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Fat bundles and formality

by Wojciech Andrzejewski and Aleksy Tralle (Szczecin)

Abstract. We prove the formality property of total spaces of fat bundles over compact
homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.

1. Introduction. It is well known that any compact Kähler manifold is
formal [3]. A simple argument with harmonic forms shows that any Rieman-
nian symmetric space is formal [8]. In the present paper we prove the “[3]-
type” theorem for fat bundles. There are examples of compact symplectic
manifolds which are non-formal and hence carry no Kählerian structure [9].
Nevertheless, there are no examples of simply connected symplectic com-
pact manifolds which are non-formal. The authors of [9] conjectured that
any compact simply connected symplectic manifold is formal. They proved
some theorems in this direction, and noticed the “formalizing tendency” of
symplectic structures. An immediate difficulty encountered with such ques-
tions is the lack of examples (the familiar examples, such as CPn etc., are
too simple to exhibit anything new).

On the other hand, there is a family of non-trivial compact symplec-
tic manifolds, namely, the total spaces of associated fat bundles [14]. We
contribute to the “formalizing tendency” by proving that fat bundles over
compact homogeneous spaces are formal. Of course this result is of indepen-
dent interest, because it describes the rational homotopy type and yields
a new obstruction to the existence of fat bundles. In addition, the paper
contains some algebraic results about Koszul complexes and twisted tensor
products of Koszul complexes, associated to symmetric P -algebras. These
results are useful in the rational homotopy theory of homogeneous spaces
(see e.g. [1]). Various examples of fatness were given by A. Weinstein [14]
and L. Bérard-Bergery [2]. Nevertheless, it seems that there were no explicit
examples of O-fatness, which is necessary for producing new symplectic
structures (O denotes a co-adjoint orbit). We analyze O-fatness, proving its
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existence in some universal SO(n)-bundles. The main results of the paper
are formulated below.

Theorem 1.1. Let P (M,G) be a principal bundle of a compact semi-
simple Lie group G and O be any co-adjoint orbit of G in the dual space g∗

to its Lie algebra g. Let E = P ×G O be the total space of the associated
bundle. If P (M,G) is O-fat , and H/K = M is a compact homogeneous
space of a compact semisimple Lie group K, then

(i) E is a compact symplectic manifold which is formal ;
(ii) M is formal and rankH = rankK.

In the sequel we use the notion of a pure graded differential algebra
introduced in [9]. This notion turned out to be important in symplectic
geometry (see Section 4 for the definition of pureness).

Theorem 2.4. Let (S, dS) = (
∨
Q ⊗

∧
P, dS) and (T, dT ) = (

∨
Q′ ⊗∧

P ′, dT ) be two Koszul complexes, associated with the appropriate P -al-
gebras. Let τ be any “transgression” map τ : P ′ → Z(S) such that dτ :
S ⊗ T → S ⊗ T defined by the formulae

dτ |S = dS , dτ |Q′ = 0, dτ |P ′ = dτ |P ′ + τ |P ′
is a derivation. Suppose that

dimQ′ = dimP ′.

If the twisted tensor product (S⊗τ T, dτ ) has finite-dimensional cohomology
algebra H∗(S ⊗τ T, dτ ), then it is pure.

Theorem 5.1. Let S(2m + 2n, 2m, 2n)
SO(2n)−−−−−→ Gr(2m + 2n, 2m, 2n)

denote the universal SO(2n)-bundle of a Stiefel manifold SO(2m + 2n)/
SO(2m) over a Grassmann manifold SO(2m + 2n)/SO(2m) × SO(2n)
(n > 1). There exists a co-adjoint orbit O(ξ) ⊂ so(2n)∗ such that the canon-
ical connection of the Riemannian symmetric space Gr(2m+ 2n, 2m, 2n) is
O(ξ)-fat.

Observe that Theorem 1.1 describes the rational homotopy type of fat
bundles over compact homogeneous spaces and gives new obstructions to
the existence of O-fat connections (compare [14]). As far as Theorem 2.6
is concerned, it can be viewed as a sharpening of the Thomas theorem
concerning the pureness of Serre fibrations [11]. The Thomas definition of
pureness is weaker than the definition provided in this paper. Taking a
Koszul complex as a base of the appropriate algebraic fibration, we impose
an additional assumption but strengthen the pureness result.

The paper is organized as follows. Section 2 deals with the algebraic
part of the paper, devoted to minimal models, P -algebras and homogeneous
spaces. Section 3 describes the construction of fat bundles. Section 4 is
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devoted to the proof of the formality of fat bundles. Section 5 contains the
explicit description of O-fat connections. All preliminary material is given
in each section separately.

2. Koszul complexes and minimal models of homogeneous
spaces. Since there are many papers and books on rational homotopy the-
ory (e.g. [3, 6, 8, 9]), we assume the reader to be familiar with it. The proofs
in this paper are based on the techniques of Koszul complexes and Car-
tan algebras. A more detailed exposition of this topic can be found in [14].
We consider the category R-DGA(c) of graded commutative differential al-
gebras over the reals and suppose all the differentials to be of degree +1.
We say that two graded differential algebras (A, dA), (B, dB) ∈ R-DGA(c) are
c-equivalent if there is a chain of algebras (Ai, dAi)∈R-DGA(c), i=1, . . . , k,
starting from (A, dA) = (A1, dA1) and ending with (Ak, dAk) = (B, dB) such
that each pair ((Ai, dAi),(Ai+1, dAi+1)) is related either by a morphism

(Ai, dAi)→ (Ai+1, dAi+1)

or by a morphism

(Ai+1, dAi+1)→ (Ai, dAi)
inducing an isomorphism in cohomology. A morphism inducing an isomor-
phism on the cohomology level is called a quasiisomorphism. Any graded
differential algebra (A, dA) that we consider satisfies H0(A, dA) = R and
Hn(A, dA) is a finite-dimensional vector space for each n. We denote the
ideal of positive degree elements inA byA+. If V is a vector space, then

∧
V

denotes the free graded commutative algebra generated by V . If {v1, v2, . . .}
is a basis for V , then we write V = 〈v1, v2, . . .〉 and

∧
V =

∧
(v1, v2, . . .).

A graded differential algebra is minimal if (1) A '
∧
V for some V and

(2) there is a basis V = 〈v1, v2, . . .〉 such that, for each j, dvj ∈ (
∧

(v1, . . .
. . . , vj−1))+(

∧
(v1, . . . , vj−1))+. We say that (

∧
V, d) ∈ R-DGA(c) is a min-

imal model of (A, dA) if there is a quasiisomorphism

% : (
∧
V, d)→ (A, dA)

We use the following

Proposition 1 [8]. Any two c-equivalent graded differential algebras have
isomorphic minimal models.

In this paper we consider only smooth manifolds and their “real minimal
models”. That is, for any smooth manifold M we call the graded differential
algebra ME (which is the minimal model of the de Rham algebra E of M)
the minimal model of M . We use the notation

MM =ME .
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By definition, we say that a minimal algebra (
∧
V, d) is formal if it is

c-equivalent to its cohomology algebra H∗(
∧
V, d). A manifold M is called

formal if MM is formal.

R e m a r k. Of course, it is enough for our purposes to use the above
notions, but [3, 6–8] contain a more subtle topological approach.

In what follows we consider P -algebras and their Koszul complexes. In
the sequel,

∧
P denotes the exterior algebra over a finite-dimensional graded

vector space P =
⊕

k P
k, graded by odd degrees. If Q denotes an evenly

graded vector space, then we use the notation
∨
Q for the symmetric algebra

over Q.

Definition. A P -algebra is a pair (S, σ), where:

(i) S is a positively graded associative algebra with identity,
(ii) P =

⊕
k P

k is a finite-dimensional positively graded vector space
which satisfies the condition P k = 0 if k is even,

(iii) σ : P → S is a linear mapping, homogeneous of degree 1, which
satisfies

σ(x)z = zσ(x), x ∈ P, z ∈ S.
The following graded differential algebra is associated with each P -al-

gebra S. In the tensor product S ⊗
∧
P define a linear operator ∇S by

setting

∇S(z ⊗ 1) = 0, z ∈ S,

∇S(z ⊗ x0 ∧ . . . ∧ xp) =
p∑
i=0

(−1)i−qzσ(xi)⊗ x0 ∧ . . . ∧ x̂i ∧ . . . ∧ xp

(here and below the “hat” denotes omission of an element).
Some direct calculations imply that S⊗

∧
P becomes a graded differential

algebra if one defines the multiplication in S ⊗
∧
P by

(z ⊗ Φ) · (w ⊗ Ψ) = (−1)pqzw ⊗ ΦΨ, z ∈ S, w ∈ Sq, Φ ∈
∧p
P, Ψ ∈

∧
P.

This graded differential algebra is called the Koszul complex .
Let Q be an evenly graded finite-dimensional vector space with Qk = 0

for k ≤ 0. Let
∨
Q be the appropriate symmetric P -algebra endowed with

the induced grading

deg(y1 ∨ . . . ∨ yq) = deg(y1) + . . .+ deg(yq).

Definition. A P -algebra (S, σ) with S =
∨
Q is called a symmetric

P -algebra.

Definition. Let R be any ring. A sequence a1, a2, . . . in R is called
regular if no ai is a zero divisor in the factor-ring R/(a1, . . . , ai−1).
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Theorem 2.1 [4]. Let (
∨
Q ⊗

∧
P,∇σ) be a Koszul complex associated

with a symmetric P -algebra. Let y1, . . . , yn be a basis of P and let s = dimQ.
Suppose that H∗(

∨
Q ⊗

∧
P,∇σ) is finite-dimensional. Then the minimal

model (
∨
Q⊗

∧
P,∇σ) is formal if and only if the following conditions are

satisfied :

(i) dimP = n ≥ dimQ = s,
(ii) ∇σ(y1), . . . ,∇σ(ys) constitute a regular sequence in

∨
Q and

∇σ(ys+1), . . . ,∇σ(yn) ∈ (∇σ(y1), . . . ,∇σ(ys))

after re-ordering if necessary.

Now, apply the above theorem to the case of homogeneous spaces of com-
pact Lie groups. Recall the notion of the Cartan algebra of a homogeneous
space. We consider compact Lie groups. To any compact homogeneous space
G/H one can assign a graded differential algebra (C,∇σ) ∈ R-DGA(c) by the
procedure described below. Let T , T ′ be maximal tori in G and H respec-
tively (T ⊃ T ′). Denote by W (G) and W (H) the Weyl groups associated
with T and T ′ and consider the corresponding W (G)- and W (H)-actions
on the Lie algebras τ and τ ′ of T and T ′. These actions are extended in a
natural way to actions on the polynomial algebras R[τ ] nad R[τ ′]:

σ(f)(x) = f(σ−1(x))

for any σ ∈ W (G) (resp. W (H)), f ∈ R[τ ] (resp. R[τ ′]), x ∈ τ (resp.
x ∈ τ ′). Let R[τ ]W (G) and R[τ ′]W (H) be the subalgebras of W (G)- and
W (H)-invariants. By the Chevalley theorem,

R[τ ]W (G) ' R[f1, . . . , fn], n = rankG,

R[τ ′]W (H) ' R[u1, . . . , us], s = rankH.

Consider the usual representation of the cohomology algebra H∗(G,R)
as the exterior algebra over the primitive elements

H∗(G,R) '
∧

(y1, . . . , yn).

Define

(1)

(C,∇σ) = (R[u1, . . . , us]⊗
∧

(y1, . . . , yn),∇σ),
∇σ(ui) = 0, i = 1, . . . , s,

∇σ(yj) = fj |τ ′ = f̃j(u1, . . . , us), j = 1, . . . , n.

Definition. The algebra (C,∇σ) defined by (1) is called the Cartan
algebra of the homogeneous space G/H.

Obviously, (C,∇σ) is a particular example of the Koszul complex (how-
ever, in order to do so, one should associate with the corresponding sym-
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metric part a new grading by assigning to each q ∈ Q = 〈u1, . . . , us〉 the
degree 2 deg(q)).

Theorem 2.2 [5]. We have the following isomorphism:

MG/H 'M(C,∇σ).

Theorem 2.3 [4]. Let M = G/H be a homogeneous space of a compact
Lie group G. Let (C,∇σ) be its Cartan algebra determined by (1). Then M

is formal if and only if the sequence f̃1, . . . , f̃n satisfies the conditions (in
an appropriate ordering)

(i) f̃1, . . . , f̃s constitute a regular sequence,
(ii) f̃s+1, . . . , f̃n ∈ (f̃1, . . . , f̃s).

In [9] the notion of a pure graded differential algebra was introduced. By
definition, a free graded differential algebra (

∧
V, d) = (

∧
V even⊗

∧
V odd, d)

is called pure if d|V even = 0, d(V odd) ⊂
∧
V even. Observe that this defini-

tion is stronger than the definition in [11] and Theorem 2.4 does not follow
from [11].

Theorem 2.4. Let (S, dS) = (
∨
Q⊗

∧
P, dS) and (T, dT ) = (

∨
Q′⊗

∧
P ′)

be two Koszul complexes associated with symmetric P -algebras. Let τ be any
“transgression” map τ : P ′ → Z(S) such that dτ : S ⊗ T → S ⊗ T defined
by the formulae

(2) dτ |S = dS , dτ |Q′ = 0, dτ |P ′ = dT |P ′ + τ |P ′
is a derivation. Suppose that

dimQ′ = dimP ′.

Then if the twisted tensor product (S ⊗τ T, dτ ) has finite-dimensional coho-
mology algebra H∗(S ⊗τ T, dτ ), then it is pure.

P r o o f. Suppose that (S⊗τT, dτ ) is not pure. Choose a basis (y′1, . . . , y
′
m)

in P ′ and (y1, . . . , yn) in P . From (2) there exists at least one basic element
y′j such that

(3) τ(y′j) =
∑

i1,...,is

hi1...isj yi1 ∧ . . . ∧ yis ∈ Z+(S ⊗τ T, dτ ).

Since dτ |Q′ = 0, the elements f ′j = dT (y′j) and τ(y′j) are cohomologically
equivalent:

[f ′j ] =
[ ∑
i1,...,is

hi1...isj yi1 ∧ . . . ∧ yis
]

in H∗(S ⊗τ T, dτ ). From Theorem 2.1, f ′1, . . . , f
′
n is a regular sequence

in
∨
Q′, since (T, dT ) is formal and dimQ′ = dimP ′. Therefore, hf ′j 6∈

(f ′1, . . . , f̂
′
j , . . . , f

′
n) for h ∈

∨
Q′ if h 6∈ (f ′1, . . . , f̂

′
j , . . . , f

′
n). Moreover, the
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elements hf ′j cannot be coboundaries in S ⊗τ T , because (3) implies that
the only possibility for hf ′j to be a coboundary is the following:

(4) hf ′j = dτ

( ∑
j1,...,jk

gj1...jkj y′j1 ∧ . . . ∧ y
′
jk

)
(S ⊗τ T is a free algebra and any term from S will either remain in S after
differentiation, or will become zero). The latter formula shows that the only
possibility which may occur is k = 1, which yields

hfj = dτ

(∑
q

gqjy
′
q

)
.

Consider all y′j for which τ(y′j) ∈ Z+(S ⊗τ T, dτ ). Without loss of gen-
erality one can assume that all expressions (3) either differ by variables
yi1 ∧ . . . ∧ yis , or hi1...isj are linearly independent; otherwise one could ob-
tain, for example,

dτ (y′p) = f ′p +
∑

hi1...isp yi1 ∧ . . . ∧ yis ,

dτ (y′q) = f ′q +
∑

hi1...isq yi1 ∧ . . . ∧ yis ,

with hi1...isq = µhi1...isp and dτ (y′q − µy′p) = f ′q − µf ′p, and making an ap-
propriate change of variables one obtains τ(y′q) ∈ Z0(S ⊗τ T ), lowering the
number of variables whose image is contained in Z+(S⊗τ T ). Thus, (4) can
be rewritten as

hf ′j = dτ

(∑
q

gqjy
′
q

)
=
∑
q

f ′qg
q
j +

∑
q

(∑
hi1...isq yi1 ∧ . . . ∧ yis

)
gqj .

Using the conditions of freeness, one obtains∑
l

hi1...isl ⊗ glj = 0, hi1...isl ∈
∨
Q, glj ∈

∨
Q′

where by assumption hi1...isl are linearly independent. Thus, gqj = 0. There-
fore, finally

hf ′j ∈ (f ′1, . . . , f̂ ′j , . . . , f
′
n)

(because gjj certainly belongs to the set {glj}). Since f ′1, . . . , f
′
n is a regular

sequence, h∈(f ′1, . . . , f̂ ′j , . . . , f
′
n). Since dimQ′ = n, one can find an infinite

sequence of polynomials hα, α = 1, 2, . . . , with hα 6∈ (f ′1, . . . , f̂
′
j , . . . , f

′
n).

Therefore, the latter implies the existence of an infinite sequence of linearly
independent cohomology classes [hαfj ], α = 1, 2, . . . , in H∗(S ⊗τ T, dτ ),
which is a contradiction. The theorem is proved.

3. Fat bundles. Recall the construction of fat bundles invented by
A. Weinstein [14]. The basic notions of symplectic geometry can be found
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in [12]. Let P (M,G) be a smooth principal bundle with connection form
θ and curvature form Ω (see [7]). Let H and V denote respectively the
horizontal and vertical distributions in TP . Since Ω is a tensorial form on
P which is AdG-invariant and g-valued, we obtain horizontal, scalar-valued
forms on P by taking compositions µ ◦ Ω, µ ∈ g∗. If S ⊂ g∗ is any subset,
we call the given connection S-fat if, for every µ ∈ S, the form µ ◦ Ω is
nondegenerate on H in TP . In particular, let O ⊂ g∗ be a co-adjoint orbit.
We say that the given connection is O-fat if µ ◦Ω is nondegenerate for any
µ ∈ O.

Theorem 3.1 [14]. Let E = P ×G O be the total space of the associated
bundle of any principal bundle P (M,G), equipped with an O-fat connection.
Then E is a symplectic manifold.

P r o o f. Let ω denote the symplectic form on O and π1 denote the pro-
jection P ×O → O. Consider the 1-form on P ×O defined as follows:

(5) 〈θ〉(u,µ)(XP ⊕XO) = µ(θu(XP ))

where µ ∈ O, XP is a vector field on P and XO is a vector field on O. The
following equality can be verified directly:

(6) d〈θ〉(X̃, Ỹ ) = 〈dθ〉(X̃, Ỹ )− X̃〈θ〉(Ỹ ) + Ỹ 〈θ〉(X̃)

for any vector fields X̃, Ỹ on P ×O.
Let X = XP +XF denote the fundamental vector field on P ×O. Then

for any vector field Y on P ×O,

d〈θ〉(X,Y ) + π∗1ω(X,Y ) = ω(XF , (π1)∗(Y ))− ω(XF , (π1)∗(Y )) = 0.

Now, it is easy to verify that both 〈θ〉 and ω are G-invariant:

〈θ〉(Ra(u),Ad∗
a−1 (µ)) = Ad∗a−1(µ) ◦ θRa(u)(Ra)∗

= µ ◦Ada(θRa(u)(Ra)∗) = µ ◦ (Ra−1)∗θRa(u)(Ra)∗
= µ(θu) = 〈θ〉(u,µ).

Because ω is G-invariant, the same is valid for d〈θ〉+ π∗1ω. Hence there
exists a unique 2-form ωE defined on E by the equality

d〈θ〉+ π∗1ω = π∗ωE

where π : P × O → E is the natural projection. Because d〈θ〉 + π∗1ω is
obviously closed, one can deduce that dωE = 0. We shall prove that the
following equality holds:

(7) (d〈θ〉+ π∗1ω)|H⊕TO = (〈Ω〉+ π∗1ω)|H⊕TO
(here 〈Ω〉 is defined by the same rule (6)). The 2-form (〈Ω〉 + π∗1ω)|H⊕TO
is nondegenerate by the definition of fatness. After the identification Hu ⊕
TµO ' Tπ(u,µ)E, we conclude that ωE is nondegenerate.
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R e m a r k. It is not evident why the 2-form (7) is closed. Since there is
no proof of this fact in [14], we give it here for the convenience of the reader.

There are some natural obstructions to fatness [14]. For example, M must
be even-dimensional and orientable, and some real characteristic numbers
of P (M,G) must be nonzero. In the next section we investigate the same
question for homogeneous spaces M = H/K and show that they must be
formal.

4. Minimal models of fat bundles. We begin with a theorem which
is contained in [5] and [11].

Theorem 4.1 [5]. Let P (M,G) be a principal bundle, let hP : V g∗ →
H∗(M) be its Weil homomorphism, and let τ :

∧
g∗ →

∨
g∗ be the trans-

gression mapping determined by the Lie group G. Let U be a closed subgroup
in G and let (CG/U , δG/U ) be the Cartan algebra of G/U . Consider the as-
sociated bundle E(G/U,M,P ). Then the following c-equivalence of graded
differential algebras is valid :

(EE , dEE ) ∼c (EM ⊗ CG/U , δ),
δ|EM = dEM , δ(ui) = 0, i = 1, . . . , s,

δ(yj) = δG/U (yj) + γM (yj), j = 1, . . . , n,

where γM (yj) denote any closed elements representing the cohomology
classes hP (τ(hj)) in H∗(M).

The proof can be found in [5] (volume 3) (see also [11]).

Corollary. Let P (M,G) and E(M,P,G,G/U) be as in Theorem 4.1.
Suppose that M = H/K is also a homogeneous space of a compact Lie group
H. Then the minimal model ME is determined by the isomorphism

(8) ME 'M(A,dA)

where (A, dA) is of the form

(A, dA) = (CH/K ⊗ CG/U , dA),

dA|CH/K = δH/K , dA(ui) = 0, i = 1, . . . , s,

dA(yj) = δG/U (yj) + γ̃M (yj), j = 1, . . . , n,

and γ̃M (yj) denote closed elements in CH/K representing the cohomology
classes in H∗(CH/K) = H∗(M) such that α∗[γ̃M (yj)] = [γM (yj)], where α∗

is induced by an appropriate quasiisomorphism α : CH/K → EM .

P r o o f. From Theorem 4.1, (EE , dEE ) is c-equivalent to (EM ⊗CG/U , δ).
It is easy to see that this c-equivalence can be continued:

(EM ⊗ CG/U , δ) ∼ (EM ⊗MG/U , δ)
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where MG/U is the minimal model for CG/U which can be represented in
the form

MG/U = k[v1, . . . , vt]⊗
∧

(y1, . . . , yl).

Here y1, . . . , yl correspond canonically to yi1 , . . . , yil and δ(vi) = 0, i =
1, . . . , t, δ(yj) = f j(v1, . . . , vt) + γM (yj), where γM (yj) = πγM (yj) for the
canonical projection π : CG/U →MG/U , given by Sullivan’s algorithm [8].
The definition of δ implies that the natural projection

(EM ⊗ CG/U , δ)→ (EM ⊗MG/U , δ)

is a quasiisomorphism (this is verified by direct calculation). Thus, finally,
one obtains the following diagram of KS-extensions:

EM → EE → EFx x x
EM → (EM ⊗MG/U , δ) → MG/U

α
x β

x γ
x

MM → (MM ⊗τMG/U , dτ ) → MG/U

where all vertical arrows are quasiisomorphisms, γ is an isomorphism, the
horizontal arrows are inclusions or projections defined by augmentations.
The existence of the first two lines of the diagram is proven by Grivel,
Thomas [11] and Halperin [6]. If one defines

dτ |MM
= dMM

, dτ (yj) = γ−1(fj(v1, . . . , vt) + γ̃M (yj), dτ (vi) = 0

where α∗[γ̃M (yj)] = [γ̃M (yj)], then β becomes a morphism of DGA, inducing
isomorphism in cohomology by the 5-lemma. Therefore dτ really can be
chosen in the form given above and (MM ⊗MG/U , dτ ) is a model for E.
The same argument shows that (MM ⊗MG/U , dτ ) is a model for (A, dA),
and (8) follows.

Now we can give the proof of Theorem 1.1.

P r o o f o f T h e o r e m 1.1. Since the orbit O is a homogeneous G-
manifold, say, G/U , E = P ×GG/U satisfies the conditions of Theorem 4.1.
Therefore, from the previous corollary, one should consider the formality
problem for the minimal model of the algebra (A, dA) given by (8). The lat-
ter algebra is a twisted tensor product of two symmetric P -algebras. Since
O is a homogeneous symplectic manifold of a compact Lie group G, O is a
homogeneous space G/U of maximal rank (moreover, U is the centralizer of
a torus, which follows from Borel’s theorem [15]). Therefore, O is formal and
thus the second term in the twisted tensor product representing (A, dA) sat-
isfies the conditions of Theorem 2.4. Since E is symplectic by Theorem 3.1,
ME is a symplectic minimal algebra in the sense of [9] (there exists an el-
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ement ω ∈ ME of degree 2 such that on the cohomology level ωk 6= 0 for
any k = 1, . . . , n, dimE = 2n). The following theorem was proved in [9].

Theorem 4.2. Any symplectic pure minimal algebra satisfying the Poin-
caré duality is formal and has only even-dimensional cohomology.

Applying this theorem together with Theorem 2.4 to (A, dA) (or, to be
more precise, to M(A,dA)), one finds that M(A,dA) 'ME is formal.

It remains to show that M is formal and of maximal rank. Since (A, dA)
is pure by Theorem 2.4, it is again a Koszul complex: for example, of the
form (

∨
Q ⊗

∨
Q′ ⊗

∧
P ⊗

∧
P ′,∇). Thus, the following two possibilities

may occur (since dimQ′ = dimP ′ and (
∨
Q′ ⊗

∧
P ′,∇σ1) is formal).

(1) dimP > dimQ (equivalently, rankH > rankK),
(2) dimP = dimQ (equivalently, rankH = rankK, M is formal).

Thus, one only has to consider the first possibility. Then, considering
(
∨
Q ⊗

∨
Q′ ⊗

∧
P ′ ⊗

∧
P,∇) as a new Koszul complex, one can apply

Theorem 2.1 to it and deduce that either its minimal model is not formal
(which is a contradiction), or the sequence of ∇y1, . . . ,∇y′1, . . . satisfies the
condition (i) of Theorem 2.1 with s = dimQ + dimQ′. The latter equality
together with the proof of Theorem 2.1 show that there are odd-degree
elements in H∗(E) = H∗(

∨
Q ⊗

∨
Q′ ⊗

∧
P ′ ⊗

∧
P,∇) which contradicts

Theorem 4.2.

R e m a r k. The proof of Theorem 2.1 is contained in [4].

5. Existence of O-fat connections. There are examples of various
fatness conditions in [2] and [13]. Nevertheless it is still interesting and
important to give explicit examples of O-fatness to be able to construct
new symplectic structures. Besides that it is rather obvious that for any
G-principal bundle, any homomorphism

P ′
f−→ P

G
y yG
M −→ M

can only decrease the rank of the appropriate 2-form, that is,

rankµ ◦ f∗Ω|H′ ≤ rankµ ◦Ω|H.

Therefore, one can obtain an O-fat connection only in the case of its
existence in the universal G-principal bundle. It is known that for sufficiently
large m, Stiefel manifolds over Grassmannians give universal SO(n)-bundles
(see [10]).
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Theorem 5.1. Let

(9) S(2m+ 2n, 2m, 2n)
SO(2n)−−−−−→ Gr(2m+ 2n, 2m, 2n)

denote the universal SO(2n)-bundle of a Stiefel manifold SO(2m + 2n)/
SO(2m) over a Grassmann manifold SO(2m + 2n)/SO(2m) × SO(2n),
n > 1. There exists a co-adjoint orbit O(ξ) ⊂ so(2n)∗ such that the canoni-
cal connection of the Riemannian symmetric space Gr(2m + 2n, 2m, 2n) is
O(ξ)-fat.

P r o o f. The bundle (9) can be considered as a particular case of a
G-structure over a Riemannian homogeneous symmetric space H/K. It is
known [7] that there is a one-to-one correspondence between invariant con-
nections in P (H/K,G) and Ad(H)-invariant linear maps

Λ : X → g,

where X is a reductive complement to k in h. In our particular case g =
so(2n), h = so(2m+ 2n), k = so(2m)⊕ so(2n), X consists of matrices

(10) X =
(

0 A
−At 0

)
(A is any 2m × 2n matrix). It is known [7] that Λ ≡ 0 for the canonical
connection. Recall that the correspondence is given by the formula

(11) θu(X̃) = Λ(X)

where X̃ is the horizontal lift of X. Thus, using the usual formula [7] for the
curvature form

2Ω(X̃, Ỹ ) = θ([X̃, Ỹ ]) + [θ(X̃), θ(Ỹ )]

and (11) one easily calculates

Ω(X̃, Ỹ ) = 1
2 [X,Y ]so(2n)

where X and Y are of the form (10). Finally,

Ω(X̃, Ỹ ) = BtA−AtB
where A and B are 2m × 2n matrices representing X and Y . Therefore, if
ξ ∈ so(2n)∗, then ξ ◦Ω|H is identified with the skew symmetric bilinear map

ξ̃ : V × V → R, ξ̃(A,B) = ξ(BtA−AtB),

where V is a 2m · 2n-dimensional space of 2m× 2n matrices. Suppose that
the functional η ∈ O(ξ). Then one obtains

η̃(A,B) = ξ(St(BtA−AtB)S), S ∈ SO(2n)

(this comes from the definition of the co-adjoint action). Now take the stan-
dard basis of V consisting of the matrices eij , 1 ≤ i ≤ 2m, 1 ≤ j ≤ 2n.
Let slk be the standard basis of so(2n), 1 ≤ l ≤ 2n, 1 ≤ k ≤ 2n , l < k,
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consisting of n(n − 1)/2 skew-symmetric matrices with 1 at position (l, k)
and other elements zero. Define ξ ∈ so(2n)∗ as the functional

(11) ξ(slk) = 1, 1 ≤ l ≤ 2n, 1 ≤ k ≤ 2n, l < k.

Then calculating ξ̃ by the formula (11) one obtains the 2m · 2n × 2m · 2n
matrix of ξ̃

Uξ̃ =


U 0 . . . 0
0 U . . . 0
. . . . . . . . . . . . . .
0 0 . . . 0
0 0 . . . U


(2m blocks U on the diagonal), where U is a skew-symmetric matrix with

(12) uij = −1, i < j, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n.

The matrix of the functional η̃ with η ∈ O(ξ) given by (12) can be calculated
as

U
η̃

=


SUSt 0 . . . 0

0 SUSt . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0
0 0 . . . SUSt


where S ∈ SO(2n) and U is defined by (12). It remains to notice that U is
nondegenerate. Thus, the matrix of η̃ is nondegenerate, which proves that
the canonical connection is O-fat.

R e m a r k. If one considers SO(n)-bundles with n odd, it is clear that
the above argument does not work, since U becomes degenerate.
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