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PM functions, their characteristic intervals

and iterative roots

by Weinian Zhang (Chengdu)

Abstract. The concept of characteristic interval for piecewise monotone functions is
introduced and used in the study of their iterative roots on a closed interval.

I. Introduction. The iterative root of order n of a function F : E → E,
for a given positive integer n and a given set E, is a function f : E → E
such that

(1.1) fn = F,

where fn denotes the nth iterate of f , i.e., fn = f ◦ fn−1 and f0 = id.

The problem of iterative roots, as an important subject in the theory of
functional equations, has been studied deeply in various aspects, for exam-
ple, for real functions by Bödewadt [2], Fort [4] and Kuczma [7–9], and for
complex functions by Kneser [5] and Rice [10], since Babbage [3], Abel [1]
and Koenigs [6] initiated that research in the last century. In particular, the
research in this field gets very active in Poland and China.

It is well known that a strictly increasing continuous function has con-
tinuous iterative roots of any order but a strictly decreasing function has no
continuous iterative roots of even order. In particular, for monotone func-
tions we have the following result.

Theorem (Bödewadt [2]). Let F : I = [a, b] → I be continuous and

strictly increasing. Then for any integer n ≥ 2 and A,B ∈ (a, b) with A < B,
(1.1) has a continuous and strictly increasing solution f on I satisfying

F (a) ≤ f(A) < f(B) ≤ F (b).

However, there are few results without monotonicity assumptions.
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In 1993, while visiting Poland, the author had a talk about an interest-
ing method, presented in Chinese by J. Zhang and L. Yang [11], based on
introducing the so-called “characteristic interval” for piecewise monotone
functions. In this paper this method is presented in detail. In Section II we
discuss the properties of this type of functions; Section III is devoted to the
notion of characteristic interval and an extension theorem; finally, in Sec-
tion IV, the results of Section III are applied to give the existence of iterative
roots for piecewise monotone functions (abbreviated as PM functions) on
I = [a, b] ⊂ R

1. In Sections II to IV, all considered functions are supposed
to be continuous from I into itself.

II. PM functions

Definition 1. An interior point x0 in I is referred to as a monotone

point of F : I → I if F is strictly monotone in a neighborhood of x0.
Otherwise, x0 is called a fort (or a non-monotone point). Furthermore,
F ∈ C0(I, I) is referred to as a strictly piecewise monotone function or
PM function if F has only finitely many forts in I. Let N(F ) denote the
number of forts of F , and PM(I, I) the set of all continuous PM functions
from I into itself.

Fig. 1. No fort Fig. 2. A PM function Fig. 3. Infinitely many forts

From Figure 3 we see that a fort may not be an extreme point.

Lemma 2.1 (equivalent definition). An interior point x0 in I is a fort of

F iff for any ε > 0 there are two points x1, x2 in I with x1 6= x2, |x1−x0| < ε
and |x2 − x0| < ε such that F (x1) = F (x2).

The simple proof is omitted.

Lemma 2.2. (i) If F1, F2 ∈ PM(I, I) then F2 ◦ F1 ∈ PM(I, I).

(ii) If F2 ◦ F1 ∈ PM(I, I) then F1 ∈ PM(I, I). Here ◦ denotes the

composition of functions.
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P r o o f. Let S, S1, and S2 denote the sets of forts of F = F2 ◦ F1, F1,
and F2 respectively, and let S3 = {x ∈ I | F1(x) ∈ S2}. Clearly,

(2.1) S = S1 ∪ S3.

It follows that the cardinal numbers satisfy

#S ≤ #S1 + #S3,(2.2)

#S1 ≤ #S.(2.3)

Thus (2.3) implies (ii).
On the other hand, #S1 < ∞ and #S2 < ∞ imply #S3 < ∞; otherwise,

by #S2 < ∞, there are infinitely many x1 < x2 < . . . < xn < . . . in I such
that F1(xi) = F1(xj), i 6= j. By Lemma 2.1 this contradicts the fact that
#S1 < ∞ and implies (i) by (2.2).

Corollary 2.3. If fn ∈ PM(I, I) then f ∈ PM(I, I); and vice versa.

Furthermore, (2.3) implies for F ∈ PM(I, I) that

(2.4) 0 = N(F 0) ≤ N(F ) ≤ N(F 2) ≤ N(F 3) ≤ . . . ≤ N(Fn) ≤ . . .

Let H(F ) denote the smallest positive integer k such that N(F k) = N(F k+1),
and let H(F ) = ∞ when (2.4) is a strictly increasing sequence.

Lemma 2.4. Let F1, F2 ∈ PM(I, I). Then N(F2 ◦ F1) = N(F1) iff F2

is strictly monotone on [m,M ], the range of F1, where m = min F1 and

M = max F1.

P r o o f. We use the notations S, S1, S2, S3, F , etc. as in the proof of
Lemma 2.2. Note that [m,M ] is not a single point set since F1 as a PM
function is not constant. On the one hand, suppose F2 is strictly monotone
on [m,M ]. For each x0 ∈ S3, by the monotonicity of F2, F1(x0) = m or M ,
that is, x0 is an extreme point and, of course, a fort of F1. Thus S3 ⊂ S1.
From (2.1), S = S1 and N(F2 ◦ F1) = N(F1).

On the other hand, for an indirect proof of the necessity we assume that
F2 has a fort x1 in [m,M ]. The continuity of F1 implies that there is a
monotone point x0 ∈ (a, b) such that F1(x0) = x1, i.e., x0 ∈ S3 \ S1. Thus
S \ S1 6= ∅, i.e., N(F2 ◦ F1) 6= N(F1). This gives a contradiction.

Lemma 2.5. Let F ∈PM(I, I) and H(F ) = k < ∞. Then for any integer

i > 0, N(F k) = N(F k+i).

P r o o f. Let mi and Mi denote the minimum and maximum of F i on I
respectively. Since H(F ) = k implies

(2.5) N(F k) = N(F k+1) = N(F ◦ F k),

by Lemma 2.4, F is strictly monotone on [mk,Mk]. However,

(2.6) mk ≤ mk+i−1 < Mk+i−1 ≤ Mk for i ≥ 1,
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so F is also strictly monotone on [mk+i−1,Mk+i−1]. By Lemma 2.4,

(2.7) N(F k+i−1) = N(F k+i), i = 1, 2, . . .

This completes the proof.

Lemma 2.6. If H(F ) = k, then H(F i) = [k/i] + sgn{k/i}, for every

integer i > 0, where [x] denotes the largest integer not exceeding x and

{x} = x − [x].

P r o o f. Let F1 = F i and let r denote the right side of the above expres-
sion for H(F i). Since

(2.8) i(r − 1) < k ≤ ir < i(r + 1),

we get

(2.9) N(F r−1
1 ) = N(F i(r−1)) < N(F k) = N(F r

1 ) = N(F r+1
1 ).

This implies H(F1) = r and completes the proof.

Theorem 1. Let F ∈ PM(I, I) and H(F ) > 1. Then F has no continu-

ous iterative roots of order n for n > N(F ).

P r o o f. Assume f ∈ C0(I, I) is an iterative root of order n. By Corol-
lary 2.3, f ∈ PM(I, I). Since H(F ) > 1, i.e., N(f2n) = N(F 2) > N(F ) =
N(fn), we see that H(f) > n and 0 = N(f0) < N(f) < N(f2) < . . . <
N(fn). This implies N(fn)≥n, i.e., N(F )≥n, contrary to the assumption.

Problem 1. It is still an open question whether F has an iterative root
of order n for all n ≤ N(F ).

This theorem says that F can have continuous iterative roots of infinitely
many orders only when H(F ) ≤ 1. In what follows, we concentrate on the
case where H(F ) ≤ 1. We show that on the so-called characteristic interval
this case reduces to the monotone case.

III. Characteristic interval. Suppose H(F ) ≤ 1. For F non-monotone
it follows that N(F ) = N(F 2). By Lemma 2.4, F is strictly monotone on
[m,M ], where m = min F and M = maxF . Obviously, extending appropri-
ately the interval on which F is monotone, one can find two points a′, b′ ∈ I,
a′ < b′, such that

(i) a′ and b′ are either forts or endpoints;

(ii) there is no fort inside (a′, b′);

(iii) [a′, b′] ⊃ [m,M ].

Definition 2. The unique interval [a′, b′] obtained above is referred to
as the characteristic interval of F .
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Fig. 4 Fig. 5

Fig. 6 Fig. 7

The above figures illustrate the cases where H(F ) ≤ 1.

Theorem 2. Let F ∈ PM(I, I) and H(F ) ≤ 1. Suppose F has a contin-

uous iterative root f of order n > 1. Then

(i) F is strictly monotone from [a′, b′] into itself ;
(ii) all periodic points of F are inside [a′, b′];
(iii) all periodic points of f are inside [a′, b′];
(iv) f is strictly monotone from [a′, b′] into itself ;
(v) fn(x) = F (x) for x ∈ [a′, b′];
(vi) if n > N(F ) + 1 and F (x′) = a′ or b′ for some x′ ∈ I, then x′ ∈

[a′, b′].

P r o o f. We use the same notations mi and Mi as in the proof of
Lemma 2.5. Obviously, the sequence {mi} is non-decreasing and {Mi} is
non-increasing. Then (i) follows from the definition of characteristic inter-
val, in particular from [m1,M1] ⊂ [a′, b′]. By Corollary 2.3, f is also strictly
monotone on [a′, b′]. To prove (ii), let x0 be a periodic point of F . Then for
some integer k > 0, x0 = F k(x0) ∈ [mk,Mk] ⊂ [m1,M1] ⊂ [a′, b′]. Now (iii)
follows from (ii) since all periodic points of f are periodic points of F .

Concerning (iv), it suffices to prove that f(x) ∈ [a′, b′] for x ∈ [a′, b′].
In case f is increasing on [a′, b′], for an indirect proof we assume, without
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loss of generality, that f(a′) < a′. Since f(a) ≥ a, the continuity implies
f(x1) = x1 for some x1 ∈ [a, a′), i.e., f has a periodic point outside [a′, b′].
This contradicts (iii).

On the other hand, in case f is decreasing on [a′, b′], F is strictly mono-
tone on [f(b′), f(a′)]; otherwise, F has forts in this interval, and by
Lemma 2.2, fn+1(x) = F (f(x)) and even F (F (x)) = f2n(x) have forts
on [a′, b′], which implies N(F 2) > N(F ), contrary to H(F ) ≤ 1. Further-
more, neither a′ nor b′ is an interior point of [f(b′), f(a′)] since a′ and b′ are
forts (or endpoints) of F . Thus, in order to prove [f(b′), f(a′)] ⊂ [a′, b′] we
show that the interior of [a′, b′]∩[f(b′), f(a′)] is not empty. Indeed, otherwise
F (f(x)) = f(F (x)) cannot reach the interior of [a′, b′] for all x ∈ I. How-
ever, (a′, b′) ⊃ (m1,M1) 6= ∅, so F (f(x)) must reach the interior of [a′, b′]
for some x ∈ I. This contradiction completes the proof of (iv). (iv) yields
(v) naturally.

Finally, we prove (vi). Note that n > N(F )+ 1 > N(F ) implies H(f) <
n; otherwise, N(fn) > N(fn−1) > . . . > N(f) > N(f0) = 0, which yields
a contradiction that N(fn) ≥ n > N(F ). It follows that N(fn−1) = N(F )
and by Lemma 2.5 that N(fn−1) = N(fn−1◦fn−1), i.e., H(fn−1)≤1. Thus
[a′, b′] is also the characteristic interval of fn−1 and fn−1 maps I into it,
since [min fn−1,max fn−1] ⊃ [m1,M1] and by Lemma 2.2 (or from (2.1)),
fn−1 and fn (= F ) have common forts. Therefore, the fact that F = f◦fn−1

reaches a′ (or b′) on I implies that f also reaches a′ (or b′) on [a′, b′]. In
particular, when f is increasing on [a′, b′] we can assert that f(a′) = a′ (or
f(b′) = b′), and then F (a′) = a′ (or F (b′) = b′).

Now, we consider the case where f is decreasing on [a′, b′]. Using the
same arguments as above, by the hypothesis that n > N(F ) + 1 we have
H(f) < n−1 and H(fn−2) ≤ 1, i.e., fn−2 maps I into [a′, b′]. Thus the fact
that F = f2 ◦ fn−1 reaches a′ (or b′) on I implies that f2 also reaches a′

(or b′) on [a′, b′]. Since f is decreasing on [a′, b′] and f(a′) ≤ b′, f(b′) ≥ a′,
we see that f(a′) = b′ and f(b′) = a′, i.e., f maps [a′, b′] onto itself. This
implies that F also maps [a′, b′] onto itself. Of course, F reaches a′ (or b′)
on [a′, b′]. This completes the proof.

Theorem 3 (extension). Suppose F ∈ PM(I, I) and H(F ) ≤ 1. Let

[a′, b′] be the characteristic interval , let m and M denote the minimum and

maximum of F on [a, b], and m′ and M ′ those on [a′, b′]. If , restricted to

[a′, b′], equation (1.1) has a continuous solution f1 which maps [a′, b′] into

itself and maps [m,M ] into [m′,M ′], then there exists a continuous function

f from I into I such that

(i) f(x) = f1(x) for all x ∈ [a′, b′], and

(ii) f satisfies (1.1) on the whole interval I.
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This theorem says that the problem of iterative roots can be reduced to
that for monotone functions on a subinterval.

P r o o f. Let F1 be the restriction of F to [a′, b′]. By Theorem 2, its inverse
F−1

1 : [m′,M ′] → [a′, b′] is continuous. Let

(3.1) f = F−1
1 ◦ f1 ◦ F

on I. Because F (x) ∈ [m,M ] ⊂ [a′, b′] for x ∈ I and f1(y) ∈ [m′,M ′] for
y ∈ [m,M ], the definition in (3.1) is reasonable and f : [a, b] → [a′, b′] is
continuous. Obviously, for x ∈ I,

(3.2) fn(x) = (F−1
1 ◦ fn

1 ◦ F )(x) = (F−1
1 ◦ F1 ◦ F )(x) = F (x).

This completes the proof.

IV. Existence of iterative roots

Theorem 4. Let F ∈ PM(I, I) and H(F ) ≤ 1. Suppose

(a) F is increasing on its characteristic interval [a′, b′], and

(b) F (x) on I cannot reach a′ and b′ unless F (a′) = a′ or F (b′) = b′.

Then for any integer n > 1, F has a continuous iterative root of order n.

Moreover , these conditions are necessary for n > N(F ) + 1.

P r o o f. By Bödewadt’s theorem stated in Section I, F on [a′, b′] has a
continuous iterative root f1 of order n, which satisfies m′=F (a′)≤f1(m)<
f1(M) ≤ F (b′) = M ′. By Theorem 3, equation (1.1) has a continuous solu-
tion f on the whole interval I, which is an extension of f1. In particular, for
n > N(F ) + 1, by Theorem 2(vi), the condition (b) is necessary. Further-
more, it is well known that a strictly decreasing function has no continuous
iterative roots of even order, so (a) is also necessary.

Problem 2. Does F have iterative roots of order n for n ≤ N(F ) + 1
when H(F ) ≤ 1 and F (x′) = a′ (or b′) for some x′ ∈ I but x′ 6∈ [a′, b′]?

Theorem 5. Suppose F ∈ PM(I, I), H(F ) ≤ 1, and F is decreasing

on its characteristic interval [a′, b′]. If either F (a′) = b′ and F (b′) = a′, or

a′ < F (x) < b′ on I, then for any odd n > 0, F has an iterative root of

order n, and for even n, (1.1) has no continuous solutions.

Proposition. Suppose F : [a′, b′] → [a′, b′] is continuous and decreas-

ing , and either F (a′) = b′ and F (b′) = a′, or a′ < F (x) < b′ on [a′, b′].
Then for n ≥ 1,

(4.1) f2n+1 = F
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has a decreasing C0 solution f on [a′, b′] such that

(4.2) F (b′) ≤ f(M) < f(m) ≤ F (a′),

where m = minF and M = maxF .

P r o o f. Since (4.2) is trivial when F (a′) = b′ and F (b′) = a′, we only
prove the proposition under the condition that a′ < F (x) < b′ on [a′, b′].
Note that F has a unique fixed point x0 in (a′, b′) and

(4.3) a′ ≤ m < x0 < M ≤ b′.

Fig. 8

Clearly, G = F 2 is C0 and increasing on [a′, b′] and certainly on [a′, x0]. By
Bödewadt’s theorem (see Section I), the equation

(4.4) g2 = G

has an increasing C0 solution g on [a′, x0] such that

(4.5) G(a′) = g(F (b′)).

Here (4.5) is guaranteed by the fact that a′ < F (b′) < x0. Furthermore, the
monotonicity implies that G(x) > x and then g(x) > x on [a′, x0], and that
G(x0) = x0 and g(x0) = x0, so g maps the subinterval [F (b′), x0] into itself.
By Bödewadt’s theorem, the equation

(4.6) h2n+1 = g

also has an increasing C0 solution h on [F (b′), x0] such that

(4.7) g(F (b′)) ≤ h(β)

for β := min{g(m), F (M)}. Here (4.7) is guaranteed by the fact that β >
min{g(a′), F (b′)} = F (b′), since (4.5) associated with (4.4) implies that

(4.8) g(a′) = F (b′).

In particular, because g is continuous and increasing on [a′, x0] and [a′, x0] ⊃
[F (b′), x0], using Bödewadt’s inductive construction of iterative roots, one
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can extend the solution h of (4.6) to the whole interval [a′, x0], i.e., h is
increasing and continuous on [a′, x0] and (4.6) still holds. Let

(4.9) h1(x) =

{

h(x), x ∈ [a′, x0],
F−1 ◦ h ◦ F (x), x ∈ (x0, b

′].

Clearly, h1 is increasing and C0 on [a′, b′] and

(4.10) h2n+1
1 = g, h1 ◦ F = F ◦ h1.

Let

(4.11) f(x) = h−2n
1 ◦ F (x), x ∈ [a′, b′].

Obviously, f is decreasing and C0 on [a′, b′], and

f2n+1 = h
−2n(2n+1)
1 ◦ F 2n+1 (by (4.10))(4.12)

= g−2n ◦ F 2n ◦ F = F,

that is, f is a solution of (4.1) on [a′, b′].
Moreover, on [x0, b

′],

(4.13) f(x) = h−2n ◦ F ;

on [a′, x0], the range of F is contained by [x0, b
′] and then

f(x) = h−2n
1 ◦ F = (F−1 ◦ h ◦ F )−2n ◦ F(4.14)

= (F−1 ◦ h−1 ◦ F )2n ◦ F = F−1 ◦ h−2n ◦ F 2

= F−1 ◦ h−2n ◦ G = F−1 ◦ h2n+2.

Thus the inequalities in (4.2), that is,

f(m) ≤ F (a′), f(M) ≥ F (b′),

are equivalent to

(4.15) h2n+2(m) ≥ G(a′), h−2n ◦ F (M) ≥ F (b′),

and to

h(g(m)) ≥ G(a′),(4.16)

h(F (M)) ≥ g(F (b′)) = G(a′) (by (4.5)).(4.17)

Obviously (4.16) and (4.17) hold by (4.7) and by the monotonicity of h.
This completes the proof.

P r o o f o f T h e o r e m 5. For odd n, the result follows easily from the
above Proposition and Theorem 3. For even n, the result is obvious since a
strictly decreasing function has no iterative roots of even order, as stated in
Section I.

By Theorem 3 (extension theorem), many known results for monotone
functions can be generalized to PM functions under the hypothesis that
H(F ) ≤ 1.
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[5] H. Kneser, Reelle analytische Lösungen der Gleichung ϕ(ϕ(x)) = ex und ver-

wandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1950), 56–67.
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