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Gauss sums for orthogonal groups
over a finite field of characteristic two

by

Dae San Kim (Seoul) and Young Ho Park (Chuncheon)

1. Introduction. Let λ be a nontrivial additive character of the finite
field Fq. Assume that q = 2d is a power of two. Then the exponential sum

(1.1)
∑
w∈G

λ(trw)

is considered for each of the groups G, where G is one of the orthogonal
or special orthogonal groups O+(2n, q), SO+(2n, q), O−(2n, q), SO−(2n, q)
and O(2n+ 1, q).

The purpose of this paper is to find an explicit expression of the sum
(1.1), for each of G listed above. It turns out that they can be expressed
as polynomials in q with coefficients involving ordinary Kloosterman sums
and Gauss sums. In fact, except for the case O(2n+1, q) the expressions for
(1.1) are identical to the corresponding ones for q odd (i.e., a power of an
odd prime). On the other hand, the expression for O(2n+ 1, q) is identical
to the one for SO(2n+ 1, q) with q odd and differs by a constant from the
corresponding one for q odd.

Here it should be stressed that, although our final expressions are (al-
most) identical to the corresponding ones for q odd, there are many differ-
ences between the two cases in many respects.

Similar sums for other classical groups over a finite field have been con-
sidered and the results for these sums will appear in various places ([3]–[9]).

We now state some of the main results of this paper. Here again q is a
power of two. For some notations, one is referred to the next section.
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Theorem A. The sum
∑

w∈O(2n+1,q) λ(trw) equals

λ(1)
∑

w∈Sp(2n,q)

λ(trw),

so that it is λ(1) times

qn2−1

[n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1),

where Sp(2n, q) is the symplectic group over Fq, K(λ; 1, 1) is the usual
Kloosterman sum as in (2.21) and the innermost sum is over all integers
j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n− 2r + 1.

Theorem B. The sum
∑

w∈O+(2n,q) λ(trw) is given by

qn2−n−1

{ [n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)

+
[(n−1)/2]∑

r=0

qr(r+1)

[
n

2r + 1

]
q

r+1∏
j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
}
,

where the first and second unspecified sums are respectively over all integers
j1, . . . , jl−1 satisfying 2l− 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n− 2r+ 1 and over
the same set of integers satisfying 2l− 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n− 2r.

Theorem C. The sum
∑

w∈O−(2n,q) λ(trw) is given by

qn2−n−1

(
− 1
q − 1

q−1∑
j=1

G(ψj , λ)2 + q + 1
)
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×
{ [(n−1)/2]∑

r=0

qr(r+3)

[
n− 1

2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)

−
[(n−2)/2]∑

r=0

qr(r+3)+1

[
n− 1
2r + 1

]
q

r+1∏
j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
}
,

where G(ψj , λ) is the usual Gauss sum as in (2.20) with ψ a multiplicative
character of Fq of order q − 1, the first unspecified sum is over all integers
j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n − 2r and the
second one is over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤
. . . ≤ j1 ≤ n− 2r − 1.

The above Theorems A, B, and C are respectively stated as Theorem 6.1,
Theorem 6.3, and Theorem 5.2.

2. Preliminaries. Unless otherwise stated, Fq will denote the finite
field with q = 2d elements. Whenever it is necessary to consider the case
q = pd with p an odd prime, we will say that q is odd. As an excellent
background reference for matrix groups over finite fields, one may refer
to [11].

Let λ be an additive character of Fq. Then λ = λa for a unique a ∈ Fq,
where, for α ∈ Fq,

λa(α) = exp{πi(aα+ (aα)2 + . . .+ (aα)2
d−1

)}.

It is nontrivial if a 6= 0.
trA denotes the trace of A for a square matrix A and tB indicates the

transpose of B for any matrix B.
An n× n matrix A = (aij) over Fq is called alternating if

(2.1)
{
aii = 0 for 1 ≤ i ≤ n,
aij = −aji = aji for 1 ≤ i < j ≤ n.

In the following discussion, we note that, up to equivalence, (F2n×1
q , θ±)

are all nondegenerate quadratic spaces of dimension 2n and (F(2n+1)×1
q , θ)

is the only nondegenerate quadratic space of dimension 2n+ 1.
Let θ+ be the nondegenerate quadratic form on the vector space F2n×1

q
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of all 2n× 1 column vectors over Fq, given by

(2.2) θ+
( 2n∑

i=1

xie
i
)

=
n∑

i=1

xixn+i,

where {e1 = t[1 0 . . . 0], e2 = t[0 1 0 . . . 0], . . . , e2n = t[0 . . . 0 1]} is the
standard basis of F2n×1

q .

GL(n, q) denotes the group of all n×n nonsingular matrices with entries
in Fq.

Then the group of all isometries of (F2n×1
q , θ+) is given by

(2.3) O+(2n, q)

=

{[
A B
C D

]
∈ GL(2n, q)

∣∣∣∣ tAC and tBD are alternating,
tAD + tCB = 1n

}

=

{[
A B
C D

]
∈ GL(2n, q)

∣∣∣∣ AtB and CtD are alternating,
AtD +BtC = 1n

}
(cf. (2.1)). Here A,B,C and D are of size n.

P+(2n, q) is the maximal parabolic subgroup of O+(2n, q) defined by

(2.4) P+(2n, q)

=
{[

A 0
0 tA−1

] [
1n B
0 1n

] ∣∣∣∣ A ∈ GL(n, q), B alternating
}
.

Let θ− be the nondegenerate quadratic form on the vector space F2n×1
q ,

given by

(2.5) θ−
( 2n∑

i=1

xie
i
)

=
n−1∑
i=1

xixn−1+i + x2
2n−1 + x2n−1x2n + ax2

2n,

where {e1, . . . , e2n} is the standard basis of F2n×1
q as above, and a is a fixed

element in Fq such that z2 + z + a is irreducible over Fq.

Let P(x) = x2 + x denote the Artin–Schreier operator in characteristic
two. Then the sequence of groups

0 → F+
2 → F+

q → P(Fq) → 0

is exact so that

(2.6) P(Fq) = {b2 + b | b ∈ Fq}, [F+
q : P(Fq)] = 2,

where the first map is the inclusion from the additive group of the prime
subfield of Fq to that of Fq and the second one is x 7→ P(x) = x2 + x.
Moreover, z2 + z + a is irreducible over Fq if and only if a ∈ Fq − P(Fq).
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Let δa, δ̃a (with a the fixed element in Fq as in (2.5)) and η denote the
special 2× 2 matrices over Fq:

(2.7) δa =
[

1 1
0 a

]
, δ̃a =

[
a 1
0 1

]
, η =

[
0 1
1 0

]
.

The group O−(2n, q) of all isometries of (F2n×1
q , θ−) consists of all ma-

trices in GL(2n, q),

(2.8)

A B e
C D f
g h i

 ,
satisfying the following relations:

(2.9)

tAC + tgδag is alternating,
tBD + thδah is alternating,
tef + tiδai+ δa is alternating,
tAD + tCB + tgηh = 1n−1,
tAf + tCe+ tgηi = 0,
tBf + tDe+ thηi = 0;

or equivalently

(2.10)

AtB + eδ̃a
te is alternating,

CtD + f δ̃a
tf is alternating,

gth+ iδ̃a
ti+ δ̃a is alternating,

AtD +BtC + eηtf = 1n−1,

Ath+Btg + eηti = 0,
Cth+Dtg + fηti = 0.

In (2.8), A, B, C, D are of size (n−1)×(n−1), e, f are of size (n−1)×2,
g, h are of size 2× (n− 1), and i is of size 2× 2.

P−(2n, q) is the maximal parabolic subgroup of O−(2n, q) given by

(2.11) P−(2n, q)

=


A 0 0

0 tA−1 0
0 0 i

 1n−1 B thtiηi
0 1n−1 0
0 h 12

∣∣∣∣∣∣
A ∈ GL(n− 1, q),
i ∈ O−(2, q),
tB + thδah is alternating

 ,

where we note that O−(2, q) is the group of isometries of (F2×1
q , θ−) with

θ−(x1e
1 + x2e

2) = x2
1 + x1x2 + ax2

2

(cf. (2.5)).
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It can be shown that

(2.12) O−(2, q) = SO−(2, q)q
[

1 1
0 1

]
SO−(2, q),

with

(2.13) SO−(2, q) =
{[

d1 ad2

d2 d1 + d2

]∣∣∣∣ d2
1 + d1d2 + ad2

2 = 1
}

=
{[

d1 ad2

d2 d1 + d2

]∣∣∣∣ d1 + d2b ∈ Fq(b) with
NFq(b)/Fq

(d1 + d2b) = 1

}
,

where b ∈ Fq is a root of the irreducible polynomial z2 + z + a ∈ Fq[z]. So
SO−(2, q) is a subgroup of index 2 in O−(2, q), and

(2.14) |SO−(2, q)| = q + 1, |O−(2, q)| = 2(q + 1).

The reason for defining SO−(2, q) as in (2.13) will be explained in Section 3.
Let θ be the nondegenerate quadratic form on the vector space F(2n+1)×1

q

of all (2n+ 1)× 1 column vectors over Fq, given by

(2.15) θ
( 2n+1∑

i=1

xie
i
)

=
n∑

i=1

xixn+i + x2
2n+1,

where {e1 = t[1 0 . . . 0], e2 = t[0 1 0 . . . 0], . . . , e2n+1 = t[0 . . . 0 1]} is the
standard basis of F(2n+1)×1

q .

The group of all isometries of (F(2n+1)×1
q , θ) is given by

(2.16) O(2n+ 1, q)

=


A B 0
C D 0
g h 1

 ∈ GL(2n+ 1, q)

∣∣∣∣∣∣
tAC + tgg and tBD + thh

are alternating,
tAD + tCB = 1n


=


A B 0
C D 0
g h 1

 ∈ GL(2n+ 1, q)

∣∣∣∣∣∣
AtB +BtggtB +AthhtA and
CtD +DtggtD + CthhtC are
alternating, AtD +BtC = 1n

 .

Here A, B, C, D are of size n× n and g, h are 1× n matrices.
It is worth observing, for example, that tAC + tgg is alternating if and

only if tAC = tCA and g =
√

diag(tAC), where the meaning of the latter
condition is as follows. Recall that every element in Fq can be written as
α2 for a unique α ∈ Fq. Now,

(2.17)
√

diag(tAC) indicates the 1×n matrix [α1 α2 . . . αn] if the diag-
onal entries of tAC are given by

(tAC)11 = α2
1, . . . , (tAC)nn = α2

n for αi ∈ Fq.
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As is well known or can be checked immediately, there is an isomorphism
of groups

(2.18) ι : O(2n+ 1, q) → Sp(2n, q),

given by A B 0
C D 0
g h 1

 7→
[
A B
C D

]
.

Let P (2n+1, q) be the maximal parabolic subgroup of O(2n+1, q) given
by

(2.19) P (2n+ 1, q)

=


A 0 0

0 tA−1 0
0 0 1

 1n B 0
0 1n 0
0 h 1

 ∣∣∣∣∣∣ A ∈ GL(n, q),
B + thh is alternating

 .

For a multiplicative character χ of Fq and an additive character λ of Fq,
G(χ, λ) denotes the Gauss sum defined by

(2.20) G(χ, λ) =
∑

α∈F×q

χ(α)λ(α).

For a nontrivial additive character λ of Fq, and a, b ∈ Fq, K(λ; a, b) is
the Kloosterman sum defined by

(2.21) K(λ; a, b) =
∑

α∈F×q

λ(aα+ bα−1).

The order of the group GL(n, q) is given by

(2.22) gn =
n−1∏
j=0

(qn − qj) = q(
n
2)

n∏
j=1

(qj − 1).

Then we have, for integers n, r with 0 ≤ r ≤ n,

(2.23)
gn

gn−rgr
= qr(n−r)

[
n
r

]
q

,

where
[

n
r

]
q

is as in (2.24) just below.
From now on till the end of this section, q will denote not just a power

of 2 but also an indeterminate.
For integers n, r with 0 ≤ r ≤ n, the q-binomial coefficients are defined

as

(2.24)
[
n
r

]
q

=
r−1∏
j=0

(qn−j − 1)/(qr−j − 1).
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For x an indeterminate, n a nonnegative integer,

(x; q)n = (1− x)(1− xq) . . . (1− xqn−1).

Then the q-binomial theorem says

(2.25)
n∑

r=0

[
n
r

]
q

(−1)rq(
r
2)xr = (x; q)n.

Finally, [y] denotes the largest integer ≤ y, for a real number y.

3. Bruhat decompositions. In this section, we discuss the Bruhat de-
compositions of the orthogonal groups O+(2n, q), O−(2n, q) and O(2n+1, q),
respectively, with respect to the maximal parabolic subgroups P+(2n, q),
P−(2n, q) and P (2n+ 1, q).

As simple applications, we will show that these decompositions, when
combined with the q-binomial theorem, can be used to derive the orders of
those orthogonal groups.

Let F+
2 be the additive group of the prime subfield of Fq. Then there are

epimorphisms δ+ : O+(2n, q) → F+
2 and δ− : O−(2n, q) → F+

2 , which are
respectively related to the Clifford algebras C(F2n×1

q , θ+) and C(F2n×1
q , θ−).

Explicit expressions for δ+ and δ− can be obtained so that SO+(2n, q) :=
Ker δ+, SO−(2n, q) := Ker δ− are determined in the form of certain decom-
positions (cf. (3.46), (3.52)).

The Bruhat decomposition of O+(2n, q) with respect to P+ = P+(2n, q)
is given by

(3.1) O+(2n, q) =
n∐

r=0

P+σ+
r P

+,

where

(3.2) σ+
r =


0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r

 ∈ O+(2n, q).

This can be proved in exactly the same manner as in the proof of Theo-
rem 3.1 of [9].

Write, for each r (0 ≤ r ≤ n),

(3.3) A+
r = {w ∈ P+(2n, q) | σ+

r w(σ+
r )−1 ∈ P+(2n, q)}.

By expressing O+(2n, q) as a disjoint union of right cosets of P+ =
P+(2n, q), the Bruhat decomposition in (3.1) can be written as

(3.4) O+(2n, q) =
n∐

r=0

P+σ+
r (A+

r \P+).
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Write w ∈ P+(2n, q) as

(3.5) w =
[
A 0
0 tA−1

] [
1n B
0 1n

]
,

with

(3.6)
A =

[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12
tB12 B22

]
,

B11 and B22 alternating.

Here A11, A12, A21, and A22 are respectively of sizes r × r, r × (n − r),
(n− r)× r, and (n− r)× (n− r), and similarly for tA−1 and B.

Then, by multiplying out, we see that σ+
r w(σ+

r )−1 ∈ P+(2n, q) if and
only if A12 = 0, B11 = 0. Hence

(3.7) |A+
r | = grgn−rq

(n
2)qr(2n−3r+1)/2,

where gn is as in (2.22). Also, we have

(3.8) |P+(2n, q)| = q(
n
2)gn.

From (3.7), (3.8) and (2.23), we get

|A+
r \P+(2n, q)| =

[
n
r

]
q

q(
r
2),(3.9)

|P+(2n, q)|2|A+
r |−1 = q(

n
2)gn

[
n
r

]
q

q(
r
2).(3.10)

Since we have, from (3.4),

(3.11) |O+(2n, q)| =
n∑

r=0

|P+(2n, q)|2 |A+
r |−1,

(3.10) and (3.11), on applying the q-binomial theorem (2.25) with x = −1,
yield

(3.12) |O+(2n, q)| = 2qn2−n(qn − 1)
n−1∏
j=1

(q2j − 1).

Note here that (3.7), (3.8), and hence (3.9) and (3.12) are the same as
the corresponding formulas in [9] for q odd.

Next, the Bruhat decomposition of O−(2n, q) with respect to P− =
P−(2n, q) is

(3.13) O−(2n, q) =
n−1∐
r=0

P−σ−r P
−,
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where

(3.14) σ−r =


0 0 1r 0 0
0 1n−1−r 0 0 0
1r 0 0 0 0
0 0 0 1n−1−r 0
0 0 0 0 12

 ∈ O−(2n, q).

(3.13) can be shown in an exactly analogous manner to the proof of
Theorem 3.1 in [5].

For each r (0 ≤ r ≤ n− 1), put

(3.15) A−r = {w ∈ P−(2n, q) | σ−r w(σ−r )−1 ∈ P−(2n, q)}.
Then the Bruhat decomposition in (3.13) can be written, expressed as a
disjoint union of right cosets of P− = P−(2n, q), as

(3.16) O−(2n, q) =
n−1∐
r=0

P−σ−r (A−r \P−).

Write w ∈ P−(2n, q) as

(3.17) w =

A 0 0
0 tA−1 0
0 0 i

 1n−1 B thtiηi
0 1n−1 0
0 h 12

 ,
with

(3.18)
A =

[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12

B21 B22

]
,

h = [h1 h2], tB + thδah alternating

(cf. (2.7)). Here A11, A12, A21, and A22 are respectively of sizes r × r,
r × (n− 1− r), (n− 1− r)× r, and (n− 1− r)× (n− 1− r), similarly for
tA−1, B, and h1 is of size 2× r. Then σ−r w(σ−r )−1 ∈ P−(2n, q) if and only
if A12 = 0, B11 = 0, h1 = 0. So, recalling the order of O−(2, q) from (2.14),
we get

(3.19) |A−r | = 2(q + 1)grgn−1−rq
(n−1)(n+2)/2qr(2n−3r−5)/2,

where gn is as in (2.22). Also,

(3.20) |P−(2n, q)| = 2(q + 1)gn−1q
(n−1)(n+2)/2.

From (3.19), (3.20) and (2.23), we get

|A−r \P−(2n, q)| =
[
n− 1
r

]
q

qr(r+3)/2,(3.21)

|P−(2n, q)|2|A−r |−1 = 2(q + 1)qn2−n
n−1∏
j=1

(qj − 1)
[
n− 1
r

]
q

q(
r
2)q2r.(3.22)
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Note that we have, from (3.16),

(3.23) |O−(2n, q)| =
n−1∑
r=0

|P−(2n, q)|2 |A−r |−1.

From (3.22), (3.23) and applying the q-binomial theorem (2.25) with x =
−q2, we get

(3.24) |O−(2n, q)| = 2qn2−n(qn + 1)
n−1∏
j=1

(q2j − 1).

Again, we see that (3.19), (3.20), and hence (3.21) and (3.24) are the
same as the corresponding formulas in [5] for q odd.

Finally, the Bruhat decomposition of O(2n + 1, q) with respect to P =
P (2n+ 1, q) is

(3.25) O(2n+ 1, q) =
n∐

r=0

PσrP,

where

(3.26) σr =


0 0 1r 0 0
0 1n−r 0 0 0
1r 0 0 0 0
0 0 0 1n−r 0
0 0 0 0 1

 ∈ O(2n+ 1, q).

The decomposition in (3.25) can be proved, for example, by using the iso-
morphism ι in (2.18) and the well known Bruhat decomposition

(3.27) Sp(2n, q) =
n∐

r=0

P ′σ′rP
′,

where

P ′ = P ′(2n, q)(3.28)

=
{[

A 0
0 tA−1

] [
1n B
0 1n

] ∣∣∣∣ A ∈ GL(n, q), tB = B

}
is a maximal parabolic subgroup of Sp(2n, q), and

(3.29) σ′r =


0 0 1r 0
0 1n−r 0 0
1r 0 0 0
0 0 0 1n−r

 ∈ Sp(2n, q).

As usual, (3.25) and (3.27) can be rewritten respectively as

(3.30) O(2n+ 1, q) =
n∐

r=0

Pσr(Ar\P )
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and

(3.31) Sp(2n, q) =
n∐

r=0

P ′σ′r(A
′
r\P ′),

where, for each r (0 ≤ r ≤ n),

Ar = {w ∈ P (2n+ 1, q) | σrwσ
−1
r ∈ P (2n+ 1, q)},(3.32)

A′r = {w ∈ P ′(2n, q) | σ′rw(σ′r)
−1 ∈ P ′(2n, q)}.(3.33)

Write w ∈ P (2n+ 1, q) as

(3.34) w =

A 0 0
0 tA−1 0
0 0 1

 1n B 0
0 1n 0
0 h 1

 ,
with

(3.35)
A =

[
A11 A12

A21 A22

]
, tA−1 =

[
E11 E12

E21 E22

]
, B =

[
B11 B12
tB12 B22

]
,

B11 = tB11, B22 = tB22, h = [h1 h2] =
√

diagB

(cf. (2.17)). Here A11, A12, A21, and A22 are respectively of sizes r × r,
r × (n− r), (n− r)× r, (n− r)× (n− r), similarly for tA−1 and B, and h1

is of size 1× r.

Then σrwσ
−1
r ∈ P (2n+ 1, q) if and only if A12 = 0, B11 = 0. Thus

(3.36) |Ar| = grgn−rq
(n+1

2 )qr(2n−3r−1)/2,

where gn is as in (2.22). Also,

(3.37) |P (2n+ 1, q)| = gnq
(n+1

2 ).

From (3.36), (3.37) and (2.23), we get

|Ar\P (2n+ 1, q)| =
[
n
r

]
q

q(
r+1
2 ),(3.38)

|P (2n+ 1, q)|2|Ar|−1 = qn2
n∏

j=1

(qj − 1)
[
n
r

]
q

q(
r
2)qr.(3.39)

Since |O(2n+1, q)| =
∑n

r=0 |P (2n+1, q)|2 |Ar|−1 from (3.30), by apply-
ing the q-binomial theorem (2.25) with x = −q we get

(3.40) |O(2n+ 1, q)| = qn2
n∏

j=1

(q2j − 1).

Note here again that (3.36), (3.37), and hence (3.38) and (3.40) are the
same as the corresponding formulas in [4] for q odd.
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In order to define SO+(2n, q) and SO−(2n, q), we turn our attention
to the δ-function defined on the group of isometries of an even-dimensional
nondegenerate quadratic space over a finite field of characteristic two.

Let (V, θ̃) be a vector space V over Fq, of dimension 2n, together with the
nondegenerate quadratic form θ̃. Then the epimorphism δ : O(V, θ̃) → F+

2

can be described as follows, where F+
2 is the additive group of the prime

subfield of Fq. Assume that

(3.41) V = 〈e1, f1〉 ⊥ . . . ⊥ 〈en, fn〉,

where β̃(ei, fi) = 1 (i = 1, . . . , n) for the associated symmetric bilinear
form β̃ of θ̃, and the orthogonality in (3.41) is with respect to β̃. Then, for
w ∈ O(V, θ̃),

(3.42) δ(w) =
n∑

i,j=1

(aijbij θ̃(ei) + cijdij θ̃(fi) + bijcij),

where

(3.43) [w]B =
[
A B
C D

]
is the matrix of w relative to the ordered basis B = (e1, . . . , en, f1, . . . , fn),
i.e., the columns of (3.43) are the “coordinate matrices” relative to B of the
images under w of the vectors in B, with A = (aij), B = (bij), C = (cij),
D = (dij) n× n matrices.

It is known that δ is independent of a choice of basis as in (3.41). The
explicit formula of δ in (3.42) can be obtained from the fact that, for each
w ∈ O(V, θ̃), δ(w) ∈ Fq satisfies

n∑
i=1

eifi =
n∑

i=1

(wei)(wfi) + δ(w)

in the Clifford algebra C(V, θ̃) of (V, θ̃).
Writing

F2n×1
q = 〈e1, en+1〉 ⊥ . . . ⊥ 〈en, e2n〉,

we see from (3.42) that δ+ : O+(2n, q) → F+
2 is given by

(3.44) δ+(w) = tr(BtC),

where

w =
[
A B
C D

]
∈ O+(2n, q)

(cf. (2.3)).
On the other hand, writing

F2n×1
q = 〈e1, en〉 ⊥ 〈e2, en+1〉 ⊥ . . . ⊥ 〈en−1, e2n−2〉 ⊥ 〈e2n−1, e2n〉,
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we see, from (3.42) again, that δ− : O−(2n, q) → F+
2 is given, for w ∈

O−(2n, q), by

(3.45) δ−(w) = tr(thδag) + tr
(
e

[
0 0
1 0

]
tf

)
+ tr(BtC) + ti2δai

1,

where δa is as in (2.7), i = [i1 i2] with i1, i2 respectively denoting the first
and second columns of i, and

w =

A B e
C D f
g h i

 ∈ O−(2n, q)

(cf. (2.8)–(2.10)).
Using (3.44), we see that δ+(w) = 0 for w ∈ P+(2n, q) (cf. (2.4)),

δ+(σ+
r ) = 0 for r even, and δ+(σ+

r ) = 1 for r odd (cf. (3.2)). So, from (3.4),
we see that SO+(2n, q) := Ker δ+ is given by

(3.46) SO+(2n, q) =
∐

0≤r≤n
r even

P+σ+
r (A+

r \P+).

On the other hand, we see, by exploiting (3.45), that δ−(σ−r ) = 0 for r
even and δ−(σ−r ) = 1 for r odd (cf. (3.14)). Further, for w ∈ P−(2n, q)
we have δ−(w) = ti2δai

1 in the notation of w in (2.8). Here i = [i1 i2] ∈
O−(2, q). Thus, from (2.12) and (2.13), we see that δ−(w) = 0 for i ∈
SO−(2, q) and that δ−(w) = 1 for i ∈

[ 1 1

0 1

]
SO−(2, q).

Put

(3.47) Q− = Q−(2n, q) =
A 0 0

0 tA−1 0
0 0 i

 1n−1 B thtiηi
0 1n−1 0
0 h 12

 ∣∣∣∣∣∣
A ∈ GL(n− 1, q),
i ∈ SO−(2, q),
tB + thδah is alternating

 ,

which is a subgroup of index 2 in P− = P−(2n, q). Then the Bruhat decom-
position in (3.13) can be modified to give

(3.48) O−(2n, q) =
n−1∐
r=0

P−σ−r Q
−.

Also, we put, for each r (0 ≤ r ≤ n− 1),

(3.49) B−r = {w ∈ Q−(2n, q) | σ−r w(σ−r )−1 ∈ P−(2n, q)}.
It is a subgroup of index 2 in A−r (cf. (3.15)), and (3.48) can be rewritten
as

(3.50) O−(2n, q) =
n−1∐
r=0

P−σ−r (B−r \Q−).
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Moreover,

(3.51) |B−r \Q−| = |A−r \P−|.
Now, from the above observation about the values of δ− and (3.50),
SO−(2n, q) := Ker δ− is given by

SO−(2n, q) =
( ∐

0≤r≤n−1
r even

Q−σ−r (B−r \Q−)
)

(3.52)

q
( ∐

0≤r≤n−1
r odd

%Q−σ−r (B−r \Q−)
)
,

where

(3.53) % =


1n−1 0 0 0

0 1n−1 0 0
0 0 1 1
0 0 0 1

 ∈ P−(2n, q)

(cf. (2.11)).

4. Certain propositions

Proposition 4.1. Let λ be a nontrivial additive character of Fq. Then:

(a) For any positive integer r,

(4.1)
∑

h∈Fr×2
q

λ(tr δathh) = (−q)r.

(b) For any positive even integer r,

(4.2)
∑

h∈Fr×2
q

λ(tr δathNh) = qr.

Here δa is as in (2.7), and N is the r × r matrix

(4.3) N =
[

0 1r/2

1r/2 0

]
.

P r o o f. It is easily seen that the LHS of (4.1) equals( ∑
x,y∈Fq

λ(x2 + xy + ay2)
)r

,

where

(4.4)
∑

x,y∈Fq

λ(x2 + xy + ay2) =
∑

y∈F×q

∑
x∈Fq

λ(x2 + xy + ay2).

Here one notes that
∑

x∈Fq
λ(x2) =

∑
x∈Fq

λ(x) = 0.
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For each fixed y ∈ F×q ,∑
x∈Fq

λ(x2 + xy + ay2) +
∑
x∈Fq

λ(x2 + xy)

=
∑
x∈Fq

λ(y2(x2 + x+ a)) +
∑
x∈Fq

λ(y2(x2 + x))

= 2
{ ∑

t∈P(Fq)

λ(y2(t+ a)) +
∑

t∈P(Fq)

λ(y2t)
}

= 2
∑
x∈Fq

λ(y2x) = 2
∑
x∈Fq

λ(x) = 0

(cf. (2.6)).
Thus (4.4) equals

−
∑

y∈F×q

∑
x∈Fq

λ(x(x+ y)) = −
∑
x∈Fq

∑
y∈Fq

λ(x(x+ y)) = −
∑

x,y∈Fq

λ(xy)

= −
{ ∑

x∈F×q

∑
y∈Fq

λ(y) +
∑
y∈Fq

1
}

= −q.

This shows (a). (b) is easy to see.

The following proposition was proved in [1] and mentioned in [2, Theo-
rems 2.3 and 2.4].

Proposition 4.2. (a) If B is an r × r alternating matrix of rank p
over Fq, then there exists A ∈ GL(r, q) such that

B = tA

 0 1s 0
1s 0 0
0 0 0

A (2s = p).

(b) If B is an r×r symmetric, nonalternating matrix of rank p over Fq,
then there exists A ∈ GL(r, q) such that

B = tA

[
1p 0
0 0

]
A.

The next proposition contains special cases of Theorems 2 and 3 of [10].

Proposition 4.3. Let sr and nr denote respectively the number of r× r
nonsingular symmetric matrices over Fq and that of r×r nonsingular alter-
nating matrices over Fq. So sr − nr equals the number of r× r nonsingular
symmetric, nonalternating matrices over Fq. Then sr, nr, sr−nr are respec-
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tively given by :

sr =


qr(r+2)/4

r/2∏
j=1

(q2j−1 − 1) for r even,

q(r
2−1)/4

(r+1)/2∏
j=1

(q2j−1 − 1) for r odd ,

(4.5)

nr =

 qr(r−2)/4

r/2∏
j=1

(q2j−1 − 1) for r even,

0 for r odd ,

(4.6)

sr − nr =


qr(r−2)/4(qr − 1)

r/2∏
j=1

(q2j−1 − 1) for r even,

q(r
2−1)/4

(r+1)/2∏
j=1

(q2j−1 − 1) for r odd.

(4.7)

Proposition 4.4. Let λ be a nontrivial additive character of Fq. For
each positive integer r, let Ωr be the set of all r × r nonsingular symmetric
matrices over Fq. Then:

br(λ) =
∑

B∈Ωr

∑
h∈Fr×2

q

λ(tr δathBh)(4.8)

=


qr(r+6)/4

r/2∏
j=1

(q2j−1 − 1) for r even,

−q(r2+4r−1)/4

(r+1)/2∏
j=1

(q2j−1 − 1) for r odd.

P r o o f. In view of Proposition 4.2 and with the notations of Proposi-
tion 4.3, br(λ) can be written as

br(λ) =


nr

∑
h∈Fr×2

q

λ(tr δathNh) + (sr − nr)
∑

h∈Fr×2
q

λ(tr δathh) for r even,

(sr − nr)
∑

h∈Fr×2
q

λ(tr δathh) for r odd,

where δa and N are respectively as in (2.7) and (4.3).
Now, our result follows from (4.1), (4.2), (4.6) and (4.7).

R e m a r k. It is amusing to note that the formula of br(λ) in (4.8)
coincides with that of the corresponding sum in (4.6) of [5] for q odd.
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Proposition 4.5. Let λ be a nontrivial additive character of Fq. Then

∑
w∈SO−(2,q)

λ(trw) = − 1
q − 1

q−1∑
j=1

G(ψj , λ)2,(4.9)

∑
w∈SO−(2,q)

λ(tr δ1w) = q + 1,(4.10)

where ψ is a multiplicative character of Fq of order q − 1 and

(4.11) δ1 =
[

1 1
0 1

]
.

P r o o f. (4.10) is clear from (2.13) and (2.14), since λ(tr δ1w) = λ(0) = 1
for each w ∈ SO−(2, q).

Let b ∈ Fq be a root of the irreducible polynomial z2 + z + a ∈ Fq[z]
(with a as in (2.5)). Then, for the quadratic extension K = Fq(b) of Fq and

w =
[
d1 ad2

d2 d1 + d2

]
∈ SO−(2, q)

(cf. (2.13)), we have

trw = d2 = trK/Fq
(d1 + d2b).

Thus the LHS of (4.9) can be rewritten as∑
α∈K, NK/Fq (α)=1

λ ◦ trK/Fq
(α).

Now, (4.9) follows by using the same argument as in the proof of Proposi-
tion 4.5 of [5].

R e m a r k. As in the odd q case ([5], Remark after Proposition 4.5),
(4.9) yields the estimate∣∣∣ ∑

w∈SO−(2,q)

λ(trw)
∣∣∣ ≤ q − 1.

5. O−(2n, q) case. In this section, we will consider the sum∑
w∈G

λ(trw)

for any nontrivial additive character λ of Fq and G = O−(2n, q) or
SO−(2n, q), and find explicit expressions for these by using the decomposi-
tions in (3.50) and (3.52).
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In view of (3.50), the sum
∑

w∈O−(2n,q) λ(trw) can be written as

(5.1)
n−1∑
r=0

|B−r \Q−|
∑

w∈P−

λ(trwσ−r ).

Here one has to observe that, for each y ∈ Q−,∑
w∈P−

λ(trwσ−r y) =
∑

w∈P−

λ(tr ywσ−r ) =
∑

w∈P−

λ(trwσ−r ).

Write w ∈ P−(2n, q) as in (3.17) with A, tA−1, B, h as in (3.18). Note
here that B and h are subject to the condition

tB + thδah is alternating,

which is equivalent to the conditions:

(5.2)


tB11 + th1δah1 is alternating,
tB22 + th2δah2 is alternating,
tB12 + th2δah1 = tB21 + th1δah2.

Now, ∑
w∈P−

λ(trwσ−r ) =
∑

i∈O−(2,q)

λ(tr i)
∑
A,h

λ(trA22 + trE22)(5.3)

×
∑
B

λ(trA11B11 + trA12B21).

For each fixed A, h and taking the last condition in (5.2) into consider-
ation, the last sum in (5.3) is over all B11, B21, B22 satisfying the first and
second conditions in (5.2), so that it equals

(5.4) q(
n−1−r

2 ) ∑
B11

λ(trA11B11)
∑
B21

λ(trA12B21).

The inner sum in (5.4) is nonzero if and only if A12 = 0, in which case it
equals qr(n−1−r). On the other hand, the sum over B11 in (5.4) is nonzero
if and only if A11 is symmetric, in which case it equals q(

r
2)λ(tr δah1A11

th1).
To see this, we let

A11 = (αij), B11 = (βij), h =
[
h11 h12 . . . h1r

h21 h22 . . . h2r

]
.

Then tB11 + th1δah1 is alternating if and only if

(5.5)
{
βii = h2

1i + h1ih2i + ah2
2i for 1 ≤ i ≤ r,

βij = βji + h1ih2j + h1jh2i for 1 ≤ i < j ≤ r.
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Using these relations, we see that

(5.6) trA11B11 =
r∑

i=1

αii(h2
1i + h1ih2i + ah2

2i)

+
∑

1≤i<j≤r

αij(h1ih2j + h1jh2i) +
∑

1≤i<j≤r

(αij + αji)βij .

Thus the sum over B11 in (5.4) is nonzero if and only if αij = αji for
1 ≤ i < j ≤ r, i.e., A11 is symmetric. Moreover, in that case (5.6) can be
rewritten as tr δah1A11

th1, so that∑
B11

λ(trA11B11) = q(
r
2)λ(tr δah1A11

th1).

We have shown that (5.4) is nonzero if and only if A =
[ A11 0

A21 A22

]
with

A11 nonsingular symmetric, in which case it equals

q(
n−1−r

2 )+(r
2)+r(n−1−r)λ(tr δah1A11

th1) = q(
n−1

2 )λ(tr δah1A11
th1).

For such an A =
[ A11 0

A21 A22

]
,[

E11 E12

E21 E22

]
=

[
tA−1

11 ∗
0 tA−1

22

]
.

So the sum in (5.3) can be written as

q(
n−1

2 ) ∑
i∈O−(2,q)

λ(tr i)
∑

A21,h2

∑
A11,h1

λ(tr δah1A11
th1)

∑
A22

λ(trA22 + trA−1
22 )

= q(
n−1

2 )+2(n−1−r)+r(n−1−r)
∑

i∈O−(2,q)

λ(tr i)br(λ)KGL(n−1−r,q)(λ; 1, 1)

= q(n−1)(n+2)/2+r(n−r−3)
∑

i∈O−(2,q)

λ(tr i)br(λ)KGL(n−1−r,q)(λ; 1, 1),

where br(λ) is as in (4.8), and in [8], for a, b ∈ Fq, KGL(t,q)(λ; a, b) is defined
as

(5.7) KGL(t,q)(λ; a, b) =
∑

w∈GL(t,q)

λ(a trw + b trw−1).

Putting everything together, the sum in (5.1) can be written as

(5.8) q(n−1)(n+2)/2
∑

i∈O−(2,q)

λ(tr i)

×
n−1∑
r=0

|B−r \Q−|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1).

An explicit expression for (5.7) was obtained in [8].
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Theorem 5.1. For integers t ≥ 1 and nonzero elements a, b of Fq, the
Kloosterman sum KGL(t,q)(λ; a, b) is given by

KGL(t,q)(λ; a, b) = q(t−2)(t+1)/2

[(t+2)/2]∑
l=1

qlK(λ; a, b)t+2−2l(5.9)

×
∑ l−1∏

ν=1

(qjν−2ν − 1),

where K(λ; a, b) is the usual Kloosterman sum as in (2.21) and the inner
sum is over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤
j1 ≤ t+ 1. Here we agree that the inner sum is 1 for l = 1.

R e m a r k. The inner sum in (5.9) is equivalently given by

∑ l−1∏
ν=1

(qjν − 1),

where the sum is over all integers j1, . . . , jl−1 satisfying 2l− 3 ≤ j1 ≤ t− 1,
2l − 5 ≤ j2 ≤ j1 − 2, . . . , 1 ≤ jl−1 ≤ jl−2 − 2 (with the understanding
j0 = t+ 1 for l = 2).

In view of (2.12), (4.9), (4.10), (3.51), (3.21), (4.8) and (5.9), we get the
following theorem from (5.8).

Theorem 5.2. Let λ be a nontrivial additive character of Fq. Then the
Gauss sum over O−(2n, q), ∑

w∈O−(2n,q)

λ(trw),

is given by

(5.10) qn2−n−1

(
− 1
q − 1

q−1∑
j=1

G(ψj , λ)2 + q + 1
)

×
{ [(n−1)/2]∑

r=0

qr(r+3)

[
n− 1

2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
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−
[(n−2)/2]∑

r=0

qr(r+3)+1

[
n− 1
2r + 1

]
q

r+1∏
j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
}
,

where G(ψj , λ) is the usual Gauss sum as in (2.20) with ψ a multiplicative
character of Fq of order q− 1, and K(λ; 1, 1) is the usual Kloosterman sum
as in (2.21). In addition, the first unspecified sum in (5.10) is over all
integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n − 2r
and the second one is over all integers j1, . . . , jl−1 satisfying 2l−1 ≤ jl−1 ≤
jl−2 ≤ . . . ≤ j1 ≤ n− 2r − 1.

As to the Gauss sum
∑

w∈SO−(2n,q) λ(trw), we may write it, using the
decomposition in (3.52), as∑

w∈SO−(2n,q)

λ(trw) =
∑

0≤r≤n−1
r even

|B−r \Q−|
∑

w∈Q−

λ(trwσ−r )(5.11)

+
∑

0≤r≤n−1
r odd

|B−r \Q−|
∑

w∈Q−

λ(tr %wσ−r ).

Here one has to observe that, for each y ∈ Q−,∑
w∈Q−

λ(tr %wσ−r y) =
∑

w∈Q−

λ(tr y%wσ−r ) =
∑

w∈Q−

λ(tr %y′wσ−r )

=
∑

w∈Q−

λ(tr %wσ−r ),

where y′ = %−1y% ∈ Q− = Q−(2n, q) with % as in (3.53).
Glancing through the above argument about

∑
w∈O−(2n,q) λ(trw), we

see that (5.11) equals

q(n−1)(n+2)/2

×
{ ∑

i∈SO−(2,q)

λ(tr i)
∑

0≤r≤n−1
r even

|B−r \Q−|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1)

+
∑

i∈SO−(2,q)

λ(tr δ1i)
∑

0≤r≤n−1
r odd

|B−r \Q−|qr(n−r−3)br(λ)KGL(n−1−r,q)(λ; 1, 1)
}
,

where δ1 is as in (4.11).
So we get the following result.

Theorem 5.3. Let λ be a nontrivial additive character of Fq. Then the
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Gauss sum over SO−(2n, q), ∑
w∈SO−(2n,q)

λ(trw),

is given by

(5.12) qn2−n−1

×
{(

− 1
q − 1

q−1∑
j=1

G(ψj , λ)2
) [(n−1)/2]∑

r=0

qr(r+3)

[
n− 1

2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)

− (q + 1)
[(n−2)/2]∑

r=0

qr(r+3)+1

[
n− 1
2r + 1

]
q

r+1∏
j=1

(q2j−1 − 1)

×
[(n−2r)/2]∑

l=1

qlK(λ; 1, 1)n−2r−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
}
,

where G(ψj , λ) is the usual Gauss sum as in (2.20) with ψ a multiplicative
character of Fq of order q− 1, and K(λ; 1, 1) is the usual Kloosterman sum
as in (2.21). In addition, the first unspecified sum in (5.12) is over all
integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n − 2r
and the second one is over all integers j1, . . . , jl−1 satisfying 2l−1 ≤ jl−1 ≤
jl−2 ≤ . . . ≤ j1 ≤ n− 2r − 1.

R e m a r k. We see that the expressions in (5.10) and (5.12) are the same
as the corresponding ones in [5] for q odd.

6. O+(2n, q) and O(2n+ 1, q) cases. In this section, we will consider
the sum ∑

w∈G

λ(trw)

for any nontrivial additive character λ of Fq andG=O+(2n, q) or SO+(2n, q)
or O(2n+ 1, q), and find explicit expressions for them by using the decom-
positions in (3.4), (3.46) and (3.30).

First, we consider the sum

(6.1)
∑

w∈O(2n+1,q)

λ(trw).

With P = P (2n + 1, q), σr, Ar respectively as in (2.19), (3.26), (3.32) and
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by using the decomposition in (3.30), (6.1) can be written as

(6.2)
n∑

r=0

|Ar\P |
∑
w∈P

λ(trwσr).

With P ′ = P ′(2n, q), σ′r, A
′
r respectively as in (3.28), (3.29), (3.33), we

see that

|Ar\P | = |A′r\P ′|
(cf. (3.38) and [8], (3.10)), and, for w ∈ P,

trwσr = tr(ι(w)σ′r) + 1,

where ι is the isomorphism in (2.18).
So (6.2) can be rewritten as

λ(1)
n∑

r=0

|A′r\P ′|
∑
w∈P

λ(tr ι(w)σ′r) = λ(1)
n∑

r=0

|A′r\P ′|
∑

w∈P ′

λ(trwσ′r)

= λ(1)
∑

w∈Sp(2n,q)

λ(trw),

in view of the decomposition in (3.31) and the fact that ι(P ) = P ′.

An explicit expression for
∑

w∈Sp(2n,q) λ(trw), for q a power of any
prime, was obtained in Theorem 5.4 of [8].

Theorem 6.1. Let λ be a nontrivial additive character of Fq. Then the
Gauss sum over O(2n+ 1, q), ∑

w∈O(2n+1,q)

λ(trw),

equals

λ(1)
∑

w∈Sp(2n,q)

λ(trw),

so that it is λ(1) times

qn2−1

[n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1),

where K(λ; 1, 1) is the usual Kloosterman sum as in (2.21) and the inner-
most sum is over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤
. . . ≤ j1 ≤ n− 2r + 1.
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R e m a r k. The Gauss sum (6.1) has the same expression as the sum∑
w∈SO(2n+1,q) λ(trw) for q odd (cf. [4], Theorem 5.1). On the other hand,

the sum ∑
w∈O(2n+1,q)

λ(trw)

for q odd is given by

(λ(1) + λ(−1))
∑

w∈Sp(2n,q)

λ(trw)

(cf. [4], Theorem 6.1).
Next, we consider the sum

(6.3)
∑

w∈O+(2n,q)

λ(trw).

In view of the decomposition in (3.4), (6.3) can be written as

(6.4)
n∑

r=0

|A+
r \P+|

∑
w∈P+

λ(trwσ+
r ).

By proceeding just as in the odd q case (cf. [9]), we see that (6.4) equals

q(
n
2)

n∑
r=0

|A+
r \P+|qr(n−r)srKGL(n−r,q)(λ; 1, 1),

where sr denotes the number of all r × r nonsingular symmetric matrices
over Fq (sr = 1, for r = 0), and KGL(n−r,q)(λ; 1, 1) is as in (5.7).

On the other hand, the sum ∑
w∈SO+(2n,q)

λ(trw)

is given by

q(
n
2)

∑
0≤r≤n
r even

|A+
r \P+|qr(n−r)srKGL(n−r,q)(λ; 1, 1),

in view of (3.46).
Note that |A+

r \P+| and sr as well as KGL(n−r,q)(λ; 1, 1) are the same
as the corresponding formulas for q odd (cf. (3.9) and (4.5); [9], (3.13) and
(4.7)). So we should get the same results as for the odd q case.

Theorem 6.2. Let λ be a nontrivial additive character of Fq. Then the
Gauss sum over SO+(2n, q), ∑

w∈SO+(2n,q)

λ(trw),

is given by
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qn2−n−1

[n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1),

where K(λ; 1, 1) is the usual Kloosterman sum as in (2.21) and the inner-
most sum is over all integers j1, . . . , jl−1 satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤
. . . ≤ j1 ≤ n− 2r + 1.

Theorem 6.3. Let λ be a nontrivial additive character of Fq. Then the
Gauss sum over O+(2n, q), ∑

w∈O+(2n,q)

λ(trw),

is given by

qn2−n−1

{ [n/2]∑
r=0

qr(r+1)

[
n
2r

]
q

r∏
j=1

(q2j−1 − 1)

×
[(n−2r+2)/2]∑

l=1

qlK(λ; 1, 1)n−2r+2−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)

+
[(n−1)/2]∑

r=0

qr(r+1)

[
n

2r + 1

]
q

r+1∏
j=1

(q2j−1 − 1)

×
[(n−2r+1)/2]∑

l=1

qlK(λ; 1, 1)n−2r+1−2l
∑ l−1∏

ν=1

(qjν−2ν − 1)
}
,

where K(λ; 1, 1) is the usual Kloosterman sum as in (2.21), and the first
and second unspecified sums are respectively over all integers j1, . . . , jl−1

satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n − 2r + 1 and over the same
set of integers satisfying 2l − 1 ≤ jl−1 ≤ jl−2 ≤ . . . ≤ j1 ≤ n− 2r.
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