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On weak solutions of functional-differential abstract
nonlocal Cauchy problems

by LubwiK ByszewskI (Krakdéw)

Abstract. The existence, uniqueness and asymptotic stability of weak solutions of
functional-differential abstract nonlocal Cauchy problems in a Banach space are studied.
Methods of m-accretive operators and the Banach contraction theorem are applied.

1. Introduction. In this paper we study the existence, uniqueness and
asymptotic stability of weak solutions of nonlocal Cauchy problems for a
non-linear functional-differential evolution equation. Methods of m-accretive
operators and the Banach contraction theorem are applied. The functional-
differential problem considered here is of the form
(1.1) u'(t) + At)u(t) = f(t,w), t€0,T],

(12) Ug = g(uT*) € CyCC, T € [t(] + 7, T],

where for every ¢t € [0,T], A(t) : X D D(A(t)) — X is an m-accretive
operator, X is a Banach space, f : [0,T] x C — X, g : C — Cop, u :
[-rT] - X, u € C,t€[0,T], C:=C(-r,0,X), T >r>0andty is a
positive constant. Also, problems of type (1.1)—(1.2) on the interval [0, c0)
are investigated.

The results obtained are generalizations of those given by Kartsatos and
Parrott [8] on the existence and uniqueness of a weak solution of the Cauchy
problem

(1.3) u'(t) + A@t)u(t) = f(t,w), t€10,T],
(1.4) ug = ¢ € Co,

and on the existence, uniqueness and stability of a weak solution of a problem
of type (1.3)—(1.4) on the interval [0, c0).
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The paper is a continuation of papers [2-4] on the existence and unique-
ness of solutions of nonlocal Cauchy problems for evolution equations.

Theorems about the existence, uniqueness and stability of solutions of
the abstract evolution Cauchy problem (1.3)—(1.4) in the differential ver-
sion were studied by Bochenek [1], Crandall and Pazy [5], Evans [6] and
Winiarska [9], [10].

2. Preliminaries. Let X be a Banach space with norm || - || and let
C := C([-r,0],X), where r is a positive number. The Banach space C' is
equipped with the norm || - ||¢ given by the formula

[¥llc:= sup o) for v eC.

te[—r,0]
Let T' > r and let ty € (a,T—r), where a > 0 will be defined in Section 4.
For a continuous function w : [—-r,T] — X, we denote by w; the function
belonging to C' and given by the formula
we(r) :=w(t+7) fortel0,T], re€l[-r0].
An operator B : X D D(B) — X is said to be accretive (see [5]) if
|21 — 22 + A(Bz1 — Bxzo)|| = |21 — 22|

for every z1,z9 € D(B) and A > 0.

An accretive operator B : X D D(B) — X is said to be m-accretive (see
[6]) if

R(I+AB)=X forall A >0,

where R(I + AB) is the range of I + A\B.

We will need the following assumption:

ASSUMPTION (A;). For each t € [0,7],A(t) : X D D(A(t)) — X is
m~accretive, and there exist A9 > 0, a continuous nondecreasing function
[:1]0,00) — [0,00) and a continuous function A : [0,7] — X such that

(T +AA() ™ & = (I + AA(s) ™ ]| < Al[A(e) = h(s)|[U(l=1)
for all A € (0, \), t,s € [0,T], x € D(A(t)).

Assumption (A;) implies that the set D(A(t)) is independent of ¢ (see
Lemma 3.1 of [6]). Therefore, we will denote this set by D.
Define

C():{wECZl/J(O)GB}.

Remark 2.1. Since (Y is a closed subset of the Banach space C, it is a
complete metric space equipped with the metric p¢, given by the formula

(2.1) 00, (Y1,92) = |1 — Yollc, 1,92 € Co.
Let f:[0,T] x C — X. We will also need the following assumption:
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ASSUMPTION (Az). There exists a constant L > 0 such that

Hf(37¢1) - f(37¢2)H S L”¢1 - ¢2HC fOI' s € [OuT]7 1/}171/}2 S Cu

and there exist a continuous nondecreasing function w : [0, 00) — [0, 00) and
a continuous function & : [0,7] — X such that

1F(s1,9) = f(s2, V)| w([[¢llo)l[k(s1) = k(s2)ll  for s1,85 € [0,T], ¢ € C.

3. Auxiliary theorems. Now, we formulate two definitions of weak
solutions. The first was given by Evans [6], and the second by Kartsatos and
Parrott [8]. Some properties of weak solutions were discussed by Kartsatos
in [7].

For a given function f: [0,7] - X and = € X, a continuous function
u:[0,T] — X is said to be a weak solution of the problem

w'(t) + Aw(t) = f(t), t€[0,T], w(0)=uz,
if for every T € (0,T] there exist a sequence P" = {0 = t,0 < tn1 <
oo <tpnm) =T(n)} (n € N) of partitions and sequences {un;}j=0,1,...N(n)
{fnj}i=1,...N@) (n € N) of elements in X such that

(i) T <T(n) <T (ne€N) and

(ii) upo := = (n € N) and
Bng 7 Und=b | At ung = fn; (G =1,...,N(n); n €N),
lnj —tn,j—1

(i) f, is convergent to f in L'(0,T;X), where f,(t) := f;j for t €
(tnj—1,tnj] (j =1,...,N(n); n € N), and u,, converges uniformly to u on
[0,T], where wy,(t) := up; for t € (t, j—1,tn;] (j =1,...,N(n); n € N).

For given functions f : [0,7] xC — X and ¢ € Cy, a continuous function
w: [-r,T] — X is said to be a weak solution of the problem

(3.1) w'(t) + A()w(t) = f(t,wy), te€[0,T], wo=0,
if u(t) = ¢(t) for t € [-r,0] and u is a weak solution of the problem
w'(t) + A(t)w(t) = f(t,w), t€][0,T], w(0)=a0).

Now, we formulate two theorems which are consequences of the results
obtained by Kartsatos and Parrott [8].

THEOREM 3.1. Suppose that the operators A(t), t € [0,T], and the func-
tion f satisfy Assumptions (A1) and (Az). Then for each ¢ € Cy there exists



166 L. Byszewski

exactly one weak solution of problem (3.1). Moreover, if o > L is such that,
for each t € [0, T], A(t) — ol is accretive then

lur(t) = ua(®)]| < e= P g1 = olle, ¢ € [0,T],
where u; (i = 1,2) is the (unique) weak solution of the problem
w'(t) + A(t)w(t) = f(t,w), t€]0,T7,
wo=¢; €Cy (i=1,2).

THEOREM 3.2. Suppose that the operators A(t), t € [0,00), and the
function f : [0,00) x C — X satisfy Assumptions (A1) and (Az) on the
interval [0,00) in place of [0,T]. Then for each ¢ € Cy there exists exactly
one weak solution ug of the problem

w'(t) + A()w(t) = f(t,wy), t€[0,00), wo=o.

Moreover, if a > L is such that, for each t € [0,00), A(t) — al is accretive
then

lur(t) = ua(B)[| < =P b1 = dalle, ¢ € [0,00),
where u; (i = 1,2) is the (unique) weak solution of the problem
w'(t) + Al)w(t) = f(t,w), te0,00),
wo=¢; €Co (1=1,2).

Consequently, uy is asymptotically stable.

4. Result. Let g : C — Cy. We will need the following assumption:
ASSUMPTION (As). There exist constants M > 0 and ( € R such that
lg(wz) = gl@p)lle < MePllw — @l ¢ 1.0
for all w, @ € C([—r,T],X) and T € [ty + r,T).
Now, we present two theorems on weak solutions of nonlocal problems.

THEOREM 4.1. Suppose that the operators A(t),t € [0,T], and the func-
tions f : [0,T] x C — X and g : C — Cy satisfy Assumptions (Aq)—
(A3). Moreover, suppose that there is o > L such that, for each t € [0,T],
the operator A(t) — ol is accretive. Then for each T* € [to + r,T], where
to € (max{0,In(M)}/(c — L — B3),T —r), n(M) < (a« =L — B)(T —r)
and § < o — L, there is a unique ¢, € Cy and exactly one weak solution
uy 2 [—r,T] — X of the problem

(4.1) w'(t) + A@)w(t) = f(t,we), t€[0,T], wo= bu,
satisfying the condition

(4.2) (ue)o = g((us)7+) = ¢
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Moreover, for the (unique) weak solution uy of the problem
(43) w,(t) + A(t)w(t) = f(tth)v le [OvT]7 wo = ¢7
where ¢ is an arbitrary function belonging to Cy, the following inequality
holds:
(4.4) lug () — ua ()] < e — g((w)re)llo, ¢ €[0,TT.

Proof. By Theorem 3.1, there is exactly one weak solution ug : [—r,T]
— X of problem (4.3), where ¢ is an arbitrary function belonging to Cj.
Moreover, by Theorem 3.1, for any two functions ¢; € Cy (i = 1,2) the
(unique) weak solutions ug, (i = 1,2) of the problems

w'(t) + At)w(t) = f(t,w), t€]0,T],
w0:¢i (Z: 172)7

respectively, satisfy the inequality
(4.5) g, (8) = ug, ()] < e g1 — gllo, € [0,T].

Let T* be an arbitrary number such that T € [ty + r,T], where tg €
(max{0,In(M)}/(a—L—-08),T—r,In(M) < (a—L—8)(T'—r) and § < a— L.

Next, define a mapping Fr- : Cy — Cj by the formula
(4.6) Fr-(¢) = g((ug)r+), ¢ € Co.

Observe that, from Remark 2.1, from (2.1) and (4.6), from Assump-

tion (As), from (4.5) and from the fact that T* € [ty + r,T] and tg >
max{0, In(M)}/(a — L — §),

0cy (Fr(¢1), Fr+(92))=|Fr- (¢1) — Fr- (¢2)[lc=lg((wg, )1-) = 9((ug, )7+l 0

< Mg, ~ tllcorox) = M sup Jug, (1) = s (0]
0>

< MeP sup e (D |p — hylc
t€lto,T*]

< MelmotBtht |6y — dollo < 00, (91, ¢2)  for ¢y, o € Co.

Hence, by the Banach contraction theorem Fr« has a unique fixed point
¢« € Cy. Moreover, by Theorem 3.1, there exists exactly one weak solution
Uy @ [—r,T] — X of problem (4.1). Obviously, condition (4.2) holds.

Finally, Theorem 3.1 implies that

up(t) — u ()] < e BHg — b.)lc, e [0,T],

where uy is the unique weak solution of problem (4.3).
From the above inequality and from (4.2), we have (4.4).
The proof of Theorem 4.1 is complete.

As a consequence of Theorem 3.2 and of an argument similar to the
argument from the proof of Theorem 4.1, we obtain the following theorem:
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THEOREM 4.2. Suppose that the operators A(t), t € [0,00), and the func-
tions f :[0,00) x C — X and g : C — Cy satisfy Assumptions (A1)—(As) on
the interval [0,00) in place of [0,T]. Moreover, suppose that there is o > L
such that, for each t € [0,00), the operator A(t) — ol is accretive. Then for
each T* > to + r, where to > max{0,In(M)}/(a — L — ) and f < a — L,
there is a unique ¢, € Cy and exactly one weak solution u, : [—r,00) — X
of the problem

w'(t) + A()w(t) = f(t,wy), te€[0,00), wo= s,
satisfying the condition

(u)o = g((us)7+) = ¢s.
Moreover, for the (unique) weak solution u, of the problem
w/(t) + A(t)w(t) = f(tth)v le [07 OO), wo = ¢7

where ¢ is an arbitrary function belonging to Cy, the following inequality
holds:

lug(t) = ue ()] < e ¢ = g((we)r-)lle, ¢ € [0,00).

Consequently, u, is asymptotically stable.

Remark 4.1. Let g be a function defined by the formula
(4.7 g(¥) = MePloyy  for 4 € C,
where M > 0,8 < a—L,a > L,In(M) < (a—L—0)(T—r) (L is the constant
from Assumption (A3)) and to € (max{0,In(M)}/(o« — L —B),T —r).

If the following condition holds:

Y eC = MePhy(0) e D

then g : C'— Cy.

Observe that

lg(wz) — g(3)|lc = MePP||wy — 4o = MePo S[up()] |wi () — wz(t)]]
te|—mr,

= MeP sup |w(t+T) —a(t+1T)|
te[—r,0]

< MeP"lw — Wl (10,77, 3)
for all w, @ € C([~r, T}, X) and T € [to + 7, T).
Consequently, ¢ satisfies Assumption (Az) and Theorem 4.1 can be ap-

plied if the other assumptions are satisfied. In particular, for each T* €
[to + r, T] the nonlocal condition (4.2) is of the form

(4.8) Uy (t) = MePPou, (t +T%)  fort € [—r,0].

It is easy to see that if the interval [0,77] is replaced by [0,00) in (4.7)
then g satisfies Assumption (A3) on [0,00) and Theorem 4.2 can be applied
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if M, 8 and tg satisfy the suitable assumptions of Theorem 4.2. Moreover,
the nonlocal condition (4.2) is of the form (4.8).
Remark 4.2. Let g be a function defined by the formula

t

| w(r)dr foryeC, te[-r0],

—-Tr

MePto
o

(4.9) (9(¥)(®)

where M >0, 8 < a—L,a > L, In(M) < (a—L—3)(T—r) (L is the constant
from Assumption (A3)) and to € (max{0,In(M)}/(o« — L —B),T —r).
If the following condition holds:

Bto 9
Me™ | w(rydreD

-

Y el =

then g : C' — Cy.
Observe that

lg(ws) = g(wz)llo = sup |[(g(wz))(t) — (g(ws)) (@)l

te[—r,0]
t
- Miﬁto . H () = 20 dr|
_ Miﬁto s H _S [w(r +T) — @(r + 1) dTH

<MeP sup  sup |w(r+T)—w(r+T)|
te[—r,0] T€[—r,t]

< MePt sup ||w(7'—|—f)—@(7'—|—f)||
TE[—r,0]

< M |lw = @l ¢y 29, )

for all w, @ € C([—r,T],X) and T € [ty + 7, T).

Consequently, g satisfies Assumption (A3) and Theorem 4.1 can be ap-
plied if the other assumptions are satisfied. In particular, for each T* €
[to + 7, T] the nonlocal condition (4.2) is of the form

t

S us(r+T*)dr fort e [—r0].

—-Tr

Me/BtO
N T

(4.10) ux(t)

It is easy to see that if the interval [0,77] is replaced by [0,00) in (4.9)
then g satisfies Assumption (A3) on [0, 00) and Theorem 4.2 can be applied
if M, and tg satisfy the suitable assumptions of Theorem 4.2. Moreover,
the nonlocal condition (4.2) is of the form (4.10).
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