On boundary-value problems for partial differential equations of order higher than two

by Jan PopioŁek (Białystok)

Abstract

We prove the existence of solutions of some boundary-value problems for partial differential equations of order higher than two. The general idea is similar to that in [1]. We make an essential use of the results of our paper [12].

1. The problem. Let $x=\chi_{p}(t), 0<t \leq T, p=1,2$, be equations of non-intersecting curves on the (x, t) plane.

In this paper we prove the existence of a solution of the problem

$$
\begin{equation*}
\mathcal{L} u(x, t) \equiv \sum_{i=0}^{n+2} \sum_{j=0}^{m} a_{i j}(x, t) D_{x}^{i} D_{t}^{j} u(x, t)-D_{x}^{n} D_{t}^{m+1} u(x, t)=f(x, t), \tag{1}
\end{equation*}
$$

where $(x, t) \in \mathbf{S}_{T}=\left\{(x, t): \chi_{1}(t)<x<\chi_{2}(t), 0<t \leq T\right\}, T=$ const $<\infty$, $n, m \in \mathbb{N}_{0} \equiv \mathbb{N} \cup\{0\}, n+m>0$ (for $n=m=0$ equation (1) is a parabolic equation of second order, the theory of which is well known), satisfying the initial conditions

$$
\begin{equation*}
D_{t}^{l} u(x, 0)=0, \quad \chi_{1}(0) \leq x \leq \chi_{2}(0), l=0,1, \ldots, m \tag{2}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
\mathbf{B}_{l}^{p} u\left(\chi_{p}(t), t\right) \equiv \sum_{k=0}^{r_{l}^{p}} b_{k l}^{p}(t) D_{x}^{k} u\left(\chi_{p}(t), t\right)=\mathbf{g}_{l}^{p}(t), \tag{3}
\end{equation*}
$$

where $0<t \leq T, p=1,2, l=1, \ldots, l_{0}=[(n+3) / 2]$ (denotes the greatest integer function), $0 \leq r_{1}^{p}<r_{2}^{p}<\ldots<r_{l_{0}}^{p} \leq n+1, r_{l}^{p} \in \mathbb{N}_{0}, b_{r_{l}^{p}, l}^{p}(t) \geq b_{0}=$ const >0.

We distinguish the following four cases:

1) $r_{l_{0}}^{p}<n+1, p=1$ or $p=2, n$ is odd,

[^0]2) $r_{l_{0}}^{p}<n+1, p=1$ or $p=2, n$ is even,
3) $r_{l_{0}}^{p}=n+1, p=1$ or $p=2, n$ is odd,
4) $r_{l_{0}}^{p}=n+1, p=1$ or $p=2, n$ is even.

We shall exactly analyse cases 1) and 3). The argument in the remaining cases is similar. Note that in cases 1) and 3) we have to put $[(n-1) / 2]$ boundary conditions on one of the curves χ_{p} and $[(n-1) / 2]+1$ on the other.

Boundary-value problems in rectangular domains and for particular cases of the operator \mathcal{L} and of the boundary operators \mathbf{B}_{l}^{p} have been considered in many papers (see [2], [3], [4], [10] and [15]). In [14] the boundary-value problem for the equation

$$
D_{x}^{n+2} u-D_{x}^{n} D_{t} u=f\left(x, t, u, \ldots, D_{x}^{n+1} u\right)
$$

was examined. Paper [13] was devoted to the equation

$$
\mathbf{L}\left(D_{x}+D_{t}\right)^{n} u(x, t)=f(x, t)
$$

where $\mathbf{L} \equiv D_{t}-a(x, t) D_{x}^{2}+b(x, t) D_{x}+c(x, t)$. In [5] some boundary-value problems for the equation

$$
\left(D_{x}^{2}-D_{t}\right)\left(a D_{x}+b D_{t}+c\right) u(x, t)=0
$$

were investigated, where a, b, c are constants and $a \cdot b \neq 0$. Moreover, in [11] Cauchy's problem for equation (1) was examined.

Note that particular cases of equation (1) describe the propagation of waves in a compressible viscous medium (see [3], [6], [17]) and some problems of magneto-hydrodynamics (see [8], [9]).
2. Assumptions. We make the following assumptions:
(A.1) There are constants a_{0} and a_{1} such that

$$
0<a_{0} \leq a_{n+2, m}(x, t) \leq a_{1} \quad \text { for }(x, t) \in \overline{\mathbf{S}}_{T}
$$

$\left(\overline{\mathbf{S}}_{T}\right.$ denotes the closure of $\left.\mathbf{S}_{T}\right)$.
(A.2) The coefficients $a_{i j}(i=0,1, \ldots, n+2, j=0,1, \ldots, m)$ are continuous in $\overline{\mathbf{S}}_{T}$ and satisfy the Hölder condition with respect to x with exponent $\alpha(0<\alpha \leq 1)$; moreover, $a_{n+2, m}$ satisfies the Hölder condition with respect to t with exponent $\frac{1}{2} \alpha$.
(A.3) The functions $\chi_{p}(p=1,2)$ have continuous derivatives up to order $n_{*}=[(n+1) / 2]$ in $[0, T]$ and the highest derivatives satisfy the Hölder condition

$$
\left|\Delta_{t}\left[\chi_{p}^{\left(n_{*}\right)}(t)\right]\right| \leq \mathrm{const} \begin{cases}(\Delta t)^{\alpha / 2} & \text { if } n+1 \text { is even } \\ (\Delta t)^{(\alpha+1) / 2} & \text { if } n+1 \text { is odd }\end{cases}
$$

where $\Delta_{t}[\chi(t)] \equiv \chi(t+\Delta t)-\chi(t), t, t+\Delta t \in[0, T], \alpha \in(0,1]$.
(A.4) The function $f(x, t)$ is defined and continuous for $(x, t) \in \mathbf{S}_{T}$, and satisfies the inequalities

$$
|f(x, t)| \leq M_{f}, \quad\left|\Delta_{x} f(x, t)\right| \leq m_{f}|\Delta x|^{\alpha}
$$

where $\Delta_{x} f(x, t) \equiv f(x+\Delta x, t)-f(x, t),(x, t),(x+\Delta x, t) \in \overline{\mathbf{S}}_{T}, M_{f}$, $m_{f}=$ const $>0, \alpha \in(0,1]$.
(A.5) The functions $\mathbf{g}_{l}^{p}, p=1,2, l=1, \ldots, l_{0}$, are defined and have continuous derivatives $D_{t}^{\nu} \mathbf{g}_{l}^{p}\left(\nu=0,1, \ldots, \mathcal{M}=\left[d_{r} / 2\right], d_{r}=n-r_{l}^{p}+2 m+1\right)$ in $[0, T]$ and satisfy the conditions

$$
\left|\Delta_{t}\left[D_{t}^{\mathcal{M}} \mathbf{g}_{l}^{p}(t)\right]\right| \leq M_{g} \begin{cases}(\Delta t)^{\alpha / 2} & \text { if } d_{r} \text { is even, } \\ (\Delta t)^{(\alpha+1) / 2} & \text { if } d_{r} \text { is odd }\end{cases}
$$

and $D_{t}^{\nu} \mathbf{g}_{l}^{p}(0)=0$, where $M_{g}=$ const $>0,0<\alpha \leq 1$.
(A.6) The functions $b_{k l}^{p}, p=1,2, l=1, \ldots, l_{0}, k=0,1, \ldots, r_{l}^{p}$, are defined in $[0, T]$ and have continuous derivatives up to order \mathcal{M}.

Remark. Without restricting generality, we can assume $b_{r_{l}^{p}, l}^{p}(t) \geq b_{0} \equiv 1$.
3. Solution of the problem. In all cases 1)-4) we shall seek a solution of the problem (1)-(3) in the form

$$
\begin{equation*}
u(x, t)=\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \Lambda_{r_{q}^{\sigma}}\left(x, t ; \chi_{\sigma}(\tau), \tau\right) \varphi_{q}^{\sigma}(\tau) d \tau+\mathbf{Z}_{\mathbf{S}_{T}}(x, t) \tag{4}
\end{equation*}
$$

where φ_{q}^{σ} are unknown functions, $\Lambda_{r_{q}^{\sigma}}$ are the fundamental solutions of (1) constructed in [12] and

$$
\begin{equation*}
\mathbf{Z}_{\mathbf{S}_{T}}(x, t)=\iint_{\mathbf{S}_{t}} \Lambda_{0}(x, t ; y, \tau) f(y, \tau) d y d \tau \tag{5}
\end{equation*}
$$

3.1.C ase 1). Observe that the function u given by (4) satisfies equation (1) and initial conditions (2). Boundary conditions (3) lead to the system of equations

$$
\begin{equation*}
\mathbf{g}_{l}^{p}(t)=\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \mathbf{B}_{l}^{p} \Lambda_{r_{q}^{\sigma}}\left(\chi_{p}(t), t ; \chi_{\sigma}(\tau), \tau\right) \varphi_{q}^{\sigma}(\tau) d \tau+\boldsymbol{z}_{l}^{p}(t), \tag{6}
\end{equation*}
$$

where $\boldsymbol{z}_{l}^{p}(t)=\mathbf{B}_{l}^{p} \mathbf{Z}_{\mathbf{S}_{T}}\left(\chi_{p}(t), t\right), 0<t \leq T, p=1,2, l=1, \ldots, l_{0}$.
By Lemma 3 of [12] we obtain

$$
\begin{align*}
& D_{x}^{r_{l}^{p}} w_{r_{l}^{p}}\left(\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right) \tag{7}\\
& \quad= \begin{cases}0, & 1 \leq l<q, \\
(-1)^{n-r_{l}^{p}} \sqrt{\pi}[\mathbf{a}(\tau)]^{\left(n-r_{l}^{p}\right) / 2} \Gamma^{-1}\left(d_{r} / 2\right)(t-\tau)^{d_{r} / 2-1}, & q \leq l \leq l_{0},\end{cases}
\end{align*}
$$

($p=1,2, l, q=1, \ldots, l_{0}$), where $d_{r}=n-r_{l}^{p}+2 m+1$ and the functions $w_{r_{l}^{p}}$ are defined by formula (6) of [12], and $\mathbf{a}(\tau)=a_{n+2, m}\left(\chi_{p}(\tau), \tau\right)$.

Using the definition of the operator $\mathbf{I}_{\kappa}([12],(25))$ and (7) we can write

$$
\begin{equation*}
\int_{0}^{t} D_{x}^{r_{l}^{p}} w_{r_{q}^{p}}\left(\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right) \varphi_{q}^{p}(\tau) d \tau=c_{l q}^{p} \mathbf{I}_{d_{r} / 2}\left([\mathbf{a}(t)]^{\left(n-r_{l}^{p}\right) / 2} \varphi_{q}^{p}(t)\right) \tag{8}
\end{equation*}
$$

$\left(p=1,2, l, q=1, \ldots, l_{0}, 0<t \leq T\right)$, where

$$
c_{l q}^{p}= \begin{cases}0, & 1 \leq l<q, \tag{9}\\ (-1)^{n-r_{l}^{p}} \sqrt{\pi}, & q \leq l \leq l_{0} .\end{cases}
$$

By (8) and (9) we can rewrite system (6) in the form

$$
\begin{align*}
& \sum_{q=1}^{l_{0}} c_{l q}^{p} \mathbf{I}_{d_{r} / 2}\left([\mathbf{a}(t)]^{\left(n-r_{l}^{p}\right) / 2} \varphi_{q}^{p}(t)\right) \tag{10}\\
& \\
& \quad+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \boldsymbol{K}_{l q}^{p \sigma}(t, \tau) \varphi_{p}^{\sigma}(\tau) d \tau+\boldsymbol{z}_{l}^{p}(t)=\mathbf{g}_{l}^{p}(t),
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{K}_{l q}^{p \sigma}(t, \tau)=\mathbf{B}_{l}^{p} \Lambda_{r_{q}^{\sigma}}\left(\chi_{p}(t), t \chi_{p}(\tau), \tau\right) \tag{11}\\
& \quad- \begin{cases}0 & \text { if } \sigma \neq p \text { or } \sigma=p \text { and } 1 \leq l<q, \\
D_{x}^{r_{l}^{p}} w_{r_{q}^{p}}\left(\chi_{p}(\tau), t ; \chi_{p}(\tau), \tau\right) & \text { if } \sigma=p \text { and } q \leq l \leq l_{0},\end{cases}
\end{align*}
$$

$\left(p, \sigma=1,2, l, q=1, \ldots, l_{0}, 0<t \leq T\right)$.
(10) is a system of first-kind Volterra equations. Using the method given by Baderko [1] and the properties of the operator $\mathbf{R}_{1 / 2}$ defined by formula (14) of [12], we reduce this system to a system of second-kind Volterra equations. Applying to both sides of (10) the operator $\mathbf{R}_{1 / 2}^{d_{r}}$, where $d_{r}=$ $n-r_{l}^{p}+2 m+1$, by Lemma 4 of [12], we obtain

$$
\begin{align*}
& \sum_{q=1}^{l_{0}} c_{l q}^{p}[\mathbf{a}(t)]^{\left(n-r_{l}^{p}\right) / 2} \varphi_{q}^{p}(t)+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \mathbf{R}_{1 / 2}^{d_{r}}\left[\int_{0}^{t} \mathbf{K}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau\right] \tag{12}\\
& \quad+\mathbf{R}_{1 / 2}^{d_{r}}\left[\mathbf{z}_{l}^{p}(t)\right]=\mathbf{R}_{1 / 2}^{d_{r}}\left[\mathbf{g}_{l}^{p}(t)\right], \quad p=1,2, l=1, \ldots, l_{0}, 0<t \leq T
\end{align*}
$$

By Theorem 1 of [12],

$$
\begin{equation*}
\left|D_{t}^{\nu} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{\left(d_{r}-2 \nu+\alpha\right) / 2-1} \tag{13}
\end{equation*}
$$

$\left(\nu=0,1, \ldots, \mathcal{M}=\left[d_{r} / 2\right], d_{r}=n-r_{l}^{p}+2 m+1, p, \sigma=1,2, l, q=1, \ldots, l_{0}\right.$, $0 \leq \tau<t \leq T, 0<\alpha \leq 1)$.

We consider two cases: (i) d_{r} is even, (ii) d_{r} is odd.
In case (i) the function $\mathbf{K}_{l q}^{p \sigma}$ satisfies condition (18) of Lemma 4 of [12] with $N=d_{r} / 2$ and $\varrho=\alpha / 2$; hence, in view of formula (19) of [12] we have

$$
\begin{equation*}
\mathbf{R}_{1 / 2}^{d_{r}}\left[\int_{0}^{t} \mathbf{K}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau\right]=\int_{0}^{t} D_{t}^{d_{r} / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau \tag{14}
\end{equation*}
$$

In case (ii), $\mathbf{K}_{l q}^{p \sigma}$ satisfies the same condition with $N=\left(d_{r}-1\right) / 2$ and $\varrho=(\alpha+1) / 2$; hence, by formula (20) of [12] we get

$$
\begin{equation*}
\mathbf{R}_{1 / 2}^{d_{r}}\left[\int_{0}^{t} \mathbf{K}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau\right]=\int_{0}^{t} \mathcal{R}_{1 / 2}\left[D_{t}^{d_{r} / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right] \varphi_{q}^{\sigma}(\tau) d \tau . \tag{15}
\end{equation*}
$$

By (14) and (15) system (12) can be written in the form

$$
\begin{align*}
\sum_{q=1}^{l_{0}} c_{l q}^{p}[\mathbf{a}(t)]^{\left(n-r_{l}^{p}\right) / 2} \varphi_{q}^{p}(t) & \tag{16}\\
& +\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \overline{\mathbf{K}}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\overline{\mathbf{z}}_{l}^{p}(t)=\overline{\mathbf{g}}_{l}^{p}(t)
\end{align*}
$$

$\left(p=1,2, l=1, \ldots, l_{0}, 0<t \leq T\right)$, where

$$
\begin{gather*}
\overline{\mathbf{K}}_{l q}^{p \sigma}(t, \tau)= \begin{cases}D_{t}^{d_{r} / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau) & \text { if } d_{r} \text { is even, } \\
\mathcal{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right] & \text { if } d_{r} \text { is odd, }\end{cases} \tag{17}\\
\overline{\mathbf{z}}_{l}^{p}(t)=\mathbf{R}_{1 / 2}^{d_{r}\left[\boldsymbol{z}_{l}^{p}(t)\right],} \tag{18}\\
\overline{\mathbf{g}}_{l}^{p}(t)=\mathbf{R}_{1 / 2}^{d_{r}\left[\mathbf{g}_{l}^{p}(t)\right] .} \tag{19}
\end{gather*}
$$

Now, we estimate the functions $\overline{\mathbf{K}}_{l q}^{p \sigma}, \overline{\mathbf{z}}_{l}^{p}$ and $\overline{\mathbf{g}}_{l}^{p}$. In case (i), by Theorem 1 [12], we have

$$
\begin{gather*}
\left|D_{t}^{d_{r} / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right| \leq \mathrm{const}(t-\tau)^{\alpha / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{20}\\
\left|\Delta_{t} D_{t}^{d_{r} / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right| \leq \mathrm{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, \tag{21}
\end{gather*}
$$

$0 \leq \tau<t \leq t+\Delta t \leq T, 0<\beta \leq \alpha \leq 1, \mu=\min \{\alpha / 2,1-\alpha / 2\}$.
Analogously, in case (ii), we get

$$
\begin{gather*}
\left|D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{(1+\alpha) / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{22}\\
\left|\Delta_{t} D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{(1+\alpha) / 2}(t-\tau)^{\mu-1},
\end{gather*}
$$

$0 \leq \tau<t \leq t+\Delta t \leq T, \mu=\min \{\alpha / 2,1-\alpha / 2\}$.
From (22) and (23) it follows that the functions $D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}$ satisfy the assumptions of Lemma 6 of [12], and therefore

$$
\begin{gather*}
\left|\mathcal{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right]\right| \leq \operatorname{const}(t-\tau)^{\alpha / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{24}\\
\left|\Delta_{t} \mathcal{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{K}_{l q}^{p \sigma}(t, \tau)\right]\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, \tag{25}
\end{gather*}
$$

$0 \leq \tau<t \leq t+\Delta t \leq T, 0<\beta \leq \alpha \leq 1, \mu=\min \{\alpha / 2,1-\alpha / 2\}$.
Combining (20), (21), (24) and (25), we arrive at

$$
\begin{equation*}
\left|\overline{\mathbf{K}}_{l q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{\alpha / 2-1}, \quad 0 \leq \tau<t \leq T, \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\left|\Delta_{t} \overline{\mathbf{K}}_{l q}^{p \sigma}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, \quad 0 \leq \tau<t \leq t+\Delta t \leq T \tag{27}
\end{equation*}
$$ $p, \sigma=1,2, l, q=1, \ldots, l_{0}, 0<\beta \leq \alpha \leq 1, \mu=\min \{\alpha / 2,1-\alpha / 2\}$.

Now, we examine the function $\overline{\mathbf{g}}_{l}^{p}$ given by (19). If d_{r} is even, by (A.5) the function $\overline{\mathbf{g}}_{l}^{p}$ satisfies the assumptions of Lemma 5 of [12] with $N=d_{r} / 2$, and so

$$
\overline{\mathbf{g}}_{l}^{p}(t)=D_{t}^{d_{r} / 2} \mathbf{g}_{l}^{p}(t), \quad 0 \leq \tau<t \leq T .
$$

If d_{r} is odd, by (A.5), $\overline{\mathbf{g}}_{l}^{p}$ satisfies the assumptions of that lemma with $N=\left(d_{r}-1\right) / 2$, and thus

$$
\overline{\mathbf{g}}_{l}^{p}(t)=\mathbf{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{g}_{l}^{p}(t)\right], \quad 0 \leq \tau<t \leq T
$$

Hence

$$
\overline{\mathbf{g}}_{l}^{p}(t)= \begin{cases}D_{t}^{d_{r} / 2} \mathbf{g}_{l}^{p}(t) & \text { if } d_{r} \text { is even } \tag{28}\\ \mathbf{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{g}_{l}^{p}(t)\right] & \text { if } d_{r} \text { is odd }\end{cases}
$$

$\left(d_{r}=n-r_{l}^{p}+2 m+1, p=1,2, l=1, \ldots, l_{0}, 0<t \leq T\right)$.
From (28) and (A.5) in case (i) we obtain

$$
\begin{equation*}
\left|\Delta_{t} \overline{\mathbf{g}}_{l}^{p}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, \quad 0 \leq t<t+\Delta t \leq T, \quad \overline{\mathbf{g}}_{l}^{p}(0)=0 \tag{29}
\end{equation*}
$$

In case (ii) we have

$$
\begin{aligned}
\left|\Delta_{t} D^{\left(d_{r}-1\right) / 2} \mathbf{g}_{l}^{p}(t)\right| & \leq \operatorname{const}(\Delta t)^{(1+\alpha) / 2}, \quad 0 \leq t<t+\Delta t \leq T \\
D_{t}^{\left(d_{r}-1\right) / 2} \mathbf{g}_{l}^{p}(0) & =0
\end{aligned}
$$

hence, by Lemma 2 of [16], we also get (29).
It remains to investigate the function $\overline{\mathbf{z}}_{l}^{p}$ given by (18). Using (5) and Lemma 5 of [12], we obtain

$$
\overline{\boldsymbol{z}}_{l}^{p}(t)= \begin{cases}D_{t}^{d_{r} / 2} \boldsymbol{z}_{l}^{p}(t) & \text { if } d_{r} \text { is even } \\ \mathbf{R}_{1 / 2}\left[D_{t}^{\left(d_{r}-1\right) / 2} \boldsymbol{z}_{l}^{p}(t)\right] & \text { if } d_{r} \text { is odd }\end{cases}
$$

$\left(d_{r}=n-r_{l}^{p}+2 m+1, p=1,2, l=1, \ldots, l_{0}, 0<t \leq T\right)$; hence, by Lemma 8 of [12], we find

$$
\begin{equation*}
\left|\Delta_{t} \overline{\mathbf{z}}_{l}^{p}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, \quad 0 \leq t<t+\Delta t \leq T, \quad \overline{\mathbf{z}}_{l}^{p}(0)=0 \tag{30}
\end{equation*}
$$

Now, we return to system (16). Multiplying both sides by $[\mathbf{a}(t)]^{-\left(n-r_{l}^{p}\right) / 2}$ we obtain

$$
\begin{equation*}
\sum_{q=1}^{l_{0}} c_{l q}^{p} \varphi_{q}^{p}(t)+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \overline{\overline{\mathbf{K}}}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\overline{\overline{\mathbf{z}}}_{l}^{p}(t)=\overline{\overline{\mathbf{g}}}_{l}^{p}(t) \tag{31}
\end{equation*}
$$

$\left(p=1,2, l=1, \ldots, l_{0}, 0<t \leq T\right)$, where

$$
\begin{aligned}
\overline{\overline{\mathbf{K}}}_{l q}^{p \sigma}(t, \tau) & =[\mathbf{a}(t)]^{-\left(n-r_{l}^{p}\right) / 2} \overline{\mathbf{K}}_{l q}^{p \sigma}(t, \tau), & \overline{\overline{\mathbf{z}}}_{l}^{p}(t) & =[\mathbf{a}(t)]^{-\left(n-r_{l}^{p}\right) / 2} \overline{\overline{\mathbf{z}}}_{l}^{p}(t), \\
\overline{\overline{\mathbf{g}}}_{l}^{p}(t) & =[\mathbf{a}(t)]^{-\left(n-r_{l}^{p}\right) / 2} \overline{\mathbf{g}}_{l}^{p}(t), & \mathbf{a}(t) & =a_{n+2, m}\left(\chi_{p}(t), t\right) .
\end{aligned}
$$

Using assumptions (A.1), (A.2) it can be proved that the functions $\overline{\overline{\mathbf{K}}}_{l q}^{p \sigma}$, $\overline{\overline{\mathbf{z}}}_{l}^{p}$ and $\overline{\overline{\mathbf{q}}}_{l}^{p}$ satisfy the estimates (26), (27), (29) and (30) respectively.

Now, we treat system (31) as an algebraic system with respect to the functions $\varphi_{q}^{p}, p=1,2, q=1, \ldots, l_{0}$. Its determinant is of the form

$$
\mathbf{W}=\left|\begin{array}{ccccc}
c_{11}^{p} & 0 & 0 & \ldots & 0 \\
c_{21}^{p} & c_{22}^{p} & 0 & \ldots & 0 \\
c_{31}^{p} & c_{32}^{p} & c_{33}^{p} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{l_{0}, 1}^{p} & c_{l_{0}, 2}^{p} & c_{l_{0}, 3}^{p} & \ldots & c_{l_{0}, l_{0}}^{p}
\end{array}\right| .
$$

Hence, in view of (9), we have

$$
\mathbf{W}=c_{11}^{p} c_{22}^{p} \ldots c_{l_{0}, l_{0}}^{p}=(-1)^{n l_{0}-\left(r_{1}^{p}+r_{2}^{p}+\ldots+r_{l_{0}}^{p}\right)}(\sqrt{\pi})^{l_{0}} \neq 0
$$

on one of the curves χ_{p} (see §1) and

$$
\mathbf{W}=c_{11}^{p} c_{22}^{p} \ldots c_{l_{*}-1, l_{*}-1}^{p} c_{l_{*}+1, l_{*}+1}^{p} \ldots c_{l_{0}, l_{0}}^{p} \neq 0
$$

on the other. Cramer's formulae yield

$$
\begin{equation*}
\varphi_{q}^{p}(t)+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \widetilde{\mathbf{k}}_{l q}^{p \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\widetilde{\mathbf{z}}_{l}^{p}(t)=\widetilde{\mathbf{g}}_{l}^{p}(t), \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
\widetilde{\mathbf{K}}_{l q}^{p \sigma}(t, \tau) & =\sum_{v=1}^{l_{0}} A_{l v}^{p} \overline{\overline{\mathbf{K}}}_{v q}^{p \sigma}(t, \tau), & \widetilde{\mathbf{z}}_{l}^{p}(t) & =\sum_{v=1}^{l_{0}} A_{l v}^{p} \overline{\bar{z}}_{v}^{p}(t), \\
\widetilde{\mathbf{g}}_{l}^{p}(t) & =\sum_{v=1}^{l_{0}} A_{l v}^{p} \overline{\overline{\mathbf{g}}}_{v}^{p}(t), & A_{l v}^{p} & =C_{l v}^{p} / \mathbf{W},
\end{aligned}
$$

$p=1,2, l=1, \ldots, l_{0}, 0<t \leq T\left(C_{l v}^{p}\right.$ denotes the algebraic complement of $c_{l v}^{p}$ in $\left.\mathbf{W}\right)$.

It is easy to see that $\widetilde{\mathbf{K}}_{l q}^{p \sigma}, \widetilde{\mathbf{z}}_{l}^{p}$ and $\widetilde{\mathbf{g}}_{l}^{p}$ satisfy the same estimates as $\overline{\overline{\mathbf{K}}}_{l q}^{p \sigma}, \overline{\overline{\mathbf{z}}}_{l}^{p}$ and $\overline{\overline{\mathbf{g}}}_{l}^{p}$ respectively. Thus, (32) is a system of second-type Volterra integral equations with weak singularities and hence it has a solution of the form

$$
\begin{equation*}
\varphi_{l}^{p}(t)=\widetilde{\mathbf{g}}_{l}^{p}(t)-\widetilde{\boldsymbol{z}}_{l}^{p}(t)+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}} \int_{0}^{t} \mathcal{K}_{l q}^{p \sigma}(t, \tau)\left[\widetilde{\mathbf{g}}_{q}^{\sigma}(\tau)-\widetilde{\boldsymbol{z}}_{q}^{\sigma}(\tau)\right] d \tau, \tag{33}
\end{equation*}
$$

where $\mathscr{K}_{l q}^{p \sigma}$ denote the resolvent kernels of the $\widetilde{\mathbf{K}}_{l q}^{p \sigma}, p, \sigma=1,2, l, q=$ $1, \ldots, l_{0}$. Moreover, the estimates (26), (27), (29) and (30) imply

$$
\begin{equation*}
\left|\Delta_{t} \varphi_{l}^{p}(t)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}, \quad \varphi_{l}^{p}(0)=0 \tag{34}
\end{equation*}
$$

$\left(p=1,2, l=1, \ldots, l_{0}, 0 \leq t<t+\Delta t \leq T, 0<\beta \leq \alpha \leq 1\right)$.
3.2. Case 3). Without losing generality we may assume that on both the curves $\chi_{p}, l_{0}-1$ conditions are posed given by the operators $\mathbf{B}_{l}^{p}, p=1,2$, $l=1, \ldots, l_{0}-1$, with $0 \leq r_{1}^{p}<r_{2}^{p}<\ldots<r_{l_{0}-1}^{p}<n+1$, and moreover, one more condition given by $\mathbf{B}_{l_{0}}^{p}$ with $r_{l_{0}}^{1}=n+1$ is posed on χ_{1}.

Now, we rewrite formula (4) in a form more suitable for further considerations:

$$
\begin{align*}
u(x, t)= & \int_{0}^{t} \Lambda_{n+1}\left(x, t ; \chi_{1}(\tau), \tau\right) \varphi_{l_{0}}^{1}(\tau) d \tau \tag{35}\\
& +\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \Lambda_{r_{q}^{\sigma}}\left(x, t ; \chi_{\sigma}(\tau), \tau\right) \varphi_{q}^{\sigma} d \tau+\mathbf{Z}_{\mathbf{S}_{T}}(x, t)
\end{align*}
$$

where the functions $\Lambda_{r_{q}^{\sigma}}$ for $\sigma=1,2, q=1, \ldots, l_{0}-1$ are defined by formula (7) of [12] and

$$
\begin{equation*}
\Lambda_{n+1}(x, t ; y, \tau)=\Lambda_{r_{*}^{1}}(x, t ; y, \tau) \tag{36}
\end{equation*}
$$

$\left((x, t),(y, \tau) \in \overline{\mathbf{S}}_{T}\right)$, where r_{*}^{1} is a positive integer with $0 \leq r_{*}^{1} \leq n, r_{*}^{1} \neq r_{l}^{1}$ for $l=0,1, \ldots, l_{0}-1$.

Applying to both sides of (35) the operator $\mathbf{B}_{l_{0}}^{1}$ given by (3), we get

$$
\begin{align*}
\mathbf{B}_{l_{0}}^{1} u(x, t)= & \int_{0}^{t} \mathbf{B}_{l_{0}}^{1} \Lambda_{r_{*}^{1}}\left(x, t ; \chi_{1}(\tau), \tau\right) \varphi_{l_{0}}^{1}(\tau) d \tau \tag{37}\\
& +\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \mathbf{B}_{l_{0}}^{1} \Lambda_{r_{q}^{\sigma}}\left(x, t ; \chi_{1}(\tau), \tau\right) \varphi_{q}^{\sigma}(\tau) d \tau+\mathbf{B}_{l_{0}}^{1} \mathbf{Z}_{\mathbf{S}_{T}}(x, t)
\end{align*}
$$

By (5) and Lemma 2 of [12] we can write
$\mathbf{B}_{l_{0}}^{1} \Lambda_{r_{*}^{1}}\left(x, t ; \chi_{1}(\tau), \tau\right)=\mathbf{P}_{m}\left[D_{x} \omega^{\chi_{1}(\tau), \tau}\left(x, t ; \chi_{1}(\tau), \tau\right)\right]+\mathbf{B}_{l_{0}}^{1} \bar{w}_{r_{*}^{1}}\left(x, t ; \chi_{1}(\tau), \tau\right)$ $\left((x, t) \in \overline{\mathbf{S}}_{T}\right)$. Consider the integral

$$
\mathbf{J}_{m}(x, t)=\int_{0}^{t} \mathbf{P}_{m}\left[D_{x} \omega^{\chi_{1}(\tau), \tau}\left(x, t ; \chi_{1}(\tau), \tau\right)\right] \varphi_{l_{0}}^{1}(\tau) d \tau \quad\left(m \in \mathbb{N}_{0}\right)
$$

We investigate its behaviour as $x \rightarrow \chi_{1}(t),(x, t) \in \mathbf{S}_{T}$. For $m=0$ we have

$$
\mathbf{J}_{0}(x, t)=\int_{0}^{t} D_{x} \omega^{\chi_{1}(\tau), \tau}\left(x, t ; \chi_{1}(\tau), \tau\right) \varphi_{l_{0}}^{1}(\tau) d \tau
$$

This is a heat potential of second kind which has the following property ([7], p. 1085):

$$
\begin{equation*}
\lim _{x \rightarrow \chi_{1}(t)} \mathbf{J}_{0}(x, t)=-\sqrt{\frac{\pi}{\mathbf{a}(t)}} \varphi_{l_{0}}^{1}(t)+\mathbf{J}_{0}\left(\chi_{1}(t), t\right), \quad(x, t) \in \mathbf{S}_{T} \tag{38}
\end{equation*}
$$

where $\mathbf{a}(t)=a_{n+2,0}\left(\chi_{1}(t), t\right)$.

For $m>0$ the integral \mathbf{J}_{m} can be written in the form

$$
\mathbf{J}_{m}(x, t)=\int_{0}^{t}\left[\int_{\tau}^{t} \frac{\left(t-\zeta_{m}\right)^{m-1}}{(m-1)!} D_{x} \omega^{\chi_{1}(\tau), \tau}\left(x, \zeta_{m} ; \chi_{1}(\tau), \tau\right) d \zeta_{m}\right] \varphi_{l_{0}}^{1}(\tau) d \tau .
$$

It follows that

$$
\mathbf{J}_{m}(x, t)=\int_{0}^{t} \frac{\left(t-\zeta_{m}\right)^{m-1}}{(m-1)!} \mathbf{J}_{0}\left(x, \zeta_{m}\right) d \zeta_{m},
$$

and hence, by (38), we obtain
(39) $\lim _{x \rightarrow \chi_{1}(t)} \mathbf{J}_{m}(x, t)=-\int_{0}^{t} \frac{\left(t-\zeta_{m}\right)^{m-1}}{(m-1)!} \sqrt{\frac{\pi}{\mathbf{a}(t)}} \varphi_{l_{0}}^{1}\left(\zeta_{m}\right) d \zeta_{m}+\mathbf{J}_{m}\left(\chi_{1}(t), t\right)$ $\left((x, t) \in \mathbf{S}_{T}, m \in \mathbb{N}\right)$.

Making use of the definition of the operator \mathbf{I}_{κ} (see (25) in [12]), formulae (38) and (39) can be written in the form

$$
\begin{equation*}
\lim _{x \rightarrow \chi_{1}(t)} \mathbf{J}_{m}(x, t)=-\mathbf{I}_{m}\left[\sqrt{\frac{\pi}{\mathbf{a}(t)}} \varphi_{l_{0}}^{1}(t)\right]+\mathbf{J}_{m}\left(\chi_{1}(t), t\right) \tag{40}
\end{equation*}
$$

$\left((x, t) \in \mathbf{S}_{T}, m \in \mathbb{N}_{0}\right)$, where $\mathbf{a}(t)=a_{n+2, m}\left(\chi_{1}(t), t\right)$.
Passing to the limit $x \rightarrow \chi_{1}(t)$ in (37), we have

$$
\begin{align*}
\mathbf{g}_{l_{0}}^{1}(t)= & -\mathbf{I}_{m}\left[\sqrt{\frac{\pi}{\mathbf{a}(t)}} \varphi_{l_{0}}^{1}(t)\right]+\int_{0}^{t} \mathbf{K}_{l_{0} l_{0}}^{11}(t, \tau) \varphi_{l_{0}}^{1}(\tau) d \tau \tag{41}\\
& +\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \mathbf{K}_{l_{0} q}^{1 \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\boldsymbol{z}_{l_{0}}^{1}(t),
\end{align*}
$$

where $\mathbf{K}_{l_{0} l_{0}}^{11}(t, \tau)=\mathbf{B}_{l_{0}}^{1} \Lambda_{r_{*}^{1}}\left(\chi_{1}(t), t ; \chi_{1}(\tau), \tau\right), \mathbf{K}_{l_{0} q}^{1 \sigma}(t, \tau)=\mathbf{B}_{l_{0}}^{1} \Lambda_{r_{q}^{\sigma}}\left(\chi_{1}(t), t ;\right.$ $\left.\chi_{\sigma}(\tau), \tau\right), \sigma=1,2, q=1, \ldots, l_{0}-1,0<t \leq T$, the operators $\mathbf{B}_{l_{0}}^{1}$ are defined by formula (34) of [12] and the functions $\boldsymbol{z}_{l_{0}}^{1}$ are given by relation (42) of [12].

Applying $\mathbf{R}_{1 / 2}^{2 m}$ to both sides of (41), by Lemmas 4 and 5 of [12], we obtain

$$
\begin{align*}
& -\sqrt{\frac{\pi}{\mathbf{a}(t)}} \varphi_{l_{0}}^{1}(t)+\int_{0}^{t} \overline{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau) \varphi_{l_{0}}^{1}(\tau) d \tau \tag{42}\\
& \quad+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \overline{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\overline{\mathbf{z}}_{l_{0}}^{1}(t)=\overline{\mathbf{g}}_{l_{0}}^{1}(t), \quad 0<t \leq T
\end{align*}
$$

where $\overline{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau)=D_{t}^{m} \mathbf{K}_{l_{0} l_{0}}^{11}(t, \tau), \overline{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau)=D_{t}^{m} \mathbf{K}_{l_{0} q}^{1 \sigma}(t, \tau), \overline{\mathbf{z}}_{l_{0}}^{1}(t)=$ $D_{t}^{m} \boldsymbol{z}_{l_{0}}^{1}(t), \overline{\mathbf{g}}_{l_{0}}^{1}(t)=D_{t}^{m} \mathbf{g}_{l_{0}}^{1}(t), \sigma=1,2, q=1, \ldots, l_{0}-1$.

Using Theorem 2 of [12] we find the estimates

$$
\begin{array}{rlrl}
\left|\overline{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{\alpha / 2-1}, & & 0 \leq \tau<t \leq T, \\
\left|\overline{\mathbf{K}}_{l_{o} q}^{1 \sigma}(t, \tau)\right| \leq \operatorname{const}(t-\tau)^{\alpha / 2-1}, & 0 \leq \tau<t \leq T, \tag{44}\\
\left|\Delta_{t} \overline{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, & 0 \leq \tau<t \leq t+\Delta t \leq T, \\
\left|\Delta_{t} \overline{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}(t-\tau)^{\mu-1}, & 0 \leq \tau<t \leq t+\Delta t \leq T,
\end{array}
$$

where $\sigma=1,2, q=1, \ldots, l_{0}-1,0<\beta \leq \alpha \leq 1, \mu=\min \{\alpha / 2,1-\alpha / 2\}$.
Similarly, using Lemma 9 of [12], we have

$$
\begin{equation*}
\left|\Delta_{t} \bar{z}_{l_{0}}^{1}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, \quad 0 \leq t<t+\Delta t \leq T, \quad \overline{\mathbf{z}}_{l_{0}}^{1}(0)=0, \tag{47}
\end{equation*}
$$

moreover, in view of assumption (A.5), we get

$$
\begin{equation*}
\left|\Delta_{t} \overline{\mathbf{g}}_{l_{0}}^{1}(t)\right| \leq \operatorname{const}(\Delta t)^{\alpha / 2}, \quad 0 \leq t<t+\Delta t \leq T, \quad \overline{\mathbf{g}}_{l_{0}}^{1}(0)=0 . \tag{48}
\end{equation*}
$$

Observe that equation (42) can be written in the form

$$
\begin{align*}
& \varphi_{l_{0}}^{1}(t)+\int_{0}^{t} \widetilde{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau) \varphi_{l_{0}}^{1}(\tau) d \tau \tag{49}\\
&+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \widetilde{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau) \varphi_{q}^{\sigma}(\tau) d \tau+\widetilde{\boldsymbol{z}}_{l_{0}}^{1}(t)=\widetilde{\mathbf{g}}_{l_{0}}^{1}(t),
\end{align*}
$$

where $\widetilde{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau)=-\sqrt{\mathbf{a}(t) / \pi} \cdot \overline{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau), \widetilde{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau)=-\sqrt{\mathbf{a}(t) / \pi} \cdot \overline{\mathbf{K}}_{l_{0} q}^{1 \sigma}(t, \tau)$, $\widetilde{\boldsymbol{z}}_{l_{0}}^{1}(t)=-\sqrt{\mathbf{a}(t) / \pi} \cdot \overline{\boldsymbol{z}}_{l_{0}}^{1}(t), \widetilde{\mathfrak{g}}_{l_{0}}^{1}(t)=-\sqrt{\mathbf{a}(t) / \pi} \cdot \overline{\mathbf{g}}_{l_{0}}^{1}(t), \sigma=1,2, q=$ $1, \ldots, l_{0}-1,0<t \leq T$.

From assumptions (A.1) and (A.2) it follows that $\overline{\overline{\mathbf{K}}}_{l_{0} l_{0}}^{11}, \overline{\overline{\mathbf{K}}}_{l_{0} q}^{1 \sigma}, \overline{\overline{\mathbf{z}}}_{l_{0}}^{1}$ and $\overline{\overline{\mathbf{g}}}_{l_{0}}^{1}$ satisfy inequalities (43)-(48) respectively. This means that if we treat the functions $\varphi_{q}^{\sigma}, \sigma=1,2, q=1, \ldots, l_{0}-1$, as parameters, then (49) is a second-kind Volterra equation with respect to $\varphi_{l_{0}}^{1}$. Because the singularity of the kernel of this equation is weak one can solve it.

Imposing on the function u, given by formula (35), the remaining boundary conditions (3) given by the operators $\mathbf{B}_{1}^{p}, \mathbf{B}_{2}^{p}, \ldots, \mathbf{B}_{l_{0}-1}^{p}$ with $0 \leq r_{1}^{p}<$ $r_{2}^{p}<\ldots<r_{l_{0}-1}^{p}<n+1\left(p=1,2, l_{0}=[(n+3) / 2]\right)$, we obtain the following system of integral equations:

$$
\begin{align*}
& \sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \mathbf{B}_{l}^{p} \Lambda_{r_{q}^{\sigma}}\left(\chi_{p}(t), t ; \chi_{p}(\tau), \tau\right) \varphi_{q}^{\sigma}(\tau) d \tau \tag{50}\\
& \quad+\int_{0}^{t} \mathbf{B}_{l}^{p} \Lambda_{r_{*}^{1}}\left(\chi_{p}(t), t ; \chi_{1}(\tau), \tau\right) \varphi_{l_{0}}^{1}(\tau) d \tau+\boldsymbol{z}_{l}^{p}(t)=\mathbf{g}_{l}^{p}(t),
\end{align*}
$$

$p=1,2, l=1, \ldots, l_{0}-1,0<t \leq T$.

System (50) is a system of first-kind Volterra integral equations with $2\left(l_{0}-1\right)$ equations and $2\left(l_{0}-1\right)$ unknown functions $\varphi_{q}^{\sigma}, \sigma=1,2, q=$ $1, \ldots, l_{0}-1$. Now, we apply to system (50) the method presented in subsection 3.1 to obtain

$$
\begin{align*}
\varphi_{l}^{p}(t)+\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t} \widetilde{\mathbf{K}}_{l q}^{p \sigma}(t, \tau) & \varphi_{q}^{\sigma}(\tau) d \tau \tag{51}\\
& =\int_{0}^{t} \widetilde{\mathbf{K}}_{l_{0} l_{0}}^{11}(t, \tau) \varphi_{l_{0}}^{1}(\tau) d \tau-\widetilde{\mathbf{g}}_{l}^{p}(t)-\widetilde{\mathbf{z}}_{l}^{p}(t)
\end{align*}
$$

$p=1,2, l=1, \ldots, l_{0}-1,0<t \leq T$.
The functions $\widetilde{\mathbf{K}}_{l q}^{p \sigma}, \widetilde{\mathbf{g}}_{l}^{p}$ and $\widetilde{\boldsymbol{z}}_{l}^{p}$ satisfy inequalities (26), (27), (29) and (30), respectively, thus (51) is a system of second-kind Volterra integral equations with weak singularities.

Finally, we are able to find a solution of system (49), (51) in the form

$$
\begin{align*}
\varphi_{l}^{p}(t)= & \overline{\mathbf{g}}_{l}^{p}(t)-\overline{\mathbf{z}}_{l}^{p}(t) \tag{52}\\
& +\sum_{\sigma=1}^{2} \sum_{q=1}^{l_{0}-1} \int_{0}^{t}\left[\mathcal{K}_{l q}^{p \sigma}(t, \tau)-\mathcal{K}_{l_{0} l_{0}}^{11}(t, \tau)\right]\left[\overline{\mathbf{g}}_{q}^{\sigma}(\tau)-\overline{\mathbf{z}}_{q}^{\sigma}(\tau)\right] d \tau
\end{align*}
$$

$\left(l=1, \ldots, l_{0}\right.$ for $p=1, l=1, \ldots, l_{0}-1$, for $\left.p=2\right)$, where $\mathcal{K}_{l q}^{p \sigma}$ and $\mathcal{K}_{l_{0} l_{0}}^{11}$ are the resolvent kernels of $\widetilde{\mathbf{K}}_{l q}^{p \sigma}$ and $\widetilde{\mathbf{K}}_{l_{0} l_{0}}^{11}$, respectively. Furthermore, by (26)-(27), (29)-(30) and (43)-(48) we obtain
(53) $\quad\left|\Delta_{t} \varphi_{l}^{p}(t)\right| \leq \operatorname{const}(\Delta t)^{\beta / 2}, \quad 0 \leq t<t+\Delta t \leq T, \quad \varphi_{l}^{p}(0)=0$ ($p=1,2, l=1, \ldots, l_{0}-1$) , where $0<\beta \leq \alpha \leq 1$.

As a result of the foregoing considerations we can formulate the following theorem:

Theorem 1. If assumptions (A.1)-(A.6) are satisfied then there exists a solution u of the problem (1)-(3). It is given by relation (4), where the functions φ_{q}^{σ} are defined by formula (33) in case 1); by a formula similar to (33) in case 2) and then they satisfy inequality (34); by formula (52) in case 3); and by a formula similar to (52) in case 4) and then they satisfy inequality (53).

References

[1] E. A. Baderko, On solvability of boundary-value problems for parabolic equations of higher order in curvilinear domains, Differentsial'nye Uravneniya 12 (1976), 17821792 (in Russian).
[2] Z. D. Dubl'a, Boundary-value problems for differential equations in unbounded domains, ibid. 10 (1974), 159-161 (in Russian).
[3] Z. D. Dubl'a, On the Dirichlet problem for a class of equations of third order, ibid. 13 (1977), 50-55 (in Russian).
[4] T. D. Dzhuraev, Boundary-Value Problems for Equations of Mixed and MixedComposite Types, FAN, Tashkent, 1979 (in Russian).
[5] T. D. Dzhuraev and M. Mamazhanov, On a class of boundary-value problems for equations of third order containing the operator of heat conduction, Izv. Akad. Nauk UzSSR 1985 (2), 22-26 (in Russian).
[6] M. Hanin, Propagation of an aperiodic wave in a compressible viscous medium, J. Math. Phys. 36 (1957), 133-150.
[7] L. I. Kamynin, The method of heat potentials for parabolic equations with discontinuous coefficients, Sibirsk. Mat. Zh. 4 (1963), 1071-1105 (in Russian).
[8] R. Nardini, Soluzione di un problema al contorno della magneto-idrodinamica, Ann. Mat. Pura Appl. 35 (1953), 269-290.
[9] -, Sul comportamento asintotico della soluzione di un problema al contorno della magneto-idrodinamica, Rend. Accad. Naz. Lincei 16 (1954), 225-231, 341-348, 365-366.
[10] B. Pini, Un problema di valori al contorno per un'equazione a derivate parziali del terzo ordine con parte principale di tipo composito, Rend. Sem. Fac. Sci. Univ. Cagliari 27 (1957), 114-135.
[11] J. Popiołek, The Cauchy problem for a higher-order partial differential equation, Izv. Akad. Nauk UzSSR 1 (1989), 25-30 (in Russian).
[12] -, Properties of some integrals related to partial differential equations of order higher than two, this issue, 129-138.
[13] A. S. Rustamov, A mixed problem for the equation of composite type with variable coefficients, Differentsial'nye Uravneniya 18 (1982), 1794-1804 (in Russian).
[14] S. N. Salikhov, On a boundary-value problem for a partial differential equation with multiple characteristics, Izv. Akad. Nauk UzSSR 1983 (5), 29-33 (in Russian).
[15] Ya. S. Sharifbaev, On some boundary-value problems for equations of third order with the heat conduction operator in the principal part, ibid. 1975 (1), 45-48 (in Russian).
[16] J. Urbanowicz, On a certain non-linear contact problem for a one-dimensional parabolic equation of second order, Demonstratio Math. 16 (1983), 61-83.
[17] S. S. Vojt, Propagation of initial waves in a viscous gas, Uchen. Zap. MTU 172 (1954), 125-142 (in Russian).

Institute of Mathematics
Warsaw University, Białystok Branch
Akademicka 2
15-267 Białystok, Poland
E-mail: popiolek@math.uw.bialystok.pl

[^0]: 1991 Mathematics Subject Classification: Primary 35G15; Secondary 45D05.
 Key words and phrases: partial differential equation, boundary-value problem, Volterra integral equation.

