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On the irreducibility of some polynomials in two variables
by

B. BRINDzA and A. PINTER (Debrecen)

To the memory of Paul Erdds

Let f(X) and ¢g(Y') be polynomials with integral coefficients in the single
independent variables X and Y. The diophantine problem f(x) = g(y) is
strongly related to the absolute irreducibility and the genus of f(X)—g(Y)
as pointed out by Davenport, Lewis and Schinzel [DLS]:

THEOREM A. Let f(X) be of degree n > 1 and g(Y) of degree
m > 1. Let D(X\) = disc(f(x) + A) and E(X\) = disc(g(y) + A). Suppose
there are at least [n/2] distinct roots of D(X) = 0 for which E(\) # 0. Then
f(X) = g(Y) is irreducible over the complex field. Further, the genus of the
equation f(x) — g(y) = 0 is strictly positive except possibly when m = 2 or
m =n = 3. Apart from these possible exceptions, the equation has at most
a finite number of integral solutions.

The purpose of this note is to handle some special cases. For an integer
k > 1 we set

(X)) =X(X+1)...( X +k—-1).
For several scattered effective and ineffective results on the equation

(1) fr(x) = fily)  in integers z,y
we refer to [BS], [MB], [SS], [SST1], [SST2] and [Sh].

By using an algebraic number-theoretic argument we can guarantee the
conditions of Theorem A in certain cases. Let I denote the set of integers
k for which f;(X) is either irreducible or it has an irreducible factor of
degree k — 2. Our conjecture, based upon several numerical examples, is
that I is the whole set of positive integers, more exactly, either f;(X) or
f1(X)/(2X + k — 1) are irreducible depending on the parity of k. Applying
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Eisenstein’s theorem one can see that the primes belong to I and we have
checked by computer that {1,2,3,...,30} C I.

THEOREM 1. If k and 1 are elements of I with 2 < k < I, then the
polynomial fi(X) — fi(Y) is irreducible (over C) and (1) has only finitely
many solutions.

Moreover, some simple inequalities lead to

THEOREM 2. Let k and m be integers greater than 2. Then the equation
fe(x) = <y> in positive integers x and y
m

has only finitely many solutions.

Remark. Similar (effective) results in the cases k = 2,1 > 2; k = 2,
m > 2 and m = 2,k > 2 were obtained in [Y] and [SST2], respectively.
These equations can be treated by Baker’s method.

Proof of Theorem 1. The discriminant of the polynomial fj(X)+A\
is denoted by Dy (M), i.e.

DiN) =C [ (fa@)+N
Jr.(2)=0
(cf. [DLS]) where C' is a non-zero absolute constant. To show that Dy()\)
and D;(A) have no common zeros, we take any irrational zeros oy, and [ of
fr. and f], respectively, and put
K = Q(ax, ).
The crucial step is that instead of the comparison of fx(ay) and f;(5;) we

show that their field norms with respect to K are not equal. If f/(X) is
irreducible, then a simple calculation yields

/ 11 _ [K:Q(ak)]
N]K/Q(fk(ozk))z(fk(o)”}f'ik(l k)> ;

furthermore, if k is even then f;(X) is always divisible by the linear factor
2X + k —1 and in case k € I, as was pointed out by A. Schinzel, we get

28 f1(0) . (1 — k) ) o)
(1) 2k (k — D! '
According to these formulae, for an integer n > 2, we write

F20)... 1 (1 —n) [

n

2 £1(0)... f4(1 =)

n™(n — 1)

Nio(fulan)) = (

if n is odd,

an = 1/(n—2)

if n is even.
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For convenience, set b1 = by = 1 and
b =[x (0) ... frL = k)| (k>2).
Since
fl/f—i-l(l):(l_'_k)fllc(l)’ ZZO,—].,,]_—]{Z, |fl/c+1(_k)|:k'7
we have the recursion by 1 = by (k!)?, and therefore
bp=2...(k—1NH? (k>2).

To prove that the sequence a,, n = 3,4, ..., is strictly increasing we have
two cases to distinguish depending on the parity of the indices. To illustrate
the tendency, as, ..., a14 are listed below up to several digits:
a3 =038..., a1=17..., a5=22..., ag=18.1...,
ar=301..., ag=3629..., a9=711.9..., ajp=11756.1...,
aip =26250.9..., a;o =244460.0..., a3 =1.39-10% a4 =1.65-107.

If k is even then ay < ak41 (k > 2) is equivalent to
b/ P2 (ot)2 gkl (B2 (f — 1))V B2 (g 1)~ (kD) o=/ (h=2)

and in the sequel, we may assume that k > 14. By using induction we
obtain

_ 2
(2) b/ (F=2) 5 (k29

Indeed, supposing (2) and the recursion for by; we have to show

o ()" e < (B 2Y

8
Assuming (3) not true and applying k! < (%)k (k > 2) we obtain

2k—11.2k*—4k
8 ;k > (k—i— 1)21@2741%2

and
2k?—4k

2
2.6k~ > (k;”f’f > <1 + ;1) :

which is false for k£ > 14. Therefore (3), and hence (2), is proved for k& > 14.
On the other hand,

2 1/2
<k> < (kD" <k> < ((k = 1)mH/ =2,
e e

and

B \k/(E=2) LANK/ (E=2) LANT/6
R/ =2) (] 4 1)~ (RFD/R S (2 > (= — 92
(k+1) “\Ft1 “\15 ) 09
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imply

29.5 e

hence ay < agy1 is proved if k is even. The remaining case (k is odd) is
simple. We get

b\ /(6D
ap = ﬁ )

g1 = (25T (B0 (k + 1) FT ()T

2.5 1/2 2
k?/8 < L <k> -0.92 - 2—7/6<12> (k> 14),

1/(k=1)

One can observe that k! > k!l and
. (E+1e 2k +1E!
k=r < e < k417
(k+1) (k+1)

and thus, Theorem 1 is proved.

Proof of Theorem 2. The exceptional case (k,m) = (3,3) is cov-
ered by a rather general result of [S1] (cf. [ST, p. 122]).

Set
(1-3-...-(k—1))

A(k) = k.(1.3-2.k..-(k—2))2

2k

As a matter of fact we prove a little more. Namely, the equation

if £ is even,

if k£ is odd.

afiy(z) =bfn(y) in positive integers z and y

with aA(k) > b(m — 1)! has only finitely many solutions. To guarantee the
conditions of Theorem A it is enough to show that

4 a min )| >b max |f., .
(@ i V()] > b a1 (0)

Obviously,

b(m —1)!'>b max |f,(y)|
(m=1)t> b max|f.()

Since all the zeros of f(x) are real, also all zeros of fj(x) are real and, by
Rolle’s theorem, they alternate with the zeros of f(z). Elementary calculus

yields fk<_ ;) fk<_ 2) fk<— 2k2_3>'>'

5 g ey

a min )| > amin
min 1fi(o)] > amin (



Since

a -
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92k
a-1-3-...-(2j—1)-1-3-5-...-(2k— (2j +1))
92k
a-Ak) (G=1,...,k—1),

2

£ < 2 - 1>‘ 2(k — j) — )25 — DN

v

(4) is proved.

(BS]

[DLS]

[ST]

[Y]

References

R. Balasubramanian and T. N. Shorey, On the equation f(x +1)... f(z+
k)= f(y+1)... f(y+mk), Indag. Math. (N.S.) 4 (1993), 257-267.

H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(z) =
9(y), Quart. J. Math. 12 (1961), 304-312.

R. A. MacLeod and I. Barrodale, On equal products of consecutive integers,
Canad. Math. Bull. 13 (1970), 255-259.

N.Saradhaand T. N. Shorey, The equations (z+1) ... (z+k) = (y+1)... (y+
mk) with m = 3,4, Indag. Math. (N.S.) 2 (1991), 489-510.

N. Saradha, T. N. Shorey and R. Tijdeman, On the equation z(z +1)...
izt k=1)=yly+d)...(y+ (mk—1)d), m = 1,2, Acta Arith. 71 (1995),
181-196.

—, —, —, On arithmetic progressions with equal products, ibid. 68 (1994), 89—
100.

A. Schinzel, An improvement of Runge’s theorem on diophantine equations,
Comment. Pontific. Acad. Sci. 2 (1969), no. 20, 1-9.

—, Reducibility of polynomials of the form f(x) — g(y), Colloq. Math. 18 (1967),
213-218.

T.N.Shorey, On a conjecture that a product of k consecutive positive integers is
never equal to a product of mk consecutive positive integers except for 8-9-10 = 6!
and related questions, in: Number Theory (Paris, 1992-93), London Math. Soc.
Lecture Note Ser. 215, Cambridge Univ. Press, Cambridge, 1995, 231-244.

T. N. Shorey and R. Tijdeman, Ezponential Diophantine Equations, Cam-
bridge Univ. Press, Cambridge, 1986.

P. Z. Yuan, On a special Diophantine equation a(l) = by" + ¢, Publ. Math.
Debrecen 44 (1994), 137-143.

Mathematical Institute of Kossuth Lajos University
P.O. Box 12

H-4010 Debrecen, Hungary

E-mail: apinter@math.klte.hu

Received on 31.12.1996
and in revised form on 9.6.1997 (3108)



