get

Ress=1(ζM) ≥ εM
2

e log dM
.

On the other hand, let f1, f2 and f3 denote the conductors of the three real
quadratic subfields of M+. Using (7) and dM+ = f1f2f3 yields

Ress=1(ζM+) ≤ 1
8
(log f1 + 2c)(log f2 + 2c)(log f3 + 2c)

≤ 1
8

(
log f1f2f3 + 6c

3

)3

=
1

216
(log dM+ + 6c)3.

Finally, using (9) yields

(10) hM ≥ εM
54
eπ4

·
QM

√
dM/dM+

(log dM+ + 6c)3 log dM
.

On the contrary, now assume that ζM+(1− (2/ log dM)) > 0. Then there
exists β ∈ ]1−(2/ log dM), 1[ such that ζM+(β) = 0, which implies ζM(β) = 0
and Ress=1(ζM) ≥ εM(1 − β)/e. Moreover, there exists i ∈ {1, 2, 3} such
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that L(β, χi) = 0. Using (7), (8) and f1 ≤ d4
M yields

Ress=1(ζM+) ≤ 1− β

32
log2 f1(log f2 + 2c)(log f3 + 2c)

≤ 1− β

32
log f1

(
log f1f2f3 + 4c

3

)3

≤ 1− β

27 · 33
(log dM+ + (4c/3))3 log dM.

Finally, using (9) yields

(11) hM ≥ εM
432
eπ4

·
QM

√
dM/dM+

(log dM+ + (4c/3))3 log dM
.

Since (11) is better than (10), the latter always holds. Noticing that we
have 54εM/(eπ4) > 1/9 for dM ≥ 7 · 1014, we get the desired result.

Corollary 15. Let K be a non-normal quartic CM-field. Then dK ≥
3 · 107 yields

(12) h−K ≥
√

dK/dK+

3(log(dK/dK+) + 0.104)2
.

Therefore, dK/dK+ ≥ 3 · 105 implies h−K > 1, and dK/dK+ ≥ 2 · 106 implies
h−K > 2.

P r o o f. Let M be the normal closure of K. According to [Lou 2] we

have h−K =
√

2h−M/QM and dM/dM+ = (dK/dK+)2. Now, noticing that

(log dM+ + 6c) log dM ≤ 2(log(dM/dM+) + 3c)2

and

(log dM+ + 6c)2 ≤ (log(dM/dM+) + 6c)2,

and using (5) and 9c/2 < 0.104 we obtain the desired result.

2.3.2. The required computations. For each of the 19 possible (p, q)
with 2 ≤ p < q for which Q(

√
p,
√

q) is the maximal totally real subfield of a
dihedral octic CM-field N1 with relative class number one (see Theorem 10),
we take K1 = K(p,q) = Q(

√
−α(p,q)) with α(p,q) ∈ Q(

√
q) as in Theorem 8.

Therefore, K2 = Q(
√
−lα(p,q)). Then we use (12) to get a bound Bp,q on

l inert in Q(
√

p) and in Q(
√

q) such that l > Bp,q implies h−K2
> 2 (note

that if l 6= 2 then dK2
/d

K+
2

= dkl2 where k = Q(
√

pq)). For example,

if (p, q) = (2, 17), then Corollary 15 gives h−K2
> 2 if dK2

/d
K+

2
= dkl2 =

136l2 > 2 · 106, hence if l > 121 = B2,17 and there are only five primes l not
equal to 3 modulo 4 such that l ≤ 121 = B2,17 and (2/l) = (17/l) = −1,
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namely l ∈ {5, 29, 37, 61, 109}. For the remaining possible values of (p, q, l)
we use [Lou 4] to compute h−K2

. For example, if (p, q) = (2, 17), we get

(p, q, l) PK2
(X) dK2

h−
K2

(2, 17, 5) X4 + 50X2 + 425 26 · 52 · 17 2
(2, 17, 29) X4 + 290X2 + 14297 26 · 292 · 17 10

(2, 17, 37) X4 + 370X2 + 23273 26 · 372 · 17 14

(2, 17, 61) X4 + 610X2 + 63257 26 · 612 · 17 22
(2, 17, 109) X4 + 1090X2 + 201977 26 · 1092 · 17 42

Table 2 in Section 4 provides the reader with some of our computations:
for each possible (p, q) it gives the value of the relative class number of K2

for the smallest possible l > 1. Therefore, we have h−N = 1 if and only if
(p, q, l) = (2, 17, 5). In that case, we have

N1 = Q(
√

2,
√

17,
√
−α(2,17)) = Q(

√
2,
√

17,

√
−(5 + 2

√
2))

= Q(
√

2,
√

17,
√
−α(17,2)) = Q(

√
2,
√

17,

√
−(5 +

√
17)/2)

and

N2 = Q(
√

2,
√

17,
√
−5α(2,17)) = Q(

√
2,
√

17,

√
−5(5 + 2

√
2))

= Q(
√

2,
√

17,
√
−5α(17,2)) = Q(

√
2,
√

17,

√
−5(5 +

√
17)/2)

and
N+ = Q(

√
2,
√

5,
√

17),
dN+ = 212 · 54 · 174, and hN+ = 1. Note that since

α(2,17)α(17,2) = (5 +
√

2)
5 +

√
17

2
=

(
5 + 2

√
2 +

√
17

2

)2

,

we do not encounter any contradiction.
According to Section 2.1 and this Subsection 2.3.2, Theorem 2 is proved.

3. Second case: N1 is abelian and N2 is dihedral. The aim of
this section is to prove Theorem 3. For the remainder of this section, we
let N = N1N2 be a non-abelian normal CM-field of degree 16 which is
a compositum of two normal octic CM-fields N1 and N2 with the same
maximal real subfield, N1 being an abelian imaginary octic field and N2

being a dihedral octic CM-field. Since wN = wN1
(for N1 is the maximal

abelian subfield of N) and wN2
= 2, (3) still holds. Using (2) and (3) yields

(13) h−N =
QN

4QN1

h−N1
(h−K2

)2.
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3.1. Description of N1 when hN = 1

Proposition 16. We have h−N = 1 if and only if one of the following
three assertions holds:

1. h−N1
= 4 and h−K2

= 1 (which implies QN = QN1
).

2. h−N1
= 2 and h−K2

= 1 (which implies QN = 2 and QN1
= 1).

3. h−N1
= 1 and h−K2

= 2 (which implies QN = QN1
).

P r o o f. Use (13) and the fact that since WN = WN1
, it follows that

QN1
= 2 implies QN = 2.

Here, in contrast with Proposition 12, we do not always have QN =
2. This prevents us from readily getting: h−N odd implies hN odd, hence
prevents us from readily getting: h−N odd implies N1 is its own narrow
genus field. Hence, in contrast with Theorem 2, here we only solve the class
number one problem.

Proposition 17. Assume that hN is odd. Then N1 is equal to its own
narrow genus field. Hence, one of the following two assertions holds:

1. There exist relative integers p, q and l either equal to −1, or prime
and not equal to 3 modulo 4 such that N1 = Q(

√
p,
√

q,
√

l). Moreover , if
hN = 1 and h−N1

= 2 (i.e., if we are in case 2 of Proposition 16) then we
may , and will , choose notation such that p and q are positive.

2. There exist two positive primes p and q such that N1 = CpCq is
a compositum of a p-primary real quadratic field Cp and of a q-primary
imaginary cyclic quartic field.

P r o o f. Let G denote the narrow genus field of N1. As in the proof of
Proposition 13, G is included in N. Since N1 is the maximal abelian sub-
field of N, G is included in N1, hence is equal to N1. Now, as N+

1 = N+
2

is bicyclic quartic, N1 is not cyclic. Therefore, if N1 is not elementary,
then N1 = CpCq is a compositum of a p-primary quadratic number field
Cp associated with a quadratic character χp and of a q-primary cyclic quar-
tic field Cp associated with a quartic character χq. If both Cp and Cq

were imaginary then N+
1 would be a cyclic quartic field (associated with

the quartic character χpχq), a contradiction. In the same way, if Cp were
imaginary and Cq were real then N+

1 = Cq would be a cyclic quartic field,
a contradiction.

If we are in case 2 of Proposition 16 and if hN = 1, then h−K2
= 1.

Hence, there exist two primes p and q not equal to 3 modulo 4 such that
N+

1 = Q(
√

p,
√

q) (see Theorem 8). We could also say that we must have
QN1

= 1. Therefore, if we assume that N1 is elementary and equal to its
narrow genus field, then according to [Uch, Proposition 3] we conclude that
either N1 = Q(

√
−1,

√
2,
√

q) for some positive prime q equal to 1 modulo 4,



186 S. Louboutin

or N1 is the compositum of three primary quadratic fields, exactly one of
them being imaginary.

Proposition 18. We have hN = 1 if and only if one of the following
two assertions holds:

1. h−N1
= 1, hN2

= 2 and hN+ = 1. In that case, h−K2
= 2 and N is the

Hilbert class field of N2.
2. h−N1

= 2, hN2
= 1 and hN+ = 1. In that case, h−K2

= 1, hN1
= 1 and

N is the Hilbert class field of N1.

P r o o f. Assume we are in case 1. Since hN2
= 2, we have h−N2

= 2
(Corollary 9), and (2) yields

2 = h−N2
= (QN2

/2)(h−K2
)2,

which implies h−K2
= 2 (and QN2

= 1). Hence, according to the third point
of Proposition 16 we have h−N = 1, and hN+ = 1 gives hN = 1. In the
same way, assume we are in case 2. Then N+

1 = N+
2 and hN2

= 1 yield
h
N+

1
= h

N+
2

= 1. Therefore, we get hN1
= 2. Moreover, hN2

= 1 gives

h−N2
= 1, which implies h−K2

= 1 (and QN2
= 2). Hence, according to the

second point of Proposition 16 we have h−N = 1, and hN+ = 1 gives hN = 1.
Conversely, assume hN = 1. Then hN+ = 1 and using the Hilbert class

fields of N1 and N2 we easily get hN1
∈ {1, 2} and hN2

∈ {1, 2}. Hence,
h−N1

∈ {1, 2} and the first case of Proposition 16 needs not be considered.
If we are in the second case of Proposition 16, then h−N1

= 2, h−K2
= 1 and

(2) gives h−N2
= 1 (and QN2

= 2) and hN2
is odd (Theorem 8). Therefore,

hN2
= 1 and the second assertion of the proposition holds. In the same way,

if we are in the third case of Proposition 16, then h−N1
= 1 and h−K2

= 2.
Therefore, h−N2

= 2QN2
is even. Since we have hN2

∈ {1, 2}, we get hN2
=

h−N2
= 2 and the first assertion holds.

Therefore, the proof of Theorem 3 will be divided into three steps.
First, we determine in Section 3.2 all the imaginary abelian octic fields

N1 as in Proposition 17 which have relative class number 1 (there are twenty
three such N1’s) or 2 (there are five such N1’s).

Second, for each of these five possible N1 with h−N1
= 2, using Theorem

10 we will easily find all the possible N2’s such that hN2
= 1 and N+

2 = N+
1 .

Finally, for each compositum N = N1N2 we will only have to compute hN+ .
Third, for each of these twenty three possible N1 with h−N1

= 1, we
do not want to use the determination in [YPJK] of all the dihedral octic
CM-fields with class number two, for we do not in fact need this difficult
determination. Instead, using some of the ideas developed in [YPJK] we
show in Subsection 3.3 that for each of these twenty three possible N1, we
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can determine whether there exists at least one dihedral octic CM-field N2

such that N+
2 = N+

1 and h−K2
≡ 2 (mod 4). Then, whenever there exists

at least one such N2, we prove that there exists exactly one such N2, we
find a generator for N2 and compute h−K2

. For each case where h−K2
= 2, we

finally compute hN2
, and when it is equal to 2, we compute hN+ .

3.2. Determination of certain imaginary abelian octic number fields with
relative class numbers equal to 1 or 2

Proposition 19. 1. Let N1 = Q(
√

p,
√

q,
√

l) be an elementary octic
imaginary number field. Assume that N1 is its own narrow genus field.
Then h−N1

= 1 if and only if

(p, q, l) ∈ {(−1,−2,−3), (−1,−2,−11), (−1,−3,−11), (−1,−3,−19),
(−1,−3,−7), (−1,−7,−19), (−2,−3,−7), (−3,−11,−19),
(−1,−2, 5), (−1,−3, 5), (−1,−7, 5), (−1,−7, 13),
(−2,−3, 5), (−2,−7, 5),
(−3,−7, 5), (−3,−11, 2), (−3,−11, 17)}.

2. Let N1 = CpCq be a compositum of a p-primary real quadratic number
field Cp and of a q-primary imaginary cyclic quartic field. Then h−N1

= 1 if
and only if

(p, q) ∈ {(5, 2), (2, 5), (2, 13), (13, 5), (17, 5), (5, 13)}.
3. Let N1 = Q(

√
p,
√

q,
√

l) be an elementary octic imaginary number
field. Assume that N+

1 = Q(
√

p,
√

q) where 2 ≤ p < q are two distinct
primes and that N1 is its own narrow genus field. Then h−N1

= 2 if and
only if

(p, q, l) ∈ {(2, 5,−3), (2, 17,−3)}.
4. Let N1 = CpCq be a compositum of a p-primary real quadratic number

field Cp and of a q-primary imaginary cyclic quartic field. Then h−N1
= 2 if

and only if
(p, q) ∈ {(5, 29), (29, 5), (17, 13)}.

P r o o f. To begin with, let us recall that if E is an imaginary abelian
field of 2-power degree, then

h−E = QEwE

∏
F

(hF/wF),

where this product ranges over all the imaginary cyclic subfields F of E.
Let us first prove point 1. By Table 2 pp. 126–127 of [Lou 5] we only

have to prove that the only imaginary octic fields N1 = Q(
√
−1,

√
−2,

√
q)

with relative class number one, where q ≡ 1 (mod 4) is an odd prime, are
obtained when q ∈ {5,−3,−11}.
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Let us first assume that q > 1. Then QN1
= 1 and h−N1

= h−qh−2q/4
where hd denote the class number of the quadratic number field Q(

√
d).

According to genus theory, h−q and h−2q are both even. Hence, h−N1
= 1 if

and only if h−q = 2 and h−2q = 2, hence if and only if q = 5. In the same
way, h−N1

= 2 if and only if h−q = 2 and h−2q = 4, or h−q = 4 and h−2q = 2.
Therefore, we never have h−N1

= 2.
Let us now assume that q < −1. Then QN1

= 2 and h−N1
= hqh−2q/2.

According to genus theory, hq is odd. Hence, h−N1
= 1 if and only if hq = 1

and h−2q = 2, hence if and only if q = −3 or q = −11. In the same way,
h−N1

= 2 if and only if hq = 1 and h−2q = 4, hence if and only if q = −7.
Let us now prove point 3. We have l < 0 and if we let wd and hd denote

the number of roots of unity and class number of an imaginary quadratic
field Q(

√
d), we have

h−N1
= wN1

(hl/wl)(hpl/wpl)(hql/wql)(hpql/wpql).

First, assume that either 2 < p < q and l ≤ −1, or 2 = p < q and l < −2.
Then wN1

= wl and we get h−N1
= 2hl(hpl/2)(hql/2)(hpql/4). Therefore,

h−N1
is always even and h−N1

= 2 if and only if (hl, hpl, hql, hpql) = (1, 2, 2, 4).
Since the class number one and two problems have been solved for the
imaginary quadratic number fields (see Table 1 in [Lou 5]), we know the
possible values of l, p and q. Namely, (hl, hpl, hql) = (1, 2, 2) if and only if:

l = −1, p, q ∈ {5, 13, 37},
l = −2, p, q ∈ {5, 29},
l = −3, p, q ∈ {2, 5, 17, 41, 89},
l = −7, p, q ∈ {5, 13, 61},
l = −11, p, q ∈ {2, 17}.

Then we have h−N1
= hpql/4 and the following table provides us with the

values of the class numbers hpql for these possible values of l, p and q:

l p q pql hpql

−1 5 13 −65 8
−1 5 37 −185 16
−1 13 37 −481 16
−2 5 29 −290 20
−3 2 5 −30 4
−3 2 17 −102 4
−3 2 41 −246 12
−3 2 89 −534 20
−3 5 17 −255 12

l p q pql hpql

−3 5 41 −615 20
−3 5 89 −1335 28
−3 17 41 −2091 12
−3 17 89 −4539 20
−3 41 89 −10947 28
−7 5 13 −455 20
−7 5 61 −2135 44
−7 13 61 −5551 52

Second, assume that l ∈ {−1,−2} and 2 = p < q. Therefore, N1 =
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Q(
√
−1,

√
−2,

√
q) and q ≡ 1 (mod 4) is a positive prime. According to the

previous proof of point 1, we have h−N1
= (h−q/2)(h−2q/2) and h−N1

= 2
if and only if (h−q, h−2q) ∈ {(2, 4), (4, 2)}. However, we have the following
table of class numbers:

q 5 13 29 37
h−q 2 2 6 2
h−2q 2 6 2 10
h−
N1

1 3 3 5

Therefore, we never have h−N1
= 2.

Let us finally prove points 2 and 4. Let N1 = CpCq be a compositum
of a p-primary real quadratic number field Cp of conductor fp and of a
q-primary imaginary cyclic quartic Cq of conductor fq. According to [Uch]
we have QN1

= 1 and

h−N1
= h−Cq

(h−F(p,q)
/2)

where F(p,q) denotes the imaginary cyclic quartic subfield of N1 associated
with the odd quartic Dirichlet character χpχq of conductor f(p,q) = fpfq.
Moreover, according to [Wa, Th. 10.4(b)], the class number hCq

is odd.
Hence, h−Cq

is odd. Therefore, h−N1
= 1 if and only if (h−Cq

, h−F(p,q)
) = (1, 2),

and h−N1
=2 if and only if (h−Cq

, h−F(p,q)
)= (1, 4). Now, in [Lou 8] we solved

the relative class number one and two problems for the imaginary cyclic
quartic fields. Using the techniques developed in [Lou 8], we can also easily
solve the relative class number four problem for the imaginary cyclic quartic
fields F(p,q). Indeed, according to [Lou 8, Th. 4] or [Lou 3, proof of Corol-
lary a], h−F(p,q)

≤ 4 implies f(p,q) ≤ 2 · 104. Now, up to this upper bound, we
compute the relative class numbers of Cq and F(p,q) thanks to the following
two formulas:

h−Cq
=

wq

4f2
q

∣∣∣ fq−1∑
k=1

kχq(k)
∣∣∣2

with
wq =

{
2 if q 6= 5,
10 if q = 5,

and

h−F(p,q)
=

1
2f2

(p,q)

∣∣∣ f(p,q)−1∑
k=1

kχp(k)χq(k)
∣∣∣2.

Note also that if q = 2, then fq = 16 and we may take χq defined by the
following table:

k 1 3 5 7 9 11 13 15
χq(k) 1 i i 1 −1 −i −i −1
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We get

h−Cq
= 1 ⇔ q ∈ {2, 5, 13, 29, 37, 53, 61},

h−F(p,q)
= 2 ⇔ (p, q) ∈ {(5, 13), (13, 5), (17, 5), (2, 5), (2, 13), (5, 2)},

h−F(p,q)
= 4 ⇔ (p, q) ∈ {(5, 29), (29, 5), (17, 13)}.

The desired results easily follow.

3.3. Determination of N1 and N2 when h−N1
= 1, h−K2

= 2 and hN = 1.
The aim of this subsection is:

• first, to show that we can get rid of some of the 23 = 17 +6 imaginary
abelian fields N1 with relative class number one which appear in points 1
and 2 of Proposition 19 for their maximal totally real subfields N+

1 cannot
be the maximal totally real subfield of any dihedral octic CM-field N2 (to
this end, we will use Lemma 6);

• second, to show that for some of the remaining N1’s, their maximal
totally real subfields N+

1 cannot be the maximal totally real subfield of any
dihedral octic CM-field N2 with relative class number two (to this end, we
will use Lemma 20 below); and

• third, to show that for each of the few N1’s remaining we can determine
N2 provided that h−K2

= 2 (to this end, we will use Proposition 23 below).

Lemma 20. Let N be a dihedral octic CM-field. Let N+ denote its maxi-
mal totally real subfield. Hence, N+/Q is bicyclic quartic. Let L denote the
only quadratic subfield of N+ such that N/L is cyclic quartic, and let k1 and
k2 denote the two other quadratic subfields of N+. Let Ki and K′

i denote
the two non-normal quartic subfields of N which contain ki. Hence, Ki and
K′

i are isomorphic non-normal quartic CM-field and h−K1
= h−K2

. If at least
three distinct primes ramify in N+/L and N+/k2 then 4 divides h−K2

.

P r o o f. We use the two following points. First, if a prime ideal P+

of N+ is ramified in N+/L then it is ramified in N/N+, for the extension
N/L is cyclic quartic. Second, let P2 be the prime ideal of k2 lying below
a prime ideal P+ of N+ ramified in the quadratic extension N/N+. If P2

were unramified in both K2/k2 and K′
2/k2 then it would be unramified in

K′
2K2/k2 = N/k2, hence unramified in N/N+, a contradiction. Therefore,

P2 is either ramified in K2/k2 or ramified in K′
2/k2, and since K2 and K′

2

are isomorphic and k2 is normal, one of the ideals of k2 conjugate to P2 is
ramified in K2/k2.

Proposition 21. Let p, q and l be positive primes, N be a dihedral octic
CM-field with maximal totally real subfield N+, L be the only quadratic
subfield of N+ such that N/L is cyclic quartic, and K be any of the four
non-normal quartic CM-subfields of N.
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1. If N+ = Q(
√

pq,
√

l) with p ≡ q ≡ 3 (mod 4), l 6≡ 3 (mod 4) and
(p/l) = −1 or (q/l) = −1, then L 6= Q(

√
pql) and 4 divides h−K.

2. If N+ = Q(
√

2p,
√

q) with p ≡ 3 (mod 4), q ≡ 1 (mod 4) and
(p/q) = −1, then L 6= Q(

√
2pq) and 4 divides h−K.

3. If N+ = Q(
√

p,
√

q) with p ≡ 3 (mod 4), q ≡ 1 (mod 4) and (p/q) =
−1, then L 6= Q(

√
pq) and 4 divides h−K.

4. If N+ = Q(
√

p,
√

q) with p ≡ q ≡ 3 (mod 4), then L = Q(
√

p) if
(q/p) = +1, and L = Q(

√
q) if (p/q) = +1. Moreover , if p 6≡ q (mod 8)

then 4 divides h−K.
5. If N+ = Q(

√
p,
√

q) with p ≡ q ≡ 1 (mod 4), then (p/q) = +1.

6. If N+ = Q(
√

2,
√

p) with p ≡ 1 (mod 4), then p ≡ 1 (mod 8).
7. If N+ = Q(

√
2,
√

p) with p ≡ 3 (mod 8), then L = Q(
√

2).
8. If N+ = Q(

√
pq,

√
pl) with p ≡ q ≡ l ≡ 3 (mod 4) then at least one

of the three symbols (pq/l), (pl/q) and (ql/p) is equal to +1.
9. If N+ = Q(

√
2p,

√
2q) with p ≡ q ≡ 3 (mod 4) then (2p/q) = +1 or

(2q/p) = +1.

P r o o f. It is easily checked that all our results on L and on the values
of the Legendre symbols follow from Lemma 6. Moreover, using Lemma 20
easily yields that 4 divides h−K in cases 1, 2 and 3. Only the same result in
case 4 is difficult. We may assume that (q/p) = +1, which yields L = Q(

√
p),

and we set k1 = Q(
√

pq), which gives k2 = Q(
√

q).
First, we note that (q) = Q2

2 is ramified in k2. Since q is inert in L,
(Q2) = Q+ is inert in N+/k2 and since Q+ is ramified in N+/L and N/L
is cyclic quartic, it follows that (P+) = P2

N is ramified in N/N+ and N+ is
the inertia field of QN in N/k2. Therefore, Q2 is ramified in both K2/k2

and K′
2/k2.

Second, we note that p splits in k2, say (p) = P2P ′
2, and both P2 and P ′

2

are ramified in N+/k2. Since K2 and K′
2 are isomorphic and k2 is normal,

as in the proof of the second point of Lemma 20, we may choose notation
such that P2 is ramified in K2/k2. Hence, we have already got two distinct
prime ideals P2 and Q2 of k2 which are ramified in K2/k2.

Third, if p 6≡ q (mod 8) then pq ≡ 5 (mod 8) and 2 is inert in k1, the
prime ramified ideal L2 of k2 lying above 2 is inert in N+/k2, say (L2) = L+

and L+ is inert in N+/L. If L+ is not ramified in N/N+ then (L+) = LN

is inert in N/N+ and inert in N/k2. A contradiction since N/k2 is bicyclic
quartic. Therefore, L+ is ramified in N/N+ and N+ is the inertia field of LN

in N/k2. Therefore, L2 is ramified in both K2/k2 and K′
2/k2. Therefore,

as we have found a third prime ideal of k2 ramified in K2/k2 we see that
4 = 23−1 divides h−K2

.

Corollary 22. Let N1 be one of the 23 = 17 + 6 imaginary abelian
number fields with relative class number one given in points 1 and 2 of
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Proposition 19. If N+
1 is the maximal totally real subfield of some dihedral

octic CM-field N2 such that h−K2
= 2, then N1 is one of the following four

fields:

(p, q, l) ∈ {(−1,−2,−3), (−1,−2,−11), (−1,−3,−11), (−1,−3,−19)}.

P r o o f. For example, according to points 5 and 6 of Proposition 21, if
N1 is one of the six fields which appear in point 2 of Proposition 19, then N+

1

cannot be the maximal real subfield of any dihedral octic CM-field N2.

Proposition 23. Let the notation be as in Lemma 20.

1. If N+ = Q(
√

2,
√

p) with p ≡ 3 (mod 8) then L = Q(
√

2) and we may
assume that k2 = Q(

√
p). In both cases the prime ideal L2 of k2 lying above

2 and the prime ideal P2 of k2 lying above p are ramified in both K2/k2 and
K′

2/k2. In particular , if h−K2
≡ 2 (mod 4) then K2 = k2(

√
−(x + y

√
p)
√

p)
or K2 = k2(

√
−ε(x + y

√
p)
√

p) where x ≥ 1 and y ≥ 1 are integral solutions
of x2 − py2 = −2 and where ε > 1 denotes the fundamental unit of k2. Fi-
nally , k2(

√
−(x + y

√
p)
√

p) and k2(
√
−ε(x + y

√
p)
√

p) being isomorphic,
we may assume that K2 = k2(

√
−(x + y

√
p)
√

p).
2. If N+ = Q(

√
p,
√

q) with p ≡ q ≡ 3 (mod 4) then we may assume
that (q/p) = +1, L = Q(

√
p) and k2 = Q(

√
q). The prime ideal Q2 of

k2 lying above q is ramified in both K2/k2 and K′
2/k2, and one of the

two prime ideals of k2 lying above p, say P2, is ramified in K2/k2, the
other one being ramified in K′

2/k2. In particular , if h−K2
≡ 2 (mod 4) then

K2 = k2(
√
−(x + y

√
p)
√

q) or K2 = k2(
√
−ε(x + y

√
q)
√

q) where x ≥ 1
and y ≥ 1 are integral solutions of x2 − qy2 = −ph and where ε > 1 and h
denote the fundamental unit and class number of k2, respectively.

P r o o f. 1. Let us prove the first part of this point. We first note that
2 is totally ramified in N+, hence totally ramified in N (for N/L is cyclic
quartic) and indeed the prime ideal L2 of k2 lying above 2 is ramified in
both K2/k2 and K′

2/k2. Second, (p) = PL is inert in L/Q, (PL) = P2
+ is

ramified in N+/L, hence totally ramified in N/L, (p) = P2
2 is ramified in

k2/Q and P2 is inert in N+/k2. Therefore, N+ is the inertia field of PN in
N/k2 and P2 is ramified in both K2/k2 and K′

2/k2.

Let us prove the second part of this point. If h−K2
≡ 2 (mod 4) then

only L2 and P2 must be ramified in K2/k2. Therefore, K2 = k2(
√
−α)

where α ∈ k2 is a totally positive algebraic element such that (α) = P2I2 or
(α) = L2P2I2 for some integral ideal I of k2. Since the class number h of
k2 is odd, since L2 and P2 are principal in k2, and since K2 = k2(

√
−α) =

k2(
√
−αh), we may assume that K2 = k2(

√
−β) where β ∈ k2 is a totally

positive algebraic element such that (α) = P2 or (α) = L2P2. Finally, as the
fundamental unit ε of k2 has norm +1 and as L2 and P2 are not principal in
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the strict sense, we must have (β) = L2P2, hence β = λ2
√

p or β = ελ2
√

p,
where λ2 = x + y

√
p with x ≥ 1 and y ≥ 1 is a given algebraic integer such

that (λ2) = L2, i.e., such that x2 − py2 = −2.
Finally, as 2 is totally ramified in N+, we have (λ2) = (

√
2) in N+.

Taking norms down to k2 we see that (λ2
2) = (2) and −λ2/λ′2 = λ2

2/2 = εm

for some relative integer m. Moreover, as
√

2 is not in k2 we get m odd. Now,
we conclude that (λ2

√
p)′ = −λ′2

√
p = ε−mλ2

√
p and k2(

√
−(λ2

√
p)′) =

k2(
√
−ελ2

√
p) is isomorphic to k2(

√
−λ2

√
p).

2. The first part of this point was proved during the proof of point 4 of
Proposition 21. The proof of its second part is similar to that of the second
part of the first point.

According to Proposition 23, if N1 ranges over the four abelian fields
listed in Corollary 22 and if h−K2

≡ 2 (mod 4), then we are in one of the
following six cases: K2 = k2(

√
−α) with α ∈ k2 and

α PK2
(X) dK2

h−
K2

3 +
√

3 X4 + 6X2 + 6 29 · 33 2
11 + 3

√
11 X4 + 22X2 + 22 29 · 113 10

6 +
√

3 X4 + 12X2 + 33 28 · 33 · 11 4

15 + 8
√

3 X4 + 30X2 + 33 24 · 33 · 11 2

19 + 4
√

19 X4 + 38X2 + 57 24 · 3 · 193 10
6194 + 1421

√
19 X4 + 12388X2 + 57 28 · 3 · 193 12

According to this table and to point 3 of Lemma 4 which gives QN2
= 1

and h−N2
= 1

2 (h−K2
)2 = 2 for the two fields K2 with h−K2

= 2 which appear
in this table, we readily get:

Corollary 24. Let N1 be any one of the four abelian imaginary fields
with relative class number one which appear in Corollary 22. Then N+

1 ⊆ N2

with h−K2
= 2 if and only if either

N1 = Q(
√
−1,

√
−2,

√
−3) and N2 = Q(

√
2,
√

3,

√
−(3 +

√
3)),

in which case hN2 = 2, N+ = Q(
√

2,
√

3,
√

3 +
√

3) is a dihedral octic field
cyclic over Q(

√
2) such that dN+ = 222 · 36 and hN+ = 1, or

N1 = Q(
√
−1,

√
−3,

√
−11) and N2 = Q(

√
3,
√

11,

√
−(15 + 8

√
3)),

in which case hN2 = 2, N+ = Q(
√

3,
√

11,
√

15 + 8
√

3) is a dihedral octic
field cyclic over Q(

√
11) such that dN+ = 28 · 36 · 114 and hN+ = 1.

3.4. Determination of N1 and N2 with h−N1
= 2, h−K2

= 1 and hN = 1.
The following Corollary 25 is easily proved by using Theorem 10.
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Corollary 25. Let N1 be any one of the five abelian imaginary fields
with relative class number two which appear in points 3 and 4 of Proposi-
tion 19. Then N+

1 ⊆ N2 with h−K2
= 1 if and only if either

N1 = Q(
√

2,
√

17,
√
−3) and N2 = Q(

√
2,
√

17,

√
−(5 +

√
17)/2),

in which case hN2 = 1, N+ = Q(
√

2,
√

17,
√

3(5 +
√

17)/2) is a dihedral

octic field cyclic over Q(
√

34) such that dN+ = 212 · 34 · 174 and hN+ = 1,
or

N1 = C17C13 = Q(
√

17,

√
−(13 + 2

√
13))

and

N2 = Q(
√

13,
√

17,

√
−(9 +

√
13)/2),

in which case hN2 = 1, N+ = Q(
√

13,
√

17,
√

(143 + 31
√

13)/2) is a dihedral

octic field cyclic over Q(
√

17) such that dN+ = 136 · 174 and hN+ = 1.

3.5. Determination of all N’s with hN = 1. Proposition 18 and Corol-
laries 24 and 25 readily yield Theorem 3.

4. Tables

Table 1

p q = A2 + B2 α(q,p) dK2
h−
K2

2 17 = 12 + 42 (5 +
√

17)/2 23 · 173 2
2 73 = 32 + 82 (9 +

√
73)/2 23 · 733 8

2 89 = 52 + 82 (217 + 23
√

89)/2 23 · 893 8
2 233 = 132 + 82 (6121 + 401

√
233)/2 23 · 2333 32

2 281 = 52 + 162 (17 +
√

281)/2 23 · 2813 52
17 2 = 12 + 12 5 + 2

√
2 211 · 17 42

73 2 = 12 + 12 9 + 2
√

2 211 · 73 6
89 2 = 12 + 12 11 + 4

√
2 211 · 89 10

233 2 = 12 + 12 19 + 8
√

2 211 · 233 22
281 2 = 12 + 12 17 + 2

√
2 211 · 281 18

5 41 = 52 + 42 13 + 2
√

41 5 · 413 6
13 17 = 12 + 42 9 + 2

√
17 13 · 173 4

17 137 = 112 + 42 47 + 4
√

41 17 · 1373 142
17 257 = 12 + 162 95 + 4

√
257 17 · 2573 32

73 97 = 92 + 42 1891 + 192
√

97 73 · 973 380
97 73 = 32 + 82 103 + 12

√
73 97 · 733 42

137 17 = 12 + 42 35 + 8
√

17 137 · 173 48
257 17 = 12 + 42 23 + 4

√
17 257 · 173 58
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Table 2

(p, q, l) α(p,q) dK2
h−
K2

(2, 17, 5) 5 + 2
√

2 17 · 26 · 52 2
(2, 73, 5) 9 + 2

√
2 73 · 26 · 52 14

(2, 89, 13) 11 + 4
√

2 89 · 26 · 132 38
(2, 233, 5) 19 + 8

√
2 233 · 26 · 52 30

(2, 281, 13) 17 + 2
√

2 281 · 26 · 132 78
(5, 41, 13) (13 +

√
5)/2 41 · 52 · 132 10

(5, 61, 2) (17 + 3
√

5)/2 61 · 52 · 26 6
(5, 109, 2) (21 +

√
5)/2 109 · 52 · 26 14

(5, 149, 2) 13 + 2
√

5 149 · 52 · 26 10
(5, 269, 2) 17 + 2

√
5 269 · 52 · 26 22

(5, 389, 2) (41 + 5
√

5)/2 389 · 52 · 26 26
(13, 17, 5) (9 +

√
13)/2 17 · 132 · 52 6

(13, 29, 2) 9 + 2
√

13 29 · 132 · 26 10
(13, 157, 2) (41 + 9

√
13)/2 157 · 132 · 26 34

(13, 181, 2) (29 + 3
√

13)/2 181 · 132 · 26 54
(17, 137, 5) 35 + 8

√
17 137 · 172 · 52 42

(17, 257, 5) 23 + 4
√

17 257 · 172 · 52 74
(29, 53, 2) 13 + 2

√
29 53 · 292 · 26 14

(73, 97, 5) 103 + 12
√

73 97 · 732 · 52 182
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Université de Caen
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