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1. Introduction. Let N ≥ 1 be an integer and let X0(N) be the
modular curve over Q which corresponds to the modular group Γ0(N). As
a defining equation of X0(N) we have the so-called modular equation of
level N . It has many good properties, e.g. it reflects the defining prop-
erty of X0(N), it is the coarse moduli space of the isomorphism classes of
the generalized elliptic curves with a cyclic subgroup of order N . But its
degree and coefficients are too large to be applied to practical calculations
on X0(N). While it is an important problem to determine the algebraic
points on X0(N), we need a more manageable defining equation, which will
also help to solve other related problems. In the case of a hyperelliptic
modular curve, a kind of normal form of a defining equation is given by N.
Murabayashi ([9]) and M. Shimura ([13]).

In this paper, we give a relation between the modular equation of level
N and the normal form in the case of a hyperelliptic modular curve X0(N)
except for N = 40, 48. First recall that the modular equation of level N is
written in the following form:

FN (j, jN ) = 0, FN (S, T ) ∈ Z[S, T ],

where j is the modular invariant, jN (z) = j(Nz), and z is the natural
coordinate on H. Since X0(N) is hyperelliptic, it can be written in the
following normal form:

y2 = f(x), f(T ) ∈ Q[T ], deg f = 2g + 2,

where x is a covering map of degree two from X0(N) to P1 and g is the
genus of X0(N). In this case, we obtain the following relation:

j = (A(x) + B(x)y)/C(x), A(x), B(x), C(x)(6= 0) ∈ Q(x).
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When the genus of X0(N) is 0, R. Fricke gave the expression for j (see
[3]), and N. D. Elkies did the same when the curve X0(N) is elliptic or
hyperelliptic where N is a prime number other than 37 ([2]). We are inter-
ested in X0(N) for the 19 particular values of N for which the modular curve
X0(N) is hyperelliptic. We extend Elkies’ work. We give the expression for
j for 17 values of N ; to be specific, the cases N = 40, 48 are excluded.

Our method cannot be applied to the cases N = 37, 40 and 48; it is vital
for our method that the hyperelliptic involution is of Atkin–Lehner type,
and it is not of that type for these three cases. However, in §2.3 we solve
the special case N = 37. In §3.2, we prove that a certain quantity n(37),
the number of Q-rational points on a certain modular curve, is 0. Momose
proved that it is 0 or 1, and also gave a criterion which could be used to
decide which value it really takes. We check the expression of j for N = 37
against Momose’s criterion, and deduce that n(37) = 0.

To get our equations and relations, we use the Fourier expansions of
certain cusp forms of weight 2 on Γ0(N). Their Fourier coefficients are
given by the Brandt matrix ([4], [11]) and the trace formula ([5], [14]).

Acknowledgments. The authors would like to thank the following peo-
ple for their help in various ways: N. Adachi, Y. Hasegawa, K. Hashimoto,
Y. Sato and M. Shimura. We would also like to thank F. Momose who in-
formed us of the problem of the rational points of Xsplit(37) (see §3.2). The
computations were done with Mathematica.

Notation

• N : a positive integer (= the level of a modular curve).

• Γ0(N) =
{(

a b

c d

)
(∈ SL2(Z))

∣∣∣ c ≡ 0 (mod N)
}

.

• H = {z ∈ C | Im(z) > 0}.
• H∗ = H ∪ P1(Q) = H ∪Q ∪ {i∞}.
• X0(N): the modular curve defined over Q which corresponds to Γ0(N),

i.e., X0(N)(C) ∼= Γ0(N)\H∗.
• g: the genus of X0(N).
• S2(Γ0(N)): the C-vector space of cusp forms of weight 2 on Γ0(N).

Let f1, . . . , fg be a basis of S2(Γ0(N)), z the natural coordinate on H,
q = e2π

√
−1z and let the Fourier expansion of fi be

fi = ai,1q + ai,2q
2 + . . . , ai,j ∈ Z, 1 ≤ i ≤ g, j = 1, 2, . . .

These coefficients can be taken in Z (see [12]).

2. Computation. If X0(N) is a hyperelliptic curve, its normal form
can be obtained by Murabayashi’s method ([9]). The hyperelliptic modular
curves X0(N) have been classified by A. Ogg ([10]).
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Theorem 2.1 (A. Ogg). There are exactly nineteen values of level N
for which X0(N) is hyperelliptic. They are (g is the genus of X0(N)):

g = 2: N = 22, 23, 26, 28, 29, 31, 37, 50,
g = 3:N = 30, 33, 35, 39, 40, 41, 48,
g = 4:N = 47,
g = 5: N = 46, 59,
g = 6: N = 71.

2.1. A defining equation for hyperelliptic X0(N). Let i∞ denote the
point of X0(N) which is represented by i∞. If i∞ is not a Weierstrass point
of X0(N), then X0(N) can be written in the following normal form:

y2 = f(x), f(T ) ∈ Q[T ], deg f = 2g + 2,

where x is a covering map of degree two from X0(N) to P1. Here, a normal
form means a defining equation of the type y2 = f(x), f(T ) ∈ C[T ]. By
using a linear combination of the basis f1, . . . , fg of S2(Γ0(N)), we choose
another basis h1, . . . , hg with the following Fourier expansions with rational
coefficients: 

h1(z) = qg + s1,g+1q
g+1 + . . . + s1,g+iq

g+i + . . . ,
h2(z) = qg−1 + s2,gq

g + . . . + s2,g+iq
g+i + . . . ,

. . .
hg(z) = q + sg,2q

2 + . . . + sg,g+iq
g+i + . . .

Lemma 2.1. Put x = h2(z)/h1(z). Then x : X0(N) → P1 is of degree
two.

This lemma is due to M. Shimura (see [13]). We put

y =
q

h1

dx

dq
.

(This construction of x, y is the same as in [9] and [13].) Thus the Fourier
expansions of x and y2 are

y2 = q−(2g+2) + . . . , x = q−1 + . . .

We can determine recursively the coefficients a1, a2, . . . , a2g+2 of a defining
equation as follows:{

y2 − x2g+2 = a1q
−2g−1 + . . . ,

y2 − x2g+2 − a1x
2g+1 = a2q

−2g + . . . ,
. . .

Thus we have a defining equation of X0(N):

y2 = x2g+2 + a1x
2g+1 + . . . + a2g+2.

R e m a r k 2.1. To get a normal form, we need only know s1,g+1, . . . ,
s1,3g+3, s2,g, . . . , s2,3g+2. We need a few more Fourier coefficients to repre-
sent j and jN in terms of x and y.
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2.2. Hyperelliptic involutions of Atkin–Lehner type. Let N = N ′N ′′

with (N ′, N ′′) = 1. As Atkin and Lehner showed ([1]), the involution w =(
0 −1

N 0

)
of X0(N) is factored into w = w′w′′ (w′ = wN ′ , w′′ = wN ′′); in

terms of matrices, w′ is defined by any integral matrix with determinant N ′

of the form

w′ =
(

1 0
0 N ′

) (
N ′a b
N ′′c d

)
=

(
a b

N ′′c N ′d

) (
N ′ 0
0 1

)
∈

(
1 0
0 N ′

)
Γ0(N ′′) ∩ Γ0(N ′′)

(
N ′ 0
0 1

)
.

Let Aut(X0(N)) be the group of automorphisms of X0(N) over C (for
curves of genus ≥ 2). Let Γ ∗

0 (N) be the normalization of Γ0(N)/{±1}
in PGL+

2 (Q), and put B0(N) = Γ ∗
0 (N)/Γ0(N) (⊆ Aut(X0(N))), which is

determined in [1], §4. When N = 37, Aut(X0(N)) ⊃ B0(N). The mod-
ular curve X0(37) has a hyperelliptic involution which sends the cusps to
non-cuspidal Q-rational points, and we see Aut(X0(37)) ' (Z/2Z)2 and
B0(37) ' Z/2Z (cf. [6], [7]). For each level N for which X0(N) is hyperel-
liptic, A. Ogg checked whether its hyperelliptic involution is of Atkin–Lehner
type or not ([10]).

Theorem 2.2 (A. Ogg). There are exactly eighteen values of level N
besides N = 37 for which X0(N) is hyperelliptic. For two of these values,
namely N = 40, 48, the hyperelliptic involution v is not of Atkin–Lehner
type. The remaining sixteen values are listed in the table below , together
with their genera and hyperelliptic involutions.

N g v

22 2 w11
23 2 w23
26 2 w26
28 2 w7
29 2 w29
30 3 w15
31 2 w31
33 3 w11

N g v

35 3 w35
39 3 w39
41 3 w41
46 5 w23
47 4 w47
50 2 w50
59 5 w59
71 6 w71

N = 37 is the only case where X0(N) is hyperelliptic with an exceptional
hyperelliptic involution s.

R e m a r k 2.2.
(

−10 1

−120 10

)
and

(
−6 1

−48 6

)
define the hyperelliptic involu-

tions of X0(40) and X0(48) respectively.
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We assume that X0(N) is hyperelliptic and that N is not equal to 37,
40 or 48. Let wM be the hyperelliptic involution. Then

wM =
(

a b
Nc/M Md

) (
M 0
0 1

)
,

M ‖N and adM − bcN/M = 1. Let w∗
M be the automorphism of Q(X0(N))

induced by wM , where Q(X0(N)) is the field of meromorphic functions on
X0(N) defined over Q. Let x, y, j and jM be the functions defined in §2.1.
The action of w∗

M on these functions is as follows:

w∗
Mx = x, w∗

My = −y, w∗
M j = jM , w∗

M jM = j.

It is easily checked that

j + jM ,
j − jM

y
∈ Q(X0(N))〈w

∗
M 〉 = Q(x),

where Q(X0(N))〈w
∗
M 〉 = {f ∈ Q(X0(N)) | w∗

Mf = f}. Therefore F (x) =
j + jM and G(x) = (j − jM )/y are rational functions of x. The rational
functions F,G are determined explicitly by observing the pole divisors and
the values at the cusps of x, y, j and jM . Denote by C the set of cusps on
X0(N). The pole divisors of j, jM are

(j)∞ =
∑
P∈C

eP P, (jM )∞ =
∑
P∈C

eP wM (P ),

where eP is the ramification index of the covering of X0(N) to X0(1) =
P1(j); i.e., eP is the positive integer defined as follows. Put Γ0(N)P = {Γ ∈
Γ0(N) | Γ (P ) = P} and SL2(Z)P = {Γ ∈ SL2(Z) | Γ (P ) = P}. Then
eP = [SL2(Z)P : Γ0(N)P ]. In fact, eP can be calculated as follows. Let % be
an element of SL2(Z) such that %(P ) = i∞. Since %SL2(Z)P %−1 = SL2(Z)∞,

%Γ0(N)P %−1 =
{
±

(
1 eP

0 1

)m ∣∣∣∣ m ∈ Z
}

.

In our case, it is easy to see that

(j ± jM )∞ =
∑
P∈C

max{eP , ewM (P )}P.

The pole divisors of x, y are

(x)∞ = i∞+ wM (i∞), (y)∞ = (g + 1){i∞+ wM (i∞)}.

First assume that N is a square-free integer. For any P ∈ C, excluding
i∞ and wM (i∞), denote by wP the involution of Atkin–Lehner type such
that P = wP (i∞). The zero divisor of x−x(P ) is P +wMP and the value of
x(P ) is calculated by x(P ) = x(wP (i∞)) = w∗

P x(i∞). The function w∗
P x is

obtained by the action of the Atkin–Lehner involution on S2(Γ0(N)). Thus,
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we obtain the following:

F (T ) =
Fnum(T )∏

P∈C\{i∞,wM (i∞)} (T − x(P ))max{eP ,ewM (P )}/2
,

G(T ) =
Gnum(T )∏

P∈C\{i∞,wM (i∞)} (T − x(P ))max{eP ,ewM (P )}/2
,

deg Fnum =
∑
P∈C

max{eP , ewM (P )}/2,

deg Gnum = deg Fnum − (g + 1), Fnum(T ), Gnum(T ) ∈ Q[T ].

We determine the coefficients of Fnum and Gnum by the Fourier expansions
of x, y, j and jM to get the following:

j =
F (x) + G(x)y

2
, jM =

F (x)−G(x)y
2

,

jN =
F (w∗

Nx) + G(w∗
Nx)w∗

Ny

2
.

Last, we discuss the case where N is not a square-free integer; i.e., N =
28, 50. In this case, since Aut(X0(N)) is generated by the set of Atkin–
Lehner involutions and does not act transitively on the set of cusps, we
cannot determine all values at the cusps of x.

In the case N = 28, the Atkin–Lehner involution w4 has two fixed cuspi-
dal points ([10]), which will be denoted by P and Q respectively. It is easy to
see that w7(P ) = Q. Let x and y be the modular functions of X0(28) defined
in §2.1. Since w∗

4x = (x + 3)/(x − 1) and w∗
4y = −8y/(x − 1)3, we get the

equations x(P ) = (x(P ) + 3)/(x(P )− 1) and y(P ) = −8y(P )/(x(P )− 1)3.
Therefore it is easy to see that x(P ) = −1. Since the involution w7 is hy-
perelliptic, x(Q) = x(P ) = −1. The values at the other cusps of x are
determined in the same way as in the square-free case. Finally, using the
Fourier expansions of x, y, j and j7, we can determine the coefficients of
Fnum and Gnum.

In the case N = 50, put C ′ = {wd(i∞) | d ‖ 50} and C ′′ = C\C ′. Since
Aut(X0(50)) is generated by the Atkin–Lehner involutions (see [1] and [6]),
the set C ′ is the orbit of i∞ by Aut(X0(50)). For a positive divisor d of N
with 1 < d < N and for an integer i prime to N , let ( i

d ) denote the point of
X0(N) which is represented by i/d. Then ( i

d ) is defined over Q(ζn), where
n = gcd(d, N/d) and ζn is a primitive nth root of 1. Reducing i modulo n,
we have ϕ(n) Galois-conjugate cusps associated with d. By this notation, it
is easy to see that

C ′′ =
{(

1
5

)
,

(
3
5

)
,

(
7
5

)
,

(
9
5

)
,

(
1
10

)
,

(
3
10

)
,

(
7
10

)
,

(
9
10

)}
.
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The cusps in C ′′ are defined over Q(ζ5). Let x and y be the modular
functions of X0(50) defined in §2.1. We cannot determine the value of x at
the cusps in C ′′. However, we can obtain a few relations among the values
as follows. Since w50 is a hyperelliptic involution, x

((
i
5

))
= x

((
10−i
10

))
, for

i = 1, 3, 7 and 9. The values x
((

1
5

))
, x

((
3
5

))
, x

((
7
5

))
and x

((
9
5

))
in Q(ζ5)

are conjugate over Q. Therefore these values are the roots of a polynomial
over Q of degree 4, which we write as

∑4
i=0 ciT

i. We can determine the
rational functions in the forms similar to the rational functions F and G.
Finally, using the Fourier expansions of x, y, j and j50, we can determine
the coefficients of Fnum and Gnum, and ci’s.

R e m a r k 2.3. If N is a prime number, the expressions for j and jN

are polynomials in x and y with rational coefficients. If N is a composite
number, however, they are not polynomials but rational functions.

2.3. The special case N = 37. The case N = 37 is the unique case where
X0(N) is hyperelliptic with an exceptional hyperelliptic involution s. Let
x, y, j and j37 be the functions defined in §2.1. The action of w∗

37 on these
functions is as follows:

w∗
37x =

1
x

, w∗
37y =

y

x3
, w∗

37j = j37, w∗
37j37 = j.

The action of s∗ on x and y is as follows:

s∗x = x, s∗y = −y.

It is easy to see that

j + s∗j,
j − s∗j

y
∈ Q(X0(37))〈s

∗〉 = Q(x).

Denote by 0 and i∞ the points of X0(37) which are represented by 0 and
i∞, respectively. The pole divisors of j and s∗j are

(j)∞ = 37 0 + i∞, (s∗j)∞ = 37s(0) + s(i∞).

Since the hyperelliptic involution s sends the cusps to non-cuspidal Q-
rational points, i.e., {0, i∞} ∩ {s(0), s(i∞)} = ∅, we have

(j ± s∗j)∞ = 37{0 + s(0)}+ {i∞+ s(i∞)}.

On the other hand, the divisors of x, y are

(x)0 = 0 + s(0), (x)∞ = i∞+ s(i∞), (y)∞ = 3{i∞+ s(i∞)}.

Considering the divisors and the values at the cusps of x, y, j and s∗j, we
see that the rational functions F,G defined in §2.2 take the following form:
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j + s∗j =
2Fnum(x)

x37
,

j − s∗j

y
=

2Gnum(x)
x37

,

Fnum(T ) =
38∑

i=0

aiT
i, Gnum(T ) =

35∑
i=0

biT
i,

deg Fnum = 38, deg Gnum = 35.

Therefore,

j =
Fnum(x) + Gnum(x)y

x37
.

From the action of w∗
37,

j37 =
F37,num(x) + G37,num(x)y

x
,

F37,num(T ) =
38∑

i=0

a38−iT
i, G37,num(T ) =

35∑
i=0

b35−iT
i.

We do not know the Fourier expansion of s∗j. But we can determine the
coefficients ai of the polynomials Fnum and F37,num since the coefficients
of Fnum are the reciprocals of those of F37,num. The same holds for the
coefficients bi of the polynomials Gnum and G37,num.

3. Applications. Now, we have the expressions for j and jN in terms
of x, y as above. Since the expressions for j and jN reflect the properties of
X0(N) (i.e., it is the coarse moduli space of the isomorphism classes of the
generalized elliptic curves with a cyclic subgroup of order N), we can apply
them to arithmetic problems.

3.1. Computation of isogenous curves. Let N be a positive integer and
F a field of characteristic either 0 or p not dividing N . Let E be an elliptic
curve over F with modular invariant ε. We show how to compute a defining
equation of the curve E′ with modular invariant ε′ which is N -isogenous
to E. Eliminating y from the equations for j, we obtain a polynomial
equation in x and j. Substituting ε for j, we find the F -rational roots of the
resulting polynomial. Each root corresponds to an F -rational N -isogeny of
E; to recover the modular invariant ε′ of the isogenous curve, we need only
represent y as a rational function in x and substitute these roots into the
expression for jN .

Example 3.1 (N = 23). Let x, y be the modular functions on X0(23)
given in §2.1, satisfying y2 = (1 − x + x3)(−7 + 3x − 8x2 + x3). Then we
find that j, j23 are (A(x)±B(x)y)/2 with
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A(x) = − 6750 + 48600x− 83835x2 − 170775x3 + 1115109x4

− 2492280x5 + 2732814x6 − 116403x7 − 4877702x8

+ 8362616x9 − 6612454x10 + 302266x11 + 5423124x12

− 6447728x13 + 3209696x14 + 336674x15 − 1470068x16

+ 953856x17 − 336927x18 + 74221x19 − 10465x20

+ 920x21 − 46x22 + x23,

B(x) = (−5 + x)(−3 + x)(−2 + x)(−1 + x)x(1 + x)(3− 8x + x2)

× (−9− 6x + x2)(−5 + 3x− 7x2 + x3)(−3 + 7x− 7x2 + x3)

× (−1− 4x3 + x4).

Eliminating y, we find

0 = j2 −A(x)j +
A(x)2 −B(x)2y2

4
= j2 −A(x)j + (225− 1080x + 2268x2 − 2280x3 + 1894x4

− 968x5 + 732x6 + 232x7 + x8)3;

taking j = −3375, we obtain a polynomial of degree 24 in x, whose only
rational solution is x = 0, which corresponds to y = ±

√
−7. Substituting

these x, y in the formula for j and j23, we obtain j = −3375 and j23 = −3375.
These curves have complex multiplication by Q(

√
−4).

R e m a r k 3.1. Conversely, taking x = −1, 1, 2, 3 and 5, we obtain the
elliptic curves with modular invariants corresponding to these points. It is
easy to see that they are elliptic curves with complex multiplication.

3.2. Rational points of Xsplit(37). In case N = 37, we apply the relations
for j to the proof of the existence of rational points on Xsplit(37).

For a prime number p, let Xsplit(p) be the modular curve defined over Q
which corresponds to the modular subgroup

Γsplit(p) =
{(

a b
c d

)
(∈ SL2(Z))

∣∣∣∣ b ≡ c ≡ 0 or a ≡ d ≡ 0 (mod p)
}

,

i.e., Xsplit(p)(C) = Γsplit(p)\H∗. The affine open subspace Xsplit(p)\{cusps}
is the coarse moduli space over Q of the isomorphism classes of elliptic curves
with an unordered pair of independent subgroups of order p ([7]).

We will need a theorem regarding this modular curve proved by F. Mo-
mose (see [8]). Let J0(p) be the Jacobian variety of X0(p). Let wp be the
Atkin–Lehner involution as above. Denote by wp the automorphism of J0(p)
which is induced by the involution wp. Put J−0 (p) = J0(p)/((1 + wp)J0(p)).
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Denote by n(p) the number of Q-rational points on Xsplit(p) which are nei-
ther cusps nor CM points.

Theorem 3.1 (F. Momose). Let p = 11 or p ≥ 17 be a prime number
such that the Mordell–Weil group of J−0 (p) is of finite order. Then n(p) = 0,
provided p 6= 37.

In the case p = 37, it was only shown that n(37) ≤ 1. Further, he showed
the following proposition (loc.cit., Proposition 5.1):

Proposition 3.1 (F. Momose). Let x, y be the modular functions on
X0(37) satisfying y2 = 37− 11x2 − 9x4 − x6, and let

j(z) =
g(x) + h(x)y

(x− 1)(x + 1)37
with g(x), h(x) ∈ Q[x].

Then n(37) = 1 if and only if h(T ) = 0 has a Q-rational solution.

Though g, h were not determined in his paper, we now obtain the formula
for j as follows. Let x, y be the modular functions on X0(37) given by our
method satisfying

y2 = 1 + 14x + 35x2 + 48x3 + 35x4 + 14x5 + x6.

Then we get

j =
g(x)− h(x)y

x37

with

h(T ) = (1 + T )(1 + 3T + T 2)(1 + 11T + T 2)(1 + 7T + 9T 2 + 7T 3 + T 4)
× (1 + 39T + 623T 2 + 5332T 3 + 27007T 4 + 85293T 5 + 174954T 6

+ 241803T 7 + 227140T 8 + 141862T 9

+ 54236T 10 + 10029T 11 + T 12)
× (1 + 43T + 747T 2 + 6741T 3 + 34232T 4 + 102516T 5

+ 196228T 6 + 254142T 7 + 227826T 8 + 140552T 9 + 57320T 10

+ 13993T 11 + 1561T 12 + 6T 13 + T 14).

In this model the Q-rational solutions of h(T ) = 0 correspond to the
non-cuspidal Q-rational points on Xsplit(37). The equation h(T ) = 0 has
the Q-rational solution T = −1. This root corresponds to the elliptic curve
with modular invariant 2333113. This curve has complex multiplication by
Q(
√
−4). This implies that there is no Q-rational point on Xsplit(37) which

is neither a cusp nor a CM point. Thus the proof of the following result is
complete.

Theorem 3.2. n(37) = 0.
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R e m a r k 3.2. Using a minimal model of X0(37) over Z[1/37], F. Momose
proved that there is no Q-rational point on Xsplit(37) which is neither a cusp
nor a CM point. Our proof is independent of Momose’s and it was obtained
at about the same time.

4. Results. Since displaying all of our results requires so much space,
we show here only a few of them. The remaining formulae will be available
via E-mail, FTP, or a Web site. For hyperelliptic X0(N), using the normal
form y2 = f(x), f(T ) ∈ Q[T ], deg f = 2g + 2, we obtain the following
formula:

j = (A(x) + B(x)y)/C(x), A(x), B(x), C(x)(6= 0) ∈ Q(x).

If the level N is a prime number except for N = 37, the denominator C(x) is
a constant. In the following tables, we show the formula in case of N = 28, 37
and 50.

X0(28) j = (A(x) + B(x)y)/(2(−1 + x)28(1 + x)7)

A(x) (5 + 2x + x2)3(13008 + 42177x + 57719x2 + 52963x3 + 44885x4 + 28058x5

+ 15574x6 + 5654x7 + 1898x8 + 181x9 + 35x10 − 9x11 + x12)(169075845
+ 1098116910x + 3278374860x2 + 6248929986x3 + 8968175830x4

+ 10623599914x5 + 10765189860x6 + 9454160838x7 + 7305468855x8

+ 4990760364x9 + 3017246072x10 + 1607026868x11 + 753490212x12

+ 299600564x13 + 104970696x14 + 28125740x15 + 6098083x16 + 1027846x17

+ 34172x18 + 1706x19 + 2342x20 − 958x21 + 148x22 − 18x23 + x24)

B(x) (3 + x)(3 + x2)(−7 − 10x + x2)(5 + 2x + x2)3(17 + 4x + 6x2 + 4x3 + x4)
×(41 + 52x + 30x2 + 4x3 + x4)(101 + 222x + 87x2 + 20x3 + 99x4 − 18x5 + x6)
×(117 + 174x + 119x2 + 52x3 + 51x4 − 2x5 + x6)
×(801 + 2232x + 2556x2 + 1608x3 + 806x4 + 136x5 + 60x6 − 8x7 + x8)

y2 = (7 + x2)(2 − x + x2)(2 + x + x2)

w∗
4x = (x + 3)/(x − 1), w∗

4y = −8y/(x − 1)3, w∗
7x = x, w∗

7y = −y

X0(37) j = (A(x) + B(x)y)/(2x37)

A(x) 1 + 111x + 5735x2 + 183372x3 + 4070518x4 + 66731757x5 + 839493407x6

+ 8317265927x7 + 66131419272x8 + 428160735157x9 + 2284094397370x10

+ 10141854349015x11 + 37817937455677x12 + 119384337840577x13

+ 321369497716872x14 + 742413958994112x15 + 1479993441620981x16

+ 2557518837768352x17 + 3844682647926228x18 + 5040446568786745x19

+ 5771102747209386x20 + 5772348707995318x21 + 5039052928059619x22

+ 3830661226098476x23 + 2526431885027090x24 + 1437737230666334x25

+ 700668498928018x26 + 289466658760084x27 + 100014973703245x28

+ 28384018942515x29 + 6457169560547x30 + 1138631535508x31

+ 148372738444x32 + 13304984549x33 + 730929635x34

+ 19194157x35 − 13542x36 − 8570x37 + x38
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X0(37) j = (A(x) + B(x)y)/(2x37) (cont.)

B(x) −(1 + x)(1 + 3x + x2)(1 + 11x + x2)(1 + 7x + 9x2 + 7x3 + x4)
×(1 + 39x + 623x2 + 5332x3 + 27007x4 + 85293x5 + 174954x6 + 241803x7

+ 227140x8 + 141862x9 + 54236x10 + 10029x11 + x12)
×(1 + 43x + 747x2 + 6741x3 + 34232x4 + 102516x5 + 196228x6 + 254142x7

+ 227826x8 + 140552x9 + 57320x10 + 13993x11 + 1561x12 + 6x13 + x14)

y2 = 1 + 14x + 35x2 + 48x3 + 35x4 + 14x5 + x6

w∗
37x = 1/x, w∗

37y = y/x3

X0(50) j = (A(x) + B(x)y)/(2x25(1 − x + x2 − x3 + x4)2)

A(x) 1 − 27x + 328x2 − 2404x3 + 12130x4 − 46009x5 + 140463x6 − 362742x7

+ 816971x8 − 1634775x9 + 2947150x10 − 4837750x11 + 7283825x12

− 10113250x13 + 13004525x14 − 15533650x15 + 17267375x16 − 17884450x17

+ 17267375x18 − 15533650x19 + 13004525x20 − 10113250x21 + 7283825x22

− 4837749x23 + 2947146x24 − 1633257x25 + 809839x26 − 255521x27

− 1106705x28 + 9868787x29 − 59388022x30 + 287219154x31 − 1171478936x32

+ 4151783509x33 − 13056854599x34 + 37007235600x35 − 95655444000x36

+ 227567476300x37 − 501969994000x38 + 1032749964225x39

− 1991498401100x40 + 3613985237750x41 − 6192689172300x42

+ 10048194355375x43 − 15475599952600x44 + 22668854106600x45

− 31634943149000x46 + 42118449170175x47 − 53561435925500x48

+ 65120676960350x49 − 75752874230492x50 + 84360772459109x51

− 89973966294576x52 + 91924432360268x53 − 89973972454560x54

+ 84360789755333x55 − 75752913429356x56 + 65120755428254x57

− 53561577388652x58 + 42118681382175x59 − 31635292772600x60

+ 22669339542600x61 − 15476224169800x62 + 10048939970575x63

− 6193518006300x64 + 3614843691350x65 − 1992327235100x66

+ 1033495579425x67 − 502594211200x68 + 228052912300x69 − 96005067600x70

+ 37239447600x71 − 13198317800x72 + 4230251200x73 − 1210690800x74

+ 304628566x75 − 66136232x76 + 12115548x77 − 1823264x78 + 218005x79

− 19804x80 + 1278x81 − 52x82 + x83

B(x) (−1 + x)(1 − 3x + x2)(−1 − x2 + x3)(1 − 6x + 9x2 − 6x3 + x4)
×(1 − 4x − x2 − 4x3 + x4)(1 − 3x − 3x3 + x4)(1 − 2x + x2 − 2x3 + x4)
×(−1 + x − x2 + 2x3 − 3x4 + x5)(1 + x − 4x5 + x6)(−1 − x − x2 − 3x4 − x5

− 3x6 + x7)(1 − 5x + 7x2 − 12x3 + 14x4 − 12x5 + 7x6 − 5x7 + x8)
×(−1 − x − 3x3 − 3x6 + 3x7 − 5x8 + x9)(1 − x + 2x2 − 4x3 + 5x4 − 7x5

+ 9x6 − 8x7 + 5x8 − 4x9 + x10)(−1 + 2x − 4x3 + 5x4 − x5 − 5x6

+ 11x7 − 19x8 + 22x9 − 16x10 + 10x11 − 6x12 + x13)

y2 = 1 − 4x − 10x3 − 4x5 + x6

w∗
2x = 1/x, w∗

2y = −y/x3, w∗
50x = x, w∗

50y = −y
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