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Algebraic points of low degree on the Fermat quintic

by

Matthew Klassen (Tacoma, Wa.) and Pavlos Tzermias (Bellaterra)

1. Introduction. The Fermat quintic is the smooth plane curve with
projective equation

F5 = {(X, Y, Z) ∈ P 2(Q) : X5 + Y 5 = Z5}.
In this paper, which is based on [4] and [7], we characterize all rational
points on F5 over all number fields of degree at most 6 over Q.

It is well known that there are exactly three Q-rational points on F5,
namely

Q0 = (0, 1, 1), Q1 = (1, 0, 1), ∞ = (−1, 1, 0).
Also let η be a primitive 6th root of 1 in Q and let η denote the complex
conjugate of η. Consider the following quadratic points on F5:

P = (η, η, 1), P = (η, η, 1).

Note that all of the above five points lie on the line

L: X + Y = Z.

For a positive integer d, let ΓQ,d denote the union of all extensions of Q of
degree at most d. Gross and Rohrlich have proved in [3] that

F5(ΓQ,2) = {Q0, Q1,∞, P, P}.
Now we define “trivial points” of higher degree, i.e. points which can be

obtained from the points of F5(ΓQ,2).
Let R1 be a point of degree k over Q. We denote by R1, . . . , Rk the

conjugates of R1 over Q. Also let L′ denote any plane Q-rational line and
P ′ any of the three Q-rational points Q0, Q1, ∞. Further, denote by C ′ any
plane Q-rational conic which has contact of order 2 with F5 at one of the
pairs of points (Q0,∞), (Q1,∞), (Q0, Q1) or (P, P ). For such a conic C ′,
let t(C ′) denote the effective divisor 2Q0 + 2Q∞, 2Q1 + 2∞, 2Q0 + 2Q1 or
2P + 2P , respectively.
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Definition. Let notation be as in the previous paragraph. A point R1

on F5 of degree k = 4, 5 or 6 will be called a trivial point if R1 + . . . + Rk is
of the form F5.L

′ − P ′, F5.L
′ or F5.C

′ − t(C ′), respectively.

The main result in this paper is the following theorem:

Theorem 1. F5(ΓQ,6) consists of Q0, Q1, ∞, P , P and the trivial points
of degrees 4, 5 and 6. In particular , there are no points of degree 3 on F5.

The paper is organized as follows: In Section 2, we compute the group
J5(Q) of Q-rational points on the Jacobian J5 of F5. We show that J5(Q) is a
group isomorphic to (Z/5Z)2 and we exhibit its generators. In Section 3, we
prove some auxiliary results that will be needed for the proof of Theorem 1.
In Section 4, we prove Theorem 1 using the results of the previous sections.
Finally, in Section 5, we formulate an extension of Fermat’s conjecture and
discuss related results.

2. The Q-rational points on J5. Let K be the cyclotomic field
obtained by adjoining a primitive 5th root of unity ζ to Q. Also let ε be a
primitive 10th root of unity such that ε2 = ζ (for example, let ε = −ζ3).
Following [6], we note the following K-rational points on F5:

aj = (0, ζj , 1), bj = (ζj , 0, 1), cj = (εζj , 1, 0),

where 0 ≤ j ≤ 4. These points will be referred to as points at infinity on
F5. Observe that Q0 = a0, Q1 = b0 and ∞ = c2.

Let J∞5 denote the subgroup of J5 consisting of those divisor classes of
degree 0 which can be represented by a divisor supported on the points at
infinity on F5. In [6], Rohrlich has determined the structure of J∞5 . It is a
group isomorphic to (Z/5Z)8. In [7] we proved that J5(K) = J∞5 . From this
we deduced the following theorem, whose proof was only sketched in [7]:

Theorem 2. J5(Q) is a group isomorphic to (Z/5Z)2. The divisor classes
[a0− c2] and [b0− c2] form a basis for J5(Q) as a Z/5Z-vector space.

Since the proof of our main result depends crucially on Theorem 2, we
will give a detailed proof of the latter in this section. It clearly suffices
to determine which elements of J∞5 remain invariant under the action of a
generator of the Galois group Gal(K/Q). We will make use of the following
result, due to Rohrlich:

Theorem 3 ([6], Corollary 1). A divisor of degree 0 supported on the
points at infinity on F5 is principal if and only if , mod 5, it is in the span
of

4∑
j=0

aj ,
4∑

j=0

bj ,
4∑

j=0

cj ,
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4∑
j=0

j(aj + bj),
4∑

j=0

j(bj + cj),
4∑

j=0

j(j + 1)(aj + bj + cj).

Proof of Theorem 2. Consider the generator g ∈ Gal(K/Q) given by
ε 7→ ε3. Then ζ 7→ ζ3. We immediately see that

ag
0 = a0, ag

1 = a3, ag
2 = a1, ag

3 = a4, ag
4 = a2,

bg
0 = b0, bg

1 = b3, bg
2 = b1, bg

3 = b4, bg
4 = b2,

cg
0 = c1, cg

1 = c4, cg
2 = c2, cg

3 = c0, cg
4 = c3.

Now, by [6], for any element of J∞5 , we can choose a representative of the
form

D = x1(a0 − a1) + x2(a0 − a2) + x3(a0 − a3) + x4(a0 − a4)
+ y1(b0 − b1) + y2(b0 − b2) + y3(b0 − b3) + y4(b0 − b4)
+ z1(c2 − c0) + z2(c2 − c1) + z3(c2 − c3) + z4(c2 − c4)
+ s(a0 − c2) + t(b0 − c2),

for integers s, t, xj , yj , zj , 1 ≤ j ≤ 4. Therefore,

Dg −D = (x1 − x2)a1 + (x2 − x4)a2 + (x3 − x1)a3 + (x4 − x3)a4

+ (y1 − y2)b1 + (y2 − y4)b2 + (y3 − y1)b3 + (y4 − y3)b4

+ (z1 − z3)c0 + (z2 − z1)c1 + (z3 − z4)c3 + (z4 − z2)c4.

Now since [D] ∈ J5(Q), the divisor Dg − D is principal. By Theorem 3,
there exist integers l1, . . . , l6 such that, mod 5,

Dg −D = l1

4∑
j=0

aj + l2

4∑
j=0

bj + l3

4∑
j=0

cj

+ l4

4∑
j=0

j(aj + bj) + l5

4∑
j=0

j(bj + cj)

+ l6

4∑
j=0

j(j + 1)(aj + bj + cj).

Comparing the coefficients of a0, b0, c0, a4, b4, a2 in both expressions for
Dg −D, we get (always mod 5)

l1 = l2 = 0,

l3 = z1 − z3,

l4 = x3 − x4,

l5 = y3 − y4 + x4 − x3,

l6 = x4 − 2x3 + x2.
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Using the above relations and comparing the coefficients of all points at
infinity in the two expressions for Dg −D, we get (always mod 5)

x1 = 2x3 + x4 − 2x2,

y1 = 3y3 + 3y4 + 3x4 − x3 + 3x2,

y2 = 2y3 − y4 + x4 − 2x3 + x2,

z2 = z1 − y3 + y4 + x2 − x3,

z3 = z1 + 2y3 − 2y4 + x3 − 2x4 + x2,

z4 = z1 + y3 − y4 − x3 + x4.

Therefore, mod 5, we have

D − s(a0 − c2)− t(b0 − c2)
= (2x4 − 2x3 − x2)a0 + (2x2 − x4 − 2x3)a1 − x2a2 − x3a3 − x4a4

+ (y3 − 2y4 − x4 + 2x3 − x2)b0 + (2y3 + 2y4 + 2x4 + x3 + 2x2)b1

+ (−2y3 + y4 − x4 + 2x3 − x2)b2 − y3b3 − y4b4 − z1c0

+ (−z1 + y3 − y4 − x2 + x3)c1 + (−z1 + 2y3 − 2y4 + 2x2 − x3 − x4)c2

+ (−z1 − 2y3 + 2y4 − x3 + 2x4 − x2)c3 + (−z1 − y3 + y4 + x3 − x4)c4.

It is now a straightforward task to verify that the right-hand side of the
latter equality is equal, mod 5, to the linear combination

(2x4 − 2x3 − x2)
4∑

j=0

aj + (y3 − 2y4 − x4 + 2x3 − x2)
4∑

j=0

bj + (−z1)
4∑

j=0

cj

+ (−2x4 − 2x3 − x2)
4∑

j=0

j(aj + bj) + (y3 − y4 − x3 + x4)
4∑

j=0

j(bj + cj)

+ (2x2 + x3 + 2x4)
4∑

j=0

j(j + 1)(aj + bj + cj).

By Theorem 3, we see immediately that [D] = s[a0 − c2] + t[b0 − c2]. This
proves that every Q-rational point on J5 is a linear combination of the classes
a0 − c2 and b0 − c2. Using Theorem 3, it is easy to check that these two
divisor classes are linearly independent over Z/5Z. This completes the proof
of Theorem 2.

3. Linear series on the Fermat quintic. In the proof of Theorem 1
we will make use of an explicit description of equivalence classes of divisors
of degree 6 on a smooth plane quintic C, i.e. a nonsingular plane curve of
degree 5 (and hence of genus 6). Since the complete linear series are just
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the fibers of the Abel–Jacobi map

f (6) : C(6) → J(C),

we will describe them from this point of view. (This material is well known,
but we include it here for completeness. For more general results of this
type concerning base-point free pencils, consult [1].)

Let x be a point of J(C), let fx be the fiber (f (6))−1(x), and let D ∈ fx.
Then we will show that fx has one of the following types:

(f0) fx = {D}, r(D) = 0 (a single divisor);
(f1) fx = |D|, r(D) = 1, and D contains 4 collinear points (i.e. there are

base-points P1 and P2 of |D| such that |D−P1−P2| is a g1
4 induced

by a pencil of lines through a fixed point on C);
(f2) fx = |D| and D contains 5 collinear points (i.e. there is a base-point

P1 of |D| such that |D−P1| is the unique g2
5 cut out by lines on C);

(f3) fx = |D| and D consists of 6 points on a conic (i.e. |D| is the g1
6

induced by a pencil of conics through 4 fixed points on C).

Lemma 1. If C is a smooth plane quintic, then the fibers of the
Abel–Jacobi map f (6) : C(6) → J(C) are completely described by the cases
(f0)–(f3) above.

P r o o f. The proof can be broken down into cases. First, let D be an
effective divisor of degree 6 on C. Then either r(D) = 0 or r(D) > 0. We
only need to show that if r(D) > 0 then we are in one of the cases (f1)–(f3)
above. We will observe below that the points of D lie on a conic. Then
either this conic is irreducible (no 3 points of D lie on a line), or the conic
is reducible in which case we will let k = k(D) ≥ 3 denote the maximum
number of collinear points of D. The cases then break down as follows:
irreducible or reducible and k = 3 yields (f3); reducible and k = 4 or k = 5
yields (f1) or (f2), respectively. We now proceed with the proof.

By Clifford’s theorem, r(D) ≤ 2. We use the Riemann–Roch Theorem in
the form r− i = d− g, so r(D) = i(D), where i(D) is the number of linearly
independent holomorphic differentials ω on C such that (ω) ≥ D. Now the
canonical series on C is cut out by the linear system of conics in the plane.
So for r(D) > 0 the points of D lie on a conic. If the conic is irreducible,
then it is the unique conic containing the six points of D, and hence there is
only one differential ω on C such that (ω) ≥ D. So r(D) = i(D) = 1. Now
let D′ = (ω) −D. Then the complete linear series |D| consists precisely of
those divisors which lie on a conic which also passes through the 4 points
of D′. If the conic consists of two lines, then in the case where 3 points of
D lie on each line, this is again the unique conic containing the six points
of D, and the argument is the same as before. This describes the case (f3)
above.
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Next, suppose that the conic is reducible, and also that k ≥ 4 of the
points of D lie on one of the lines of this conic. Then it follows by similar
arguments that the cases k = 4 and k = 5 describe the cases (f1) and (f2)
above respectively. This completes the proof of the lemma.

Now we will give a list of divisor classes for J5(Q) according to the four
types of the lemma. Our list captures all the geometric information that we
will need in the sequel.

R e m a r k. We wish to emphasize at this point that, in the following list,
the symbols L′ and C ′ are as in the definition of trivial points, except that
they are not assumed to be Q-rational any more.

T y p e (f2):

D1 = 6∞ |D1| = {D = ∞+ F5.L
′}

D2 = 6Q0 |D2| = {D = Q0 + F5.L
′}

D3 = 6Q1 |D3| = {D = Q1 + F5.L
′}

T y p e (f1):

D4 = Q0 + Q1 + 4∞ |D4| = {D = Q0 + Q1 + (F5.L
′ −∞)}

D5 = Q0 + 4Q1 +∞ |D5| = {D = Q0 +∞+ (F5.L
′ −Q1)}

D6 = 4Q0 + Q1 +∞ |D6| = {D = Q1 +∞+ (F5.L
′ −Q0)}

D7 = P + P + 4∞ |D7| = {D = P + P + (F5.L
′ −∞)}

D8 = P + P + 4Q0 |D8| = {D = P + P + (F5.L
′ −Q0)}

D9 = P + P + 4Q1 |D9| = {D = P + P + (F5.L
′ −Q1)}

D10 = 2Q0 + 4Q1 |D10| = {D = 2Q0 + (F5.L
′ −Q1)}

D11 = 4Q0 + 2Q1 |D11| = {D = 2Q1 + (F5.L
′ −Q0)}

D12 = 2Q0 + 4∞ |D12| = {D = 2Q0 + (F5.L
′ −∞)}

D13 = 4Q0 + 2∞ |D13| = {D = 2∞+ (F5.L
′ −Q0)}

D14 = 2Q1 + 4∞ |D14| = {D = 2Q1 + (F5.L
′ −∞)}

D15 = 4Q1 + 2∞ |D15| = {D = 2∞+ (F5.L
′ −Q1)}

T y p e (f3):

D16 = 3Q0 + 3Q1 |D16| = {D = F5.C
′ − (2Q0 + 2Q1)}

D17 = 3Q0 + 3∞ |D17| = {D = F5.C
′ − (2Q0 + 2∞)}

D18 = 3Q1 + 3∞ |D18| = {D = F5.C
′ − (2Q1 + 2∞)}

D19 = 2Q0 + 2Q1 + 2∞ |D19| = {D = F5.C
′ − (2P + 2P )}
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T y p e (f0):

D20 = 3Q0 + Q1 + 2∞
D21 = 3Q0 + 2Q1 +∞
D22 = Q0 + 3Q1 + 2∞
D23 = 2Q0 + 3Q1 +∞
D24 = 2Q0 + Q1 + 3∞
D25 = Q0 + 2Q1 + 3∞

Lemma 1 now shows that Theorem 2 can be rephrased as follows:

Proposition 1. J5(Q) = {[D − 6∞] : D = D1, . . . , D25}.

4. Proof of Theorem 3. Let L0, L1 and L∞ denote the tangent lines
to F5 at Q0, Q1 and ∞, respectively. It is easy to check that they all have
contact of order 5 with F5 at the corresponding points.

Now let R1 be a point of degree k = 3, 4, 5 or 6 over Q. Consider the
Q-rational divisor D = R1 + . . . + Rk + (6− k)∞. By the previous section,
D lies in one of the complete linear series |Di|, for 1 ≤ i ≤ 25.

First we will show that there are no cubic points on F5. Suppose that
R1, R2 and R3 are conjugate points of degree 3 on F5. Let D = R1 + R2 +
R3 +3∞. Clearly D is not one of the divisors of type (f0), so we must show
that D is not linearly equivalent to one of the divisors D1–D19. Suppose
this were the case. In the case of type (f2), we get F5.L

′ ≥ 2∞ and thus
L′ = L∞. For the case of type (f1), R1 + R2 + R3 cannot be part of the
base locus, otherwise it would contain quadratic or rational points. So then
F5.L

′ = R1 +R2 +R3 +∞+P ′ for some Q-rational point P ′ and thus L′ is
either L∞ or L. For the case of type (f3), we have F5C

′ ≥ 3∞, which implies
that C ′ is reducible and contains L∞ (by Lemma 2.3.2 of [5]). Therefore C ′

must pass through 2Q0 +2∞ or 2Q1 +2∞ and hence R1 +R2 +R3 is equal
to 3Q0 or 3Q1.

Next, we show that there are only the trivial points of degrees 4, 5, and 6.
We will again proceed by cases, and we will assume that in each case D is
in one of the indicated equivalence classes. Our conclusions will then always
be that R1 would be forced to have lower degree or that it is indeed a trivial
point. We will abbreviate these conclusions by (lower degree) or (trivial
points). The following lemma will be tacitly used whenever the conclusion
is “(trivial points)”.

Lemma 2. Let L′ denote a plane line and C ′ a plane conic. Let D
be an effective Q-rational divisor on F5 of degree k = 4, 5 or 6 such that
D < F5.L

′, D = F5.L
′ or D < F5.C

′ respectively. Then the corresponding
line L′ or conic C ′ is Q-rational.
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P r o o f. Let σ ∈ Gal(Q/Q). If D = F5.C
′−E, where C ′ is a conic and E

is an effective divisor of degree 4, then D = Dσ = F5.C
′σ − Eσ. Therefore,

C ′ and C ′σ have at least 6 points in common. Since a conic is uniquely
determined by 5 points, we get C ′ = C ′σ. The proof for the case of lines is
similar.

Now we proceed with the final part of the proof of Theorem 1. Because
of Lemma 2, L′, C ′ and P ′ are exactly as in the definition of trivial points:

(i) k = 4, D = R1 + R2 + R3 + R4 + 2∞:

T y p e (f2): Either some Ri = P ′ (lower degree), or R1 + R2 + R3 +
R4 +∞ = F5.L

′ (trivial points).
T y p e (f1): We get either some Ri is in the base locus (lower degree),

or that the Ri are all on L′ (trivial points).
T y p e (f3): In cases 16–19 we get F5.C

′ ≥ 2∞+2Q0+2Q1, or 4∞+2Q0,
or 4∞+2Q1, or 2∞+2P +2P . In each case C ′ reduces to a pair of rational
lines (lower degree).

(ii) k = 5, D = R1 + R2 + R3 + R4 + R5 +∞:

T y p e (f2): Either some Ri = P ′ (lower degree), or R1 + R2 + R3 +
R4 + R5 = F5.L

′ (trivial points).
T y p e (f1): Some Ri is in the base locus (lower degree).
T y p e (f3): C ′ goes through ∞ and one of 2∞, Q0 + Q1, or P + P . In

each case C ′ reduces to a pair of rational lines (lower degree).

(iii) k = 6, D = R1 + R2 + R3 + R4 + R5 + R6:

T y p e (f2): Some Ri = P ′ (lower degree).
T y p e (f1): Some Ri is in the base locus (lower degree).
T y p e (f3): D = F5.C

′ (trivial points).

5. An extension of Fermat’s conjecture. Theorem 1 shows, in
particular, that all points P ∈ F5(M), where M is a number field such that
[M : Q] ≤ 3, lie on the line X + Y = Z. It is interesting to ask whether this
is true in more generality. We therefore formulate the following conjecture,
which extends Fermat’s conjecture (now a theorem of Wiles):

Conjecture. Let p be an odd prime and let Fp denote the Fermat curve
of degree p. If P ∈ Fp(M) for a number field M such that [M : Q] ≤ p− 2,
then P lies on the line X + Y = Z.

We wish to conclude this paper by discussing some limited evidence for
the above conjecture:

Fermat and Euler have proved this conjecture for p = 3. The case p = 5
is handled by Theorem 1. For p ≤ 11, Gross and Rohrlich ([3]) have proved a
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similar assertion for [M : Q] ≤ (p− 1)/2. Moreover, from a general theorem
of Debarre and Klassen ([2]), it follows that the set Fp(ΓQ,p−2) is finite for
all odd primes p.
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