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On weak solutions of functional-differential abstract

nonlocal Cauchy problems

by Ludwik Byszewski (Kraków)

Abstract. The existence, uniqueness and asymptotic stability of weak solutions of
functional-differential abstract nonlocal Cauchy problems in a Banach space are studied.
Methods of m-accretive operators and the Banach contraction theorem are applied.

1. Introduction. In this paper we study the existence, uniqueness and
asymptotic stability of weak solutions of nonlocal Cauchy problems for a
non-linear functional-differential evolution equation.Methods of m-accretive
operators and the Banach contraction theorem are applied. The functional-
differential problem considered here is of the form

u′(t) +A(t)u(t) = f(t, ut), t ∈ [0, T ],(1.1)

u0 = g(uT ∗) ∈ C0 ⊂ C, T ∗ ∈ [t0 + r, T ],(1.2)

where for every t ∈ [0, T ], A(t) : X ⊃ D(A(t)) → X is an m-accretive
operator, X is a Banach space, f : [0, T ] × C → X, g : C → C0, u :
[−r, T ] → X, ut ∈ C, t ∈ [0, T ], C := C([−r, 0],X), T > r > 0 and t0 is a
positive constant. Also, problems of type (1.1)–(1.2) on the interval [0,∞)
are investigated.

The results obtained are generalizations of those given by Kartsatos and
Parrott [8] on the existence and uniqueness of a weak solution of the Cauchy
problem

u′(t) +A(t)u(t) = f(t, ut), t ∈ [0, T ],(1.3)

u0 = φ ∈ C0,(1.4)

and on the existence, uniqueness and stability of a weak solution of a problem
of type (1.3)–(1.4) on the interval [0,∞).
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The paper is a continuation of papers [2–4] on the existence and unique-
ness of solutions of nonlocal Cauchy problems for evolution equations.

Theorems about the existence, uniqueness and stability of solutions of
the abstract evolution Cauchy problem (1.3)–(1.4) in the differential ver-
sion were studied by Bochenek [1], Crandall and Pazy [5], Evans [6] and
Winiarska [9], [10].

2. Preliminaries. Let X be a Banach space with norm ‖ · ‖ and let
C := C([−r, 0],X), where r is a positive number. The Banach space C is
equipped with the norm ‖ · ‖C given by the formula

‖ψ‖C := sup
t∈[−r,0]

‖ψ(t)‖ for ψ ∈ C.

Let T > r and let t0 ∈ (a, T−r), where a ≥ 0 will be defined in Section 4.
For a continuous function w : [−r, T ] → X, we denote by wt the function

belonging to C and given by the formula

wt(τ) := w(t+ τ) for t ∈ [0, T ], τ ∈ [−r, 0].

An operator B : X ⊃ D(B) → X is said to be accretive (see [5]) if

‖x1 − x2 + λ(Bx1 −Bx2)‖ ≥ ‖x1 − x2‖

for every x1, x2 ∈ D(B) and λ > 0.
An accretive operator B : X ⊃ D(B) → X is said to be m-accretive (see

[6]) if

R(I + λB) = X for all λ > 0,

where R(I + λB) is the range of I + λB.
We will need the following assumption:

Assumption (A1). For each t ∈ [0, T ], A(t) : X ⊃ D(A(t)) → X is
m-accretive, and there exist λ0 > 0, a continuous nondecreasing function
l : [0,∞) → [0,∞) and a continuous function h : [0, T ] → X such that

‖(I + λA(t))−1x− (I + λA(s))−1x‖ ≤ λ‖h(t) − h(s)‖l(‖x‖)

for all λ ∈ (0, λ0), t, s ∈ [0, T ], x ∈ D(A(t)).

Assumption (A1) implies that the set D(A(t)) is independent of t (see
Lemma 3.1 of [6]). Therefore, we will denote this set by D.

Define

C0 = {ψ ∈ C : ψ(0) ∈ D}.

R e m a r k 2.1. Since C0 is a closed subset of the Banach space C, it is a
complete metric space equipped with the metric ̺C0

given by the formula

(2.1) ̺C0
(ψ1, ψ2) = ‖ψ1 − ψ2‖C , ψ1, ψ2 ∈ C0.

Let f : [0, T ] × C → X. We will also need the following assumption:
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Assumption (A2). There exists a constant L > 0 such that

‖f(s, ψ1) − f(s, ψ2)‖ ≤ L‖ψ1 − ψ2‖C for s ∈ [0, T ], ψ1, ψ2 ∈ C,

and there exist a continuous nondecreasing function ω : [0,∞) → [0,∞) and
a continuous function k : [0, T ] → X such that

‖f(s1, ψ)− f(s2, ψ)‖ ≤ ω(‖ψ‖C )‖k(s1)− k(s2)‖ for s1, s2 ∈ [0, T ], ψ ∈ C.

3. Auxiliary theorems. Now, we formulate two definitions of weak
solutions. The first was given by Evans [6], and the second by Kartsatos and
Parrott [8]. Some properties of weak solutions were discussed by Kartsatos
in [7].

For a given function f̃ : [0, T ] → X and x ∈ X, a continuous function
u : [0, T ] → X is said to be a weak solution of the problem

w′(t) +A(t)w(t) = f̃(t), t ∈ [0, T ], w(0) = x,

if for every T̃ ∈ (0, T ] there exist a sequence Pn = {0 = tn0 < tn1 <
. . . < tnN(n) = T (n)} (n ∈ N) of partitions and sequences {unj}j=0,1,...,N(n),

{f̃nj}j=1,...,N(n) (n ∈ N) of elements in X such that

(i) T̃ ≤ T (n) ≤ T (n ∈ N) and

lim
n→∞

max
j∈{1,...,N(n)}

(tnj − tn,j−1) = 0,

(ii) un0 := x (n ∈ N) and

unj − un,j−1

tnj − tn,j−1
+A(tnj)unj = f̃nj (j = 1, . . . , N(n); n ∈ N),

(iii) f̃n is convergent to f̃ in L1(0, T ;X), where f̃n(t) := f̃nj for t ∈
(tn,j−1, tnj ] (j = 1, . . . , N(n); n ∈ N), and un converges uniformly to u on
[0, T ], where un(t) := unj for t ∈ (tn,j−1, tnj ] (j = 1, . . . , N(n); n ∈ N).

For given functions f : [0, T ]×C → X and φ ∈ C0, a continuous function
u : [−r, T ] → X is said to be a weak solution of the problem

(3.1) w′(t) +A(t)w(t) = f(t, wt), t ∈ [0, T ], w0 = φ,

if u(t) = φ(t) for t ∈ [−r, 0] and u is a weak solution of the problem

w′(t) +A(t)w(t) = f(t, ut), t ∈ [0, T ], w(0) = φ(0).

Now, we formulate two theorems which are consequences of the results
obtained by Kartsatos and Parrott [8].

Theorem 3.1. Suppose that the operators A(t), t ∈ [0, T ], and the func-

tion f satisfy Assumptions (A1) and (A2). Then for each φ∈C0 there exists
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exactly one weak solution of problem (3.1). Moreover , if α > L is such that ,
for each t ∈ [0, T ], A(t) − αI is accretive then

‖u1(t) − u2(t)‖ ≤ e−(α−L)t‖φ1 − φ2‖C , t ∈ [0, T ],

where ui (i = 1, 2) is the (unique) weak solution of the problem

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0, T ],

w0 = φi ∈ C0 (i = 1, 2).

Theorem 3.2. Suppose that the operators A(t), t ∈ [0,∞), and the

function f : [0,∞) × C → X satisfy Assumptions (A1) and (A2) on the

interval [0,∞) in place of [0, T ]. Then for each φ ∈ C0 there exists exactly

one weak solution uφ of the problem

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0,∞), w0 = φ.

Moreover , if α > L is such that , for each t ∈ [0,∞), A(t) − αI is accretive

then

‖u1(t) − u2(t)‖ ≤ e−(α−L)t‖φ1 − φ2‖C , t ∈ [0,∞),

where ui (i = 1, 2) is the (unique) weak solution of the problem

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0,∞),

w0 = φi ∈ C0 (i = 1, 2).

Consequently , uφ is asymptotically stable.

4. Result. Let g : C → C0. We will need the following assumption:

Assumption (A3). There exist constants M > 0 and β ∈ R such that

‖g(w
T̂
) − g(w̃

T̂
)‖C ≤Meβt0‖w − w̃‖

C([t0,T̂ ],X)

for all w, w̃ ∈ C([−r, T ],X) and T̂ ∈ [t0 + r, T ].

Now, we present two theorems on weak solutions of nonlocal problems.

Theorem 4.1. Suppose that the operators A(t), t ∈ [0, T ], and the func-

tions f : [0, T ] × C → X and g : C → C0 satisfy Assumptions (A1)–
(A3). Moreover , suppose that there is α > L such that , for each t ∈ [0, T ],
the operator A(t) − αI is accretive. Then for each T ∗ ∈ [t0 + r, T ], where

t0 ∈ (max{0, ln(M)}/(α − L − β), T − r), ln(M) < (α − L − β)(T − r)
and β < α − L, there is a unique φ∗ ∈ C0 and exactly one weak solution

u∗ : [−r, T ] → X of the problem

(4.1) w′(t) +A(t)w(t) = f(t, wt), t ∈ [0, T ], w0 = φ∗,

satisfying the condition

(4.2) (u∗)0 = g((u∗)T ∗) = φ∗.
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Moreover , for the (unique) weak solution uφ of the problem

(4.3) w′(t) +A(t)w(t) = f(t, wt), t ∈ [0, T ], w0 = φ,

where φ is an arbitrary function belonging to C0, the following inequality

holds:

(4.4) ‖uφ(t) − u∗(t)‖ ≤ e−(α−L)t‖φ− g((u∗)T ∗)‖C , t ∈ [0, T ].

P r o o f. By Theorem 3.1, there is exactly one weak solution uφ : [−r, T ]
→ X of problem (4.3), where φ is an arbitrary function belonging to C0.
Moreover, by Theorem 3.1, for any two functions φi ∈ C0 (i = 1, 2) the
(unique) weak solutions uφi

(i = 1, 2) of the problems

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0, T ],

w0 = φi (i = 1, 2),

respectively, satisfy the inequality

(4.5) ‖uφ1
(t) − uφ2

(t)‖ ≤ e−(α−L)t‖φ1 − φ2‖C , t ∈ [0, T ].

Let T ∗ be an arbitrary number such that T ∗ ∈ [t0 + r, T ], where t0 ∈
(max{0, ln(M)}/(α−L−β), T−r, ln(M) < (α−L−β)(T−r) and β < α−L.

Next, define a mapping FT ∗ : C0 → C0 by the formula

(4.6) FT ∗(φ) = g((uφ)T ∗), φ ∈ C0.

Observe that, from Remark 2.1, from (2.1) and (4.6), from Assump-
tion (A3), from (4.5) and from the fact that T ∗ ∈ [t0 + r, T ] and t0 >
max{0, ln(M)}/(α − L− β),

̺C0
(FT ∗(φ1), FT ∗(φ2))=‖FT ∗(φ1)−FT ∗(φ2)‖C=‖g((uφ1

)T ∗)−g((uφ2
)T ∗)‖C

≤Meβt0‖uφ1
− uφ2

‖C([t0,T ∗],X) = Meβt0 sup
t∈[t0,T ∗]

‖uφ1
(t) − uφ2

(t)‖

≤Meβt0 sup
t∈[t0,T ∗]

e−(α−L)t‖φ1 − φ2‖C

≤Me(−α+β+L)t0‖φ1 − φ2‖C < ̺C0
(φ1, φ2) for φ1, φ2 ∈ C0.

Hence, by the Banach contraction theorem FT ∗ has a unique fixed point
φ∗ ∈ C0. Moreover, by Theorem 3.1, there exists exactly one weak solution
u∗ : [−r, T ] → X of problem (4.1). Obviously, condition (4.2) holds.

Finally, Theorem 3.1 implies that

‖uφ(t) − u∗(t)‖ ≤ e−(α−L)t‖φ− φ∗‖C , t ∈ [0, T ],

where uφ is the unique weak solution of problem (4.3).
From the above inequality and from (4.2), we have (4.4).
The proof of Theorem 4.1 is complete.

As a consequence of Theorem 3.2 and of an argument similar to the
argument from the proof of Theorem 4.1, we obtain the following theorem:
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Theorem 4.2. Suppose that the operators A(t), t ∈ [0,∞), and the func-

tions f : [0,∞)×C → X and g : C → C0 satisfy Assumptions (A1)–(A3) on

the interval [0,∞) in place of [0, T ]. Moreover , suppose that there is α > L
such that , for each t ∈ [0,∞), the operator A(t)−αI is accretive. Then for

each T ∗ > t0 + r, where t0 > max{0, ln(M)}/(α − L − β) and β < α − L,
there is a unique φ∗ ∈ C0 and exactly one weak solution u∗ : [−r,∞) → X
of the problem

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0,∞), w0 = φ∗,

satisfying the condition

(u∗)0 = g((u∗)T ∗) = φ∗.

Moreover , for the (unique) weak solution uφ of the problem

w′(t) +A(t)w(t) = f(t, wt), t ∈ [0,∞), w0 = φ,

where φ is an arbitrary function belonging to C0, the following inequality

holds:

‖uφ(t) − u∗(t)‖ ≤ e−(α−L)t‖φ− g((u∗)T ∗)‖C , t ∈ [0,∞).

Consequently , u∗ is asymptotically stable.

R e m a r k 4.1. Let g be a function defined by the formula

(4.7) g(ψ) = Meβt0ψ for ψ ∈ C,

whereM > 0, β < α−L, α > L, ln(M) < (α−L−β)(T−r) (L is the constant
from Assumption (A3)) and t0 ∈ (max{0, ln(M)}/(α − L− β), T − r).

If the following condition holds:

ψ ∈ C ⇒ Meβt0ψ(0) ∈ D

then g : C → C0.
Observe that

‖g(w
T̂
) − g(w̃

T̂
)‖C = Meβt0‖w

T̂
− w̃

T̂
‖C = Meβt0 sup

t∈[−r,0]

‖w
T̂
(t) − w̃

T̂
(t)‖

= Meβt0 sup
t∈[−r,0]

‖w(t+ T̂ ) − w̃(t+ T̂ )‖

≤Meβt0‖w − w̃‖
C([t0,T̂ ],X)

for all w, w̃ ∈ C([−r, T ],X) and T̂ ∈ [t0 + r, T ].
Consequently, g satisfies Assumption (A3) and Theorem 4.1 can be ap-

plied if the other assumptions are satisfied. In particular, for each T ∗ ∈
[t0 + r, T ] the nonlocal condition (4.2) is of the form

(4.8) u∗(t) = Meβt0u∗(t+ T ∗) for t ∈ [−r, 0].

It is easy to see that if the interval [0, T ] is replaced by [0,∞) in (4.7)
then g satisfies Assumption (A3) on [0,∞) and Theorem 4.2 can be applied
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if M , β and t0 satisfy the suitable assumptions of Theorem 4.2. Moreover,
the nonlocal condition (4.2) is of the form (4.8).

R e m a r k 4.2. Let g be a function defined by the formula

(4.9) (g(ψ))(t) =
Meβt0

r

t\
−r

ψ(τ) dτ for ψ ∈ C, t ∈ [−r, 0],

whereM > 0, β < α−L, α > L, ln(M) < (α−L−β)(T−r) (L is the constant
from Assumption (A3)) and t0 ∈ (max{0, ln(M)}/(α − L− β), T − r).

If the following condition holds:

ψ ∈ C ⇒
Meβt0

r

0\
−r

ψ(τ) dτ ∈ D

then g : C → C0.

Observe that

‖g(w
T̂
) − g(w̃

T̂
)‖C = sup

t∈[−r,0]

‖(g(w
T̂
))(t) − (g(w̃

T̂
))(t)‖

=
Meβt0

r
sup

t∈[−r,0]

∥∥∥
t\

−r

[w
T̂
(τ) − w̃

T̂
(τ)] dτ

∥∥∥

=
Meβt0

r
sup

t∈[−r,0]

∥∥∥
t\

−r

[w(τ + T̂ ) − w̃(τ + T̂ )] dτ
∥∥∥

≤Meβt0 sup
t∈[−r,0]

sup
τ∈[−r,t]

‖w(τ + T̂ ) − w̃(τ + T̂ )‖

≤Meβt0 sup
τ∈[−r,0]

‖w(τ + T̂ ) − w̃(τ + T̂ )‖

≤Meβt0‖w − w̃‖
C([t0,T̂ ],X)

for all w, w̃ ∈ C([−r, T ],X) and T̂ ∈ [t0 + r, T ].

Consequently, g satisfies Assumption (A3) and Theorem 4.1 can be ap-
plied if the other assumptions are satisfied. In particular, for each T ∗ ∈
[t0 + r, T ] the nonlocal condition (4.2) is of the form

(4.10) u∗(t) =
Meβt0

r

t\
−r

u∗(τ + T ∗) dτ for t ∈ [−r, 0].

It is easy to see that if the interval [0, T ] is replaced by [0,∞) in (4.9)
then g satisfies Assumption (A3) on [0,∞) and Theorem 4.2 can be applied
if M,β and t0 satisfy the suitable assumptions of Theorem 4.2. Moreover,
the nonlocal condition (4.2) is of the form (4.10).
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