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On boundary-value problems for partial differential

equations of order higher than two

by Jan Popio lek (Bia lystok)

Abstract. We prove the existence of solutions of some boundary-value problems for
partial differential equations of order higher than two. The general idea is similar to that
in [1]. We make an essential use of the results of our paper [12].

1. The problem. Let x = χp(t), 0 < t ≤ T , p = 1, 2, be equations of
non-intersecting curves on the (x, t) plane.

In this paper we prove the existence of a solution of the problem

(1) Lu(x, t) ≡
n+2∑

i=0

m∑

j=0

aij(x, t)Di
xDj

t u(x, t) − Dn
xDm+1

t u(x, t) = f(x, t),

where (x, t) ∈ ST = {(x, t) : χ1(t) < x < χ2(t), 0 < t ≤ T}, T = const < ∞,
n,m ∈ N0 ≡ N ∪ {0}, n + m > 0 (for n = m = 0 equation (1) is a parabolic
equation of second order, the theory of which is well known), satisfying the
initial conditions

(2) Dl
tu(x, 0) = 0, χ1(0) ≤ x ≤ χ2(0), l = 0, 1, . . . ,m,

and the boundary conditions

(3) B
p
l u(χp(t), t) ≡

rp

l∑

k=0

bp
kl(t)D

k
xu(χp(t), t) = g

p
l (t),

where 0 < t ≤ T , p = 1, 2, l = 1, . . . , l0 = [(n + 3)/2] (denotes the greatest
integer function), 0 ≤ rp

1 < rp
2 < . . . < rp

l0
≤ n + 1, rp

l ∈ N0, bp
rp

l
,l
(t) ≥ b0 =

const > 0.
We distinguish the following four cases:

1) rp
l0

< n + 1, p = 1 or p = 2, n is odd,
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2) rp
l0

< n + 1, p = 1 or p = 2, n is even,
3) rp

l0
= n + 1, p = 1 or p = 2, n is odd,

4) rp
l0

= n + 1, p = 1 or p = 2, n is even.

We shall exactly analyse cases 1) and 3). The argument in the remaining
cases is similar. Note that in cases 1) and 3) we have to put [(n − 1)/2]
boundary conditions on one of the curves χp and [(n − 1)/2] + 1 on the
other.

Boundary-value problems in rectangular domains and for particular
cases of the operator L and of the boundary operators B

p
l have been consid-

ered in many papers (see [2], [3], [4], [10] and [15]). In [14] the boundary-value
problem for the equation

Dn+2
x u − Dn

xDtu = f(x, t, u, . . . ,Dn+1
x u)

was examined. Paper [13] was devoted to the equation

L(Dx + Dt)
nu(x, t) = f(x, t),

where L ≡ Dt − a(x, t)D2
x + b(x, t)Dx + c(x, t). In [5] some boundary-value

problems for the equation

(D2
x − Dt)(aDx + bDt + c)u(x, t) = 0

were investigated, where a, b, c are constants and a · b 6= 0. Moreover, in [11]
Cauchy’s problem for equation (1) was examined.

Note that particular cases of equation (1) describe the propagation of
waves in a compressible viscous medium (see [3], [6], [17]) and some problems
of magneto-hydrodynamics (see [8], [9]).

2. Assumptions. We make the following assumptions:

(A.1) There are constants a0 and a1 such that

0 < a0 ≤ an+2,m(x, t) ≤ a1 for (x, t) ∈ ST

(ST denotes the closure of ST ).

(A.2) The coefficients aij (i = 0, 1, . . . , n+ 2, j = 0, 1, . . . ,m) are contin-

uous in ST and satisfy the Hölder condition with respect to x with exponent
α (0 < α ≤ 1); moreover, an+2,m satisfies the Hölder condition with respect
to t with exponent 1

2α.
(A.3) The functions χp (p = 1, 2) have continuous derivatives up to

order n∗ = [(n+1)/2] in [0, T ] and the highest derivatives satisfy the Hölder
condition

|∆t[χ
(n∗)
p (t)]| ≤ const

{
(∆t)α/2 if n + 1 is even,
(∆t)(α+1)/2 if n + 1 is odd,

where ∆t[χ(t)] ≡ χ(t + ∆t) − χ(t), t, t + ∆t ∈ [0, T ], α ∈ (0, 1].
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(A.4) The function f(x, t) is defined and continuous for (x, t) ∈ ST , and
satisfies the inequalities

|f(x, t)| ≤ Mf , |∆xf(x, t)| ≤ mf |∆x|α,

where ∆xf(x, t) ≡ f(x + ∆x, t) − f(x, t), (x, t), (x + ∆x, t) ∈ ST , Mf ,
mf = const > 0, α ∈ (0, 1].

(A.5) The functions g
p
l , p = 1, 2, l = 1, . . . , l0, are defined and have

continuous derivatives Dν
t g

p
l (ν = 0, 1, . . . ,M = [dr/2], dr = n−rp

l +2m+1)
in [0, T ] and satisfy the conditions

|∆t[D
M

t g
p
l (t)]| ≤ Mg

{
(∆t)α/2 if dr is even,
(∆t)(α+1)/2 if dr is odd,

and Dν
t g

p
l (0) = 0, where Mg = const > 0, 0 < α ≤ 1.

(A.6) The functions bp
kl, p = 1, 2, l = 1, . . . , l0, k = 0, 1, . . . , rp

l , are
defined in [0, T ] and have continuous derivatives up to order M.

R e m a r k. Without restricting generality, we can assume bp
rp

l
,l
(t)≥ b0≡1.

3. Solution of the problem. In all cases 1)–4) we shall seek a solution
of the problem (1)–(3) in the form

(4) u(x, t) =

2∑

σ=1

l0∑

q=1

t\
0

Λrσ
q
(x, t; χσ(τ), τ)ϕσ

q (τ) dτ + ZST
(x, t),

where ϕσ
q are unknown functions, Λrσ

q
are the fundamental solutions of (1)

constructed in [12] and

(5) ZST
(x, t) =

\\
St

Λ0(x, t; y, τ)f(y, τ) dy dτ.

3.1.C a s e 1). Observe that the function u given by (4) satisfies equation
(1) and initial conditions (2). Boundary conditions (3) lead to the system of
equations

(6) g
p
l (t) =

2∑

σ=1

l0∑

q=1

t\
0

B
p
l Λrσ

q
(χp(t), t; χσ(τ), τ)ϕσ

q (τ) dτ + z
p
l (t),

where z
p
l (t) = B

p
l ZST

(χp(t), t), 0 < t ≤ T , p = 1, 2, l = 1, . . . , l0.
By Lemma 3 of [12] we obtain

(7) D
rp

l
x wrp

q
(χp(τ), t; χp(τ), τ)

=

{
0, 1 ≤ l < q,
(−1)n−rp

l

√
π[a(τ)](n−rp

l
)/2Γ−1(dr/2)(t − τ)dr/2−1, q ≤ l ≤ l0,

(p = 1, 2, l, q = 1, . . . , l0), where dr = n− rp
l + 2m + 1 and the functions wrp

l

are defined by formula (6) of [12], and a(τ) = an+2,m(χp(τ), τ).
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Using the definition of the operator Iκ ([12], (25)) and (7) we can write

(8)

t\
0

D
rp

l
x wrp

q
(χp(τ), t; χp(τ), τ)ϕp

q (τ) dτ = cp
lqIdr/2([a(t)](n−rp

l
)/2ϕp

q(t))

(p = 1, 2, l, q = 1, . . . , l0, 0 < t ≤ T ), where

(9) cp
lq =

{
0, 1 ≤ l < q,
(−1)n−rp

l

√
π, q ≤ l ≤ l0.

By (8) and (9) we can rewrite system (6) in the form

(10)

l0∑

q=1

cp
lqIdr/2([a(t)](n−rp

l
)/2ϕp

q(t))

+

2∑

σ=1

l0∑

q=1

t\
0

K
pσ
lq (t, τ)ϕσ

p (τ) dτ + z
p
l (t) = g

p
l (t),

where

(11) K
pσ
lq (t, τ) = B

p
l Λrσ

q
(χp(t), tχp(τ), τ)

−
{

0 if σ 6= p or σ = p and 1 ≤ l < q,

D
rp

l
x wrp

q
(χp(τ), t; χp(τ), τ) if σ = p and q ≤ l ≤ l0,

(p, σ = 1, 2, l, q = 1, . . . , l0, 0 < t ≤ T ).
(10) is a system of first-kind Volterra equations. Using the method given

by Baderko [1] and the properties of the operator R1/2 defined by formula
(14) of [12], we reduce this system to a system of second-kind Volterra
equations. Applying to both sides of (10) the operator Rdr

1/2, where dr =

n − rp
l + 2m + 1, by Lemma 4 of [12], we obtain

(12)

l0∑

q=1

cp
lq [a(t)](n−rp

l
)/2ϕp

q(t) +
2∑

σ=1

l0∑

q=1

Rdr

1/2

[ t\
0

K
pσ
lq (t, τ)ϕσ

q (τ) dτ
]

+ Rdr

1/2[zp
l (t)] = Rdr

1/2[gp
l (t)], p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T.

By Theorem 1 of [12],

(13) |Dν
t K

pσ
lq (t, τ)| ≤ const (t − τ)(dr−2ν+α)/2−1

(ν = 0, 1, . . . ,M = [dr/2], dr = n − rp
l + 2m + 1, p, σ = 1, 2, l, q = 1, . . . , l0,

0 ≤ τ < t ≤ T , 0 < α ≤ 1).
We consider two cases: (i) dr is even, (ii) dr is odd.
In case (i) the function K

pσ
lq satisfies condition (18) of Lemma 4 of [12]

with N = dr/2 and ̺ = α/2; hence, in view of formula (19) of [12] we have

(14) Rdr

1/2

[ t\
0

K
pσ
lq (t, τ)ϕσ

q (τ) dτ
]

=

t\
0

D
dr/2
t K

pσ
lq (t, τ)ϕσ

q (τ) dτ.
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In case (ii), K
pσ
lq satisfies the same condition with N = (dr − 1)/2 and

̺ = (α + 1)/2; hence, by formula (20) of [12] we get

(15) Rdr

1/2

[ t\
0

K
pσ
lq (t, τ)ϕσ

q (τ) dτ
]

=

t\
0

R1/2[D
dr/2
t K

pσ
lq (t, τ)]ϕσ

q (τ) dτ.

By (14) and (15) system (12) can be written in the form

(16)

l0∑

q=1

cp
lq [a(t)](n−rp

l
)/2ϕp

q(t)

+

2∑

σ=1

l0∑

q=1

t\
0

K
pσ

lq (t, τ)ϕσ
q (τ) dτ + z

p
l (t) = g

p
l (t)

(p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T ), where

(17) K
pσ

lq (t, τ) =

{
D

dr/2
t K

pσ
lq (t, τ) if dr is even,

R1/2[D
(dr−1)/2
t K

pσ
lq (t, τ)] if dr is odd,

(18) z
p
l (t) = Rdr

1/2[zp
l (t)],

(19) g
p
l (t) = Rdr

1/2[gp
l (t)].

Now, we estimate the functions K
pσ

lq , z
p
l and g

p
l . In case (i), by Theorem 1

[12], we have

(20) |Ddr/2
t K

pσ
lq (t, τ)| ≤ const (t − τ)α/2−1, 0 ≤ τ < t ≤ T,

(21) |∆tD
dr/2
t K

pσ
lq (t, τ)| ≤ const (∆t)β/2(t − τ)µ−1,

0 ≤ τ < t ≤ t + ∆t ≤ T , 0 < β ≤ α ≤ 1, µ = min{α/2, 1 − α/2}.

Analogously, in case (ii), we get

(22) |D(dr−1)/2
t K

pσ
lq (t, τ)| ≤ const (t − τ)(1+α)/2−1, 0 ≤ τ < t ≤ T,

(23) |∆tD
(dr−1)/2
t K

pσ
lq (t, τ)| ≤ const (∆t)(1+α)/2(t − τ)µ−1,

0 ≤ τ < t ≤ t + ∆t ≤ T , µ = min{α/2, 1 − α/2}.

From (22) and (23) it follows that the functions D
(dr−1)/2
t K

pσ
lq satisfy the

assumptions of Lemma 6 of [12], and therefore

(24) |R1/2[D
(dr−1)/2
t K

pσ
lq (t, τ)]| ≤ const (t − τ)α/2−1, 0 ≤ τ < t ≤ T,

(25) |∆tR1/2[D
(dr−1)/2
t K

pσ
lq (t, τ)]| ≤ const (∆t)β/2(t − τ)µ−1,

0 ≤ τ < t ≤ t + ∆t ≤ T , 0 < β ≤ α ≤ 1, µ = min{α/2, 1 − α/2}.

Combining (20), (21), (24) and (25), we arrive at

(26) |Kpσ

lq (t, τ)| ≤ const (t − τ)α/2−1, 0 ≤ τ < t ≤ T,



144 J. Popio lek

(27) |∆tK
pσ

lq (t, τ)| ≤ const (∆t)β/2(t − τ)µ−1, 0 ≤ τ < t ≤ t + ∆t ≤ T,

p, σ = 1, 2, l, q = 1, . . . , l0, 0 < β ≤ α ≤ 1, µ = min{α/2, 1 − α/2}.
Now, we examine the function g

p
l given by (19). If dr is even, by (A.5)

the function g
p
l satisfies the assumptions of Lemma 5 of [12] with N = dr/2,

and so

g
p
l (t) = D

dr/2
t g

p
l (t), 0 ≤ τ < t ≤ T.

If dr is odd, by (A.5), g
p
l satisfies the assumptions of that lemma with

N = (dr − 1)/2, and thus

g
p
l (t) = R1/2[D

(dr−1)/2
t g

p
l (t)], 0 ≤ τ < t ≤ T.

Hence

(28) g
p
l (t) =

{
D

dr/2
t g

p
l (t) if dr is even,

R1/2[D
(dr−1)/2
t g

p
l (t)] if dr is odd,

(dr = n − rp
l + 2m + 1, p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T ).

From (28) and (A.5) in case (i) we obtain

(29) |∆tg
p
l (t)| ≤ const (∆t)α/2, 0 ≤ t < t + ∆t ≤ T, g

p
l (0) = 0.

In case (ii) we have

|∆tD
(dr−1)/2g

p
l (t)| ≤ const (∆t)(1+α)/2, 0 ≤ t < t + ∆t ≤ T,

D
(dr−1)/2
t g

p
l (0) = 0,

hence, by Lemma 2 of [16], we also get (29).
It remains to investigate the function z

p
l given by (18). Using (5) and

Lemma 5 of [12], we obtain

z
p
l (t) =

{
D

dr/2
t z

p
l (t) if dr is even,

R1/2[D
(dr−1)/2
t z

p
l (t)] if dr is odd,

(dr = n−rp
l +2m+1, p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T ); hence, by Lemma 8

of [12], we find

(30) |∆tz
p
l (t)| ≤ const (∆t)α/2, 0 ≤ t < t + ∆t ≤ T, z

p
l (0) = 0.

Now, we return to system (16). Multiplying both sides by [a(t)]−(n−rp

l
)/2

we obtain

(31)

l0∑

q=1

cp
lqϕ

p
q(t) +

2∑

σ=1

l0∑

q=1

t\
0

K
pσ
lq (t, τ)ϕσ

q (τ) dτ + z
p
l (t) = g

p
l (t)

(p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T ), where

K
pσ
lq (t, τ) = [a(t)]−(n−rp

l
)/2K

pσ

lq (t, τ), z
p
l (t) = [a(t)]−(n−rp

l
)/2z

p
l (t),

g
p
l (t) = [a(t)]−(n−rp

l
)/2g

p
l (t), a(t) = an+2,m(χp(t), t).
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Using assumptions (A.1), (A.2) it can be proved that the functions K
pσ
lq ,

z
p
l and g

p
l satisfy the estimates (26), (27), (29) and (30) respectively.

Now, we treat system (31) as an algebraic system with respect to the
functions ϕp

q , p = 1, 2, q = 1, . . . , l0. Its determinant is of the form

W =

∣∣∣∣∣∣∣∣∣∣

cp
11 0 0 . . . 0

cp
21 cp

22 0 . . . 0
cp
31 cp

32 cp
33 . . . 0

...
...

...
. . .

...
cp
l0,1 cp

l0,2 cp
l0,3 . . . cp

l0,l0

∣∣∣∣∣∣∣∣∣∣

.

Hence, in view of (9), we have

W = cp
11c

p
22 . . . cp

l0,l0
= (−1)

nl0−(rp

1
+rp

2
+...+rp

l0
)
(
√

π)l0 6= 0

on one of the curves χp (see §1) and

W = cp
11c

p
22 . . . cp

l∗−1,l∗−1c
p
l∗+1,l∗+1 . . . cp

l0,l0
6= 0

on the other. Cramer’s formulae yield

(32) ϕp
q(t) +

2∑

σ=1

l0∑

q=1

t\
0

K̃
pσ

lq (t, τ)ϕσ
q (τ) dτ + z̃

p
l (t) = g̃

p
l (t),

where

K̃
pσ

lq (t, τ) =

l0∑

v=1

Ap
lvKpσ

vq (t, τ), z̃
p
l (t) =

l0∑

v=1

Ap
lvz

p
v(t),

g̃
p
l (t) =

l0∑

v=1

Ap
lvgp

v(t), Ap
lv = Cp

lv/W,

p = 1, 2, l = 1, . . . , l0, 0 < t ≤ T (Cp
lv denotes the algebraic complement of

cp
lv in W).

It is easy to see that K̃
pσ

lq , z̃
p
l and g̃

p
l satisfy the same estimates as K

pσ
lq , z

p
l

and g
p
l respectively. Thus, (32) is a system of second-type Volterra integral

equations with weak singularities and hence it has a solution of the form

(33) ϕp
l (t) = g̃

p
l (t) − z̃

p
l (t) +

2∑

σ=1

l0∑

q=1

t\
0

K
pσ
lq (t, τ)[g̃

σ
q (τ) − z̃

σ
q (τ)] dτ,

where K
pσ
lq denote the resolvent kernels of the K̃

pσ

lq , p, σ = 1, 2, l, q =
1, . . . , l0. Moreover, the estimates (26), (27), (29) and (30) imply

(34) |∆tϕ
p
l (t)| ≤ const (∆t)β/2, ϕp

l (0) = 0

(p = 1, 2, l = 1, . . . , l0, 0 ≤ t < t + ∆t ≤ T , 0 < β ≤ α ≤ 1).
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3.2. C a s e 3). Without losing generality we may assume that on both
the curves χp, l0−1 conditions are posed given by the operators B

p
l , p = 1, 2,

l = 1, . . . , l0 − 1, with 0 ≤ rp
1 < rp

2 < . . . < rp
l0−1 < n + 1, and moreover, one

more condition given by B
p
l0

with r1
l0

= n + 1 is posed on χ1.
Now, we rewrite formula (4) in a form more suitable for further consid-

erations:

u(x, t) =

t\
0

Λn+1(x, t; χ1(τ), τ)ϕ1
l0

(τ) dτ(35)

+
2∑

σ=1

l0−1∑

q=1

t\
0

Λrσ
q
(x, t; χσ(τ), τ)ϕσ

q dτ + ZST
(x, t),

where the functions Λrσ
q

for σ = 1, 2, q = 1, . . . , l0−1 are defined by formula
(7) of [12] and

(36) Λn+1(x, t; y, τ) = Λr1
∗

(x, t; y, τ)

((x, t), (y, τ) ∈ ST ), where r1
∗ is a positive integer with 0 ≤ r1

∗ ≤ n, r1
∗ 6= r1

l

for l = 0, 1, . . . , l0 − 1.
Applying to both sides of (35) the operator B1

l0
given by (3), we get

(37) B1
l0u(x, t) =

t\
0

B1
l0Λr1

∗

(x, t; χ1(τ), τ)ϕ1
l0 (τ) dτ

+
2∑

σ=1

l0−1∑

q=1

t\
0

B1
l0

Λrσ
q
(x, t; χ1(τ), τ)ϕσ

q (τ) dτ + B1
l0

ZST
(x, t).

By (5) and Lemma 2 of [12] we can write

B1
l0

Λr1
∗

(x, t; χ1(τ), τ) = Pm[Dxωχ1(τ),τ (x, t; χ1(τ), τ)]+B1
l0

wr1
∗

(x, t; χ1(τ), τ)

((x, t) ∈ ST ). Consider the integral

Jm(x, t) =

t\
0

Pm[Dxωχ1(τ),τ (x, t; χ1(τ), τ)]ϕ1
l0 (τ) dτ (m ∈ N0).

We investigate its behaviour as x → χ1(t), (x, t) ∈ ST . For m = 0 we have

J0(x, t) =

t\
0

Dxωχ1(τ),τ (x, t; χ1(τ), τ)ϕ1
l0

(τ) dτ.

This is a heat potential of second kind which has the following property
([7], p. 1085):

(38) lim
x→χ1(t)

J0(x, t) = −
√

π

a(t)
ϕ1

l0
(t) + J0(χ1(t), t), (x, t) ∈ ST ,

where a(t) = an+2,0(χ1(t), t).
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For m > 0 the integral Jm can be written in the form

Jm(x, t) =

t\
0

[ t\
τ

(t − ζm)m−1

(m − 1)!
Dxωχ1(τ),τ (x, ζm; χ1(τ), τ)dζm

]
ϕ1

l0(τ) dτ.

It follows that

Jm(x, t) =

t\
0

(t − ζm)m−1

(m − 1)!
J0(x, ζm) dζm,

and hence, by (38), we obtain

(39) lim
x→χ1(t)

Jm(x, t) = −
t\
0

(t − ζm)m−1

(m − 1)!

√
π

a(t)
ϕ1

l0
(ζm) dζm + Jm(χ1(t), t)

((x, t) ∈ ST ,m ∈ N).

Making use of the definition of the operator Iκ (see (25) in [12]), formulae
(38) and (39) can be written in the form

(40) lim
x→χ1(t)

Jm(x, t) = −Im

[√
π

a(t)
ϕ1

l0
(t)

]
+ Jm(χ1(t), t)

((x, t) ∈ ST ,m ∈ N0), where a(t) = an+2,m(χ1(t), t).

Passing to the limit x → χ1(t) in (37), we have

g1
l0(t) = − Im

[√
π

a(t)
ϕ1

l0(t)

]
+

t\
0

K11
l0l0(t, τ)ϕ1

l0(τ) dτ(41)

+
2∑

σ=1

l0−1∑

q=1

t\
0

K1σ
l0q(t, τ)ϕσ

q (τ) dτ + z1
l0

(t),

where K11
l0l0(t, τ) = B1

l0Λr1
∗

(χ1(t), t; χ1(τ), τ), K1σ
l0q(t, τ) = B1

l0Λrσ
q
(χ1(t), t;

χσ(τ), τ), σ = 1, 2, q = 1, . . . , l0 − 1, 0 < t ≤ T , the operators B1
l0

are
defined by formula (34) of [12] and the functions z1

l0
are given by relation

(42) of [12].

Applying R2m
1/2 to both sides of (41), by Lemmas 4 and 5 of [12], we obtain

(42) −
√

π

a(t)
ϕ1

l0(t) +

t\
0

K
11

l0l0(t, τ)ϕ1
l0(τ) dτ

+

2∑

σ=1

l0−1∑

q=1

t\
0

K
1σ

l0q(t, τ)ϕσ
q (τ) dτ + z1

l0
(t) = g1

l0
(t), 0 < t ≤ T,

where K
11

l0l0(t, τ) = Dm
t K11

l0l0(t, τ), K
1σ

l0q(t, τ) = Dm
t K1σ

l0q(t, τ), z1
l0(t) =

Dm
t z1

l0
(t), g1

l0(t) = Dm
t g1

l0
(t), σ = 1, 2, q = 1, . . . , l0 − 1.
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Using Theorem 2 of [12] we find the estimates

|K11

l0l0
(t, τ)| ≤ const (t − τ)α/2−1, 0 ≤ τ < t ≤ T,(43)

|K1σ

l0q(t, τ)| ≤ const (t − τ)α/2−1, 0 ≤ τ < t ≤ T,(44)

|∆tK
11

l0l0
(t, τ)| ≤ const (∆t)β/2(t − τ)µ−1, 0 ≤ τ < t ≤ t + ∆t ≤ T,(45)

|∆tK
1σ

l0q(t, τ)| ≤ const (∆t)β/2(t − τ)µ−1, 0 ≤ τ < t ≤ t + ∆t ≤ T,(46)

where σ = 1, 2, q = 1, . . . , l0 − 1, 0 < β ≤ α ≤ 1, µ = min{α/2, 1 − α/2}.
Similarly, using Lemma 9 of [12], we have

(47) |∆tz
1
l0

(t)| ≤ const (∆t)α/2, 0 ≤ t < t + ∆t ≤ T, z1
l0

(0) = 0,

moreover, in view of assumption (A.5), we get

(48) |∆tg
1
l0

(t)| ≤ const (∆t)α/2, 0 ≤ t < t + ∆t ≤ T, g1
l0

(0) = 0.

Observe that equation (42) can be written in the form

(49) ϕ1
l0

(t) +

t\
0

K̃
11

l0l0
(t, τ)ϕ1

l0
(τ) dτ

+

2∑

σ=1

l0−1∑

q=1

t\
0

K̃
1σ

l0q(t, τ)ϕσ
q (τ) dτ + z̃

1
l0(t) = g̃

1
l0(t),

where K̃
11

l0l0
(t, τ) = −

√
a(t)/π ·K11

l0l0
(t, τ), K̃

1σ

l0q(t, τ) = −
√

a(t)/π ·K1σ

l0q(t, τ),

z̃
1
l0

(t) = −
√

a(t)/π · z1
l0

(t), g̃
1
l0

(t) = −
√

a(t)/π · g1
l0

(t), σ = 1, 2, q =
1, . . . , l0 − 1, 0 < t ≤ T .

From assumptions (A.1) and (A.2) it follows that K11
l0l0

, K1σ
l0q, z1

l0
and

g1
l0

satisfy inequalities (43)–(48) respectively. This means that if we treat
the functions ϕσ

q , σ = 1, 2, q = 1, . . . , l0 − 1, as parameters, then (49) is a
second-kind Volterra equation with respect to ϕ1

l0
. Because the singularity

of the kernel of this equation is weak one can solve it.
Imposing on the function u, given by formula (35), the remaining bound-

ary conditions (3) given by the operators B
p
1, B

p
2, . . ., B

p
l0−1 with 0 ≤ rp

1 <
rp
2 < . . . < rp

l0−1 < n + 1 (p = 1, 2, l0 = [(n + 3)/2]), we obtain the following
system of integral equations:

(50)

2∑

σ=1

l0−1∑

q=1

t\
0

B
p
l Λrσ

q
(χp(t), t; χp(τ), τ)ϕσ

q (τ) dτ

+

t\
0

B
p
l Λr1

∗

(χp(t), t; χ1(τ), τ)ϕ1
l0 (τ) dτ + z

p
l (t) = g

p
l (t),

p = 1, 2, l = 1, . . . , l0 − 1, 0 < t ≤ T .
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System (50) is a system of first-kind Volterra integral equations with
2(l0 − 1) equations and 2(l0 − 1) unknown functions ϕσ

q , σ = 1, 2, q =
1, . . . , l0−1. Now, we apply to system (50) the method presented in subsec-
tion 3.1 to obtain

(51) ϕp
l (t) +

2∑

σ=1

l0−1∑

q=1

t\
0

K̃
pσ

lq (t, τ)ϕσ
q (τ) dτ

=

t\
0

K̃
11

l0l0
(t, τ)ϕ1

l0
(τ) dτ − g̃

p
l (t) − z̃

p
l (t),

p = 1, 2, l = 1, . . . , l0 − 1, 0 < t ≤ T .

The functions K̃
pσ

lq , g̃
p
l and z̃

p
l satisfy inequalities (26), (27), (29) and (30),

respectively, thus (51) is a system of second-kind Volterra integral equations
with weak singularities.

Finally, we are able to find a solution of system (49), (51) in the form

ϕp
l (t) = g

p
l (t) − z

p
l (t)(52)

+
2∑

σ=1

l0−1∑

q=1

t\
0

[Kpσ
lq (t, τ) − K

11
l0l0

(t, τ)][gσ
q (τ) − zσ

q (τ)] dτ

(l = 1, . . . , l0 for p = 1, l = 1, . . . , l0 − 1, for p = 2), where K
pσ
lq and K

11
l0l0

are the resolvent kernels of K̃
pσ

lq and K̃
11

l0l0 , respectively. Furthermore, by
(26)–(27), (29)–(30) and (43)–(48) we obtain

(53) |∆tϕ
p
l (t)| ≤ const (∆t)β/2, 0 ≤ t < t + ∆t ≤ T, ϕp

l (0) = 0

(p = 1, 2, l = 1, . . . , l0 − 1), where 0 < β ≤ α ≤ 1.
As a result of the foregoing considerations we can formulate the following

theorem:

Theorem 1. If assumptions (A.1)–(A.6) are satisfied then there exists

a solution u of the problem (1)–(3). It is given by relation (4), where the

functions ϕσ
q are defined by formula (33) in case 1); by a formula similar

to (33) in case 2) and then they satisfy inequality (34); by formula (52) in

case 3); and by a formula similar to (52) in case 4) and then they satisfy

inequality (53).

References

[1] E. A. Baderko, On solvability of boundary-value problems for parabolic equations of
higher order in curvilinear domains, Differentsial’nye Uravneniya 12 (1976), 1782–
1792 (in Russian).

[2] Z. D. Dubl ’a, Boundary-value problems for differential equations in unbounded
domains, ibid. 10 (1974), 159–161 (in Russian).



150 J. Popio lek

[3] Z. D. Dubl ’a, On the Dirichlet problem for a class of equations of third order , ibid.
13 (1977), 50–55 (in Russian).

[4] T. D. Dzhuraev, Boundary-Value Problems for Equations of Mixed and Mixed-
Composite Types, FAN, Tashkent, 1979 (in Russian).

[5] T. D. Dzhuraev and M. Mamazhanov, On a class of boundary-value problems
for equations of third order containing the operator of heat conduction, Izv. Akad.
Nauk UzSSR 1985 (2), 22–26 (in Russian).

[6] M. Hanin, Propagation of an aperiodic wave in a compressible viscous medium, J.
Math. Phys. 36 (1957), 133–150.

[7] L. I. Kamynin, The method of heat potentials for parabolic equations with discon-
tinuous coefficients, Sibirsk. Mat. Zh. 4 (1963), 1071–1105 (in Russian).

[8] R. Nard in i, Soluzione di un problema al contorno della magneto-idrodinamica,
Ann. Mat. Pura Appl. 35 (1953), 269–290.

[9] —, Sul comportamento asintotico della soluzione di un problema al contorno della
magneto-idrodinamica, Rend. Accad. Naz. Lincei 16 (1954), 225–231, 341–348,
365–366.

[10] B. Pin i, Un problema di valori al contorno per un’equazione a derivate parziali
del terzo ordine con parte principale di tipo composito, Rend. Sem. Fac. Sci. Univ.
Cagliari 27 (1957), 114–135.

[11] J. Pop io  lek, The Cauchy problem for a higher-order partial differential equation,
Izv. Akad. Nauk UzSSR 1 (1989), 25–30 (in Russian).

[12] —, Properties of some integrals related to partial differential equations of order
higher than two, this issue, 129–138.

[13] A. S. Rustamov, A mixed problem for the equation of composite type with variable
coefficients, Differentsial’nye Uravneniya 18 (1982), 1794–1804 (in Russian).

[14] S. N. Sal ikhov, On a boundary-value problem for a partial differential equation
with multiple characteristics, Izv. Akad. Nauk UzSSR 1983 (5), 29–33 (in Russian).

[15] Ya. S. Shar i fbaev, On some boundary-value problems for equations of third order
with the heat conduction operator in the principal part, ibid. 1975 (1), 45–48 (in
Russian).

[16] J. Urbanowicz, On a certain non-linear contact problem for a one-dimensional
parabolic equation of second order , Demonstratio Math. 16 (1983), 61–83.

[17] S. S. Vojt, Propagation of initial waves in a viscous gas, Uchen. Zap. MTU 172
(1954), 125–142 (in Russian).

Institute of Mathematics
Warsaw University, Bia lystok Branch
Akademicka 2
15-267 Bia lystok, Poland
E-mail: popiolek@math.uw.bialystok.pl
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