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Spectra of subnormal Hardy type operators

by K. Rudol (Kraków)

Abstract. The essential spectrum of bundle shifts over Parreau–Widom domains is
studied. Such shifts are models for subnormal operators of special (Hardy) type considered
earlier in [AD], [R1] and [R2]. By relating a subnormal operator to the fiber of the maximal
ideal space, an application to cluster values of bounded analytic functions is obtained.

Introduction. The study of Hardy space models for non-cyclic subnor-
mal operators S was initiated by Sarason (for operators related to simply
connected domains Ω and annuli) and by Abrahamse and Douglas [AD] (in
the case of finitely connected Ω). They succeeded in representing S (up to
unitary equivalence) as an orthogonal sum of a normal operator and of a
pure subnormal operator unitarily equivalent to the bundle shift TE for some
flat unitary bundle E spread over Ω. The latter domain Ω was typically the
interior of σ(S) and TE was defined on the Hardy space H2[E] of certain
cross sections f : Ω → E in the simplest possible way: as multiplication by
the independent variable,

(1.0) (TEf)(λ) = λf(λ), λ ∈ Ω.

The essential assumptions were:

(1) the mutual position of the spectra of S and of its minimal normal
extension (it is here that Ω emerges),

(2) the sufficient regularity of Ω.

Condition (1), stated below in (1.2), is of general nature and it can be used
to distinguish between the two principal examples of pure subnormal oper-
ators: the Bergman space shifts and the Hardy space shifts (cf. [C]). This
fact combined with the model theorem motivated our naming after Hardy
of the relevant class of pure subnormal operators proposed in Definition 1.1
below. The regularity requirements (2) for the model theorem were subse-
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quently relaxed (cf. [R1], [R2]), to include a wide class of infinitely connected
domains.

In the present paper we investigate spectral properties of bundle shifts.
This implies useful (and difficult to obtain directly) information for general
Hardy type operators via their model theory. A special class of Hardy type
operators related to fiber algebras is used in Section 2 to obtain a version
of the Iversen theorem on cluster sets of bounded analytic functions.

1. Preliminaries. We consider subnormal operators S on complex sep-
arable Hilbert spaces H. Subnormality means the existence of a normal
operator N (called a normal extension of S) on some space K ⊇ H, with
N(H) ⊆ H and N |H = S. Purity of S means that none of its restrictions to
nonzero invariant subspaces is normal. In what follows we assume N to be
a minimal normal extension of S. Then the special relations between their
spectra (known as the Spectral Inclusion Theorem) hold:

∂σ(S) ⊆ σ(N) ⊆ σ(S).

We have, among others, the two extreme possibilities: one (e.g. Bergman
shifts) when σ(S) = σ(N), and the other when σ(N) is only the boundary,
∂σ(S) of the spectrum of S (typical for Hardy shifts on H2(Ω)). A slightly
modified version of this second possibility defines our class of operators as
follows.

Definition 1.1. Let Ω be a domain in the complex plane C. We say
that a bounded operator S is of Hardy type with respect to Ω if S is pure
subnormal and the spectra of S and of its minimal normal extension N

satisfy the following condition:

(1.2) σ(S) ⊆ Ω and σ(N) ⊆ ∂Ω.

One easily deduces that such a set is necessarily bounded, with Ω = σ(S)
if only σ(S) ∩ Ω 6= ∅. Moreover, the pure part of a subnormal operator
satisfying (1.2) is of Hardy type (cf. [R1, (2.1)]), which allows one to reduce
the proof of the model theorem to the case when S itself is pure. Note that
the set Ω can be determined by S satisfying (1.2) only under some regularity
assumptions on Ω. This was the case in the original setting of [AD], where
∂Ω was supposed to consist of finitely many analytic Jordan curves.

Let us now collect some necessary information from [AD], [W] related to
bundles. Recall that E (more precisely, the pair (E, π), where π : E → Ω is
a continuous mapping), is a flat unitary bundle over Ω if E is a topological
space, its fibers Eλ = π−1{λ} over the points λ ∈ Ω are Hilbert spaces
and Ω has a covering {U : U ∈ W} by open sets U such that π−1U = EU

are homeomorphic via some mappings τU to trivial bundles U ×KU . Here
KU are certain Hilbert spaces and τU : EU → U × KU are assumed to be
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compatible in such a way that the transition functions

τU ◦ τ−1
V : (U ∩ V ) ×KV → (U ∩ V ) ×KU

map (λ, x) into (λ, τUV
λ (x)) with τUV

λ : KV → KU some unitary operators
depending holomorphically on λ ∈ U ∩ V . A mapping f : Ω → E is called
a holomorphic cross-section of E if π(f(λ)) = λ (∀λ ∈ Ω) and τU ◦ f |U :
U → U ×KU are holomorphic (∀U ∈ W). Note that for λ ∈ Ω the norms
‖f(λ)‖U in the coordinate spaces KU are the same for all U ∈ W whenever
λ ∈ U , so that the notation ‖f(·)‖ for the function Ω ∋ λ 7→ ‖f(λ)‖ is
unambiguous.

Definition 1.3. For 1 ≤ p < ∞ the Hardy space Hp[E] of a flat
unitary bundle E is the set of all holomorphic cross-sections f of E such
that the function ‖f(·)‖p has a harmonic majorant, i.e. a harmonic function
h : Ω → [0,∞) satisfying

‖f(λ)‖p ≤ h(λ) ∀λ ∈ Ω.

The norm ‖f‖p of f ∈ Hp[E] is defined with respect to some fixed norming

point λ0 ∈ Ω as the quantity

‖f‖p = (h(λ0))
1/p,

in which h is the least harmonic majorant of ‖f(·)‖p.

Another way of computing ‖f‖p is to exhaust Ω by an increasing se-
quence of smoothly bordered finitely connected domains Ωn such that
λ0 ∈ Ω1, Ωn ⊂ Ωn+1. With ωn denoting the harmonic measure for Ωn

from (the same) point λ0, one has

(1.4)

‖f‖p =
(

lim
n

\
∂Ωn

‖f(λ)‖p dωn(λ)
)1/p

,

〈u, v〉 = lim
n

\
∂Ωn

〈u(λ), v(λ)〉 dωn(λ)

for any f ∈ Hp[E] and u, v ∈ H2[E]. In particular, if E is a trivial bundle
Ω×K (so that π(λ, k) = λ), we identify its sections with functions f : Ω →
K, denoting the corresponding Hardy class by Hp

K(Ω) . In the scalar-valued
case (K = C), we write Hp(Ω).

It may happen that for some bundle over Ω all Hardy classes are trivial:
Hp[E] = {0}. From now on we assume that Ω is a Parreau–Widom (P–W)
domain, i.e., H1[F ] 6= {0} for all flat unitary bundles F over Ω. A necessary
and sufficient condition is formulated in [W] in terms of the Green function
g(·, ζ) with pole at a (fixed) point ζ ∈ Ω: For α > 0 let B(α) be the first
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Betti number of the set {z ∈ Ω : g(z, ζ) > α}. Then Ω is a P–W domain iff
∞\
0

B(α) dα <∞.

In the latter case, even more is true: the extremal methods of [W] yield
the possibility of constructing H∞[E]-sections f with arbitrarily prescribed
value f(λ1) at a fixed point λ1 of Ω.

Now we can start analysing spectra of the bundle shift operator TE

defined by (1.0) on Hp[E], with special attention to the Hilbert space case
p = 2. One immediate, but useful, observation is that these spaces are
H∞(Ω)-modules: λ 7→ ϕ(λ)f(λ) belongs to Hp[E] whenever f does and ϕ ∈
H∞(Ω). Our further considerations require assuming the (P–W) condition
on Ω.

Let us make the following observation.

Lemma 1.5. For λ1 ∈ Ω the range R(TE − λ1) equals {h ∈ Hp[E] :
h(λ1) = 0} and its codimension is equal to dimEλ1

.

P r o o f. Let us fix some H∞[E]-sections fj , j≤ dimEλ1
, so that {fj(λ1)}

form a basis of Eλ1
. Take any f ∈ Hp[E]. Then with proper choice of

the scalars αj , one has f(λ1) =
∑

j αjfj(λ1) and h = f −
∑

j αjfj ∈
Hp[E] satisfies h(λ1) = 0. Using local coordinates one verifies that g(λ) =
(λ − λ1)

−1h(λ) has a removable singularity at λ1, while a standard dis-
tance estimate and subharmonicity of ‖g(·)‖p imply g ∈ Hp[E]. Clearly,
h = (TE − λ1)g. Hence the fj form a linear basis of the complement of
R(TE − λ1).

Proposition 1.6. TE is a bounded linear operator on Hp[E], with σ(TE)
= Ω. For the interior points λ ∈ Ω, TE−λ is semi-Fredholm with index equal

to − dimEλ (= − rank(E)). Hence the essential spectrum coincides with the

spectrum if E has infinite rank , and is contained in ∂Ω in the finite rank

case. For p = 2, TE is a subnormal operator of Hardy type.

Note that since ∂σ(T ) ⊆ σe(T ), this determines also the essential spec-
trum except for inner boundary points.

P r o o f. In view of Lemma 1.5, only the subnormality requires verifica-
tion. Choose an increasing exhaustion ofΩ with smoothly bordered domains
Ωn. The corresponding limits (1.4) of inner products yield the Halmos–Bram
subnormality condition (cf. [C]). The purity can be shown in a similar man-
ner to the proof of Prop. 2.6(2) (an argument involving analytic structure
and order of zeros) in the next section. To characterize the spectrum of a
normal extension of TE one can follow the procedure of lifting functions (or
sections) on Ω to the unit disc via the universal covering map ̺ for Ω. TE

is unitarily equivalent to multiplication by ̺ on a subspace of vector-valued
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L2-type functions on the unit circle. The essential range of ̺ is the spectrum
of a normal extension and is contained in ∂Ω, by a purely topological argu-
ment (cf. [R1]). Note that the claim on Hardy type of TE uses the (P–W)
condition only to rule out the possibility of H2[E] = {0}.

2. Iversen’s theorem and subnormal operators. In this section we
consider one interesting example of subnormal Hardy type operators and
apply it to classical function theory.We shall obtain a convenient perspective
on problems concerning cluster sets of bounded analytic functions (also in
several complex variables). This idea came as a result of attempts to localize
the author’s earlier result on behaviour of “global cluster sets”.

Let G be a bounded domain in C
n. Given ξ ∈ C

n we denote by Mξ(G)
(or briefly Mξ) the fiber over ξ of the maximal ideal space, M(G), of the
Banach algebraH∞(G) of bounded holomorphic functions on G (cf. [G1]). In

other words, Mξ(G) is the preimage of {ξ} under the n-tuple Ẑ of Gelfand
transforms of coordinate functions Z = (z1, . . . , zn). The fibers are related
(for “regular” domains G) to cluster sets,

Cl(h; ξ) = {lim h(ξn) : ξn ∈ G, ξ = lim ξn}.

The well-known (at least in the n = 1 case) Cluster Value Theorem states
that the fibers over points outside G are empty, while for ξ ∈ G and h ∈
H∞(G) one has

(2.1) ĥMξ(G) = Cl(h; ξ).

Various sufficient regularity conditions were given by many authors (e.g.
by T. W. Gamelin—that G be a polydomain, i.e. the cartesian product
of arbitrary bounded plane domains, and by I. Graham for the unit ball).
Arguments in the strictly pseudoconvex case were compiled in [Cu] and [R],
and extended in [R0] (where precise references can be found) to any domain
L∞-[strongly] regular for the ∂ operator. This regularity means that for any
∂-closed (0, p)-form ϕ =

∑
ϕα dzα with bounded [resp. continuous on G]

coefficients ϕα the equation ∂ψ = ϕ has a solution among (0, p − 1)-forms
ψ with bounded [resp. continuous] coefficients ψβ .

The continuity part is required for constructing the peak function needed
in establishing a uniqueness claim and if this is available directly, then the
continuity requirements (i.e. the strong regularity) can be reduced to the
L∞-regularity alone. The latter holds for any analytic polyhedra and for
spsc. domains with nonsmooth boundaries. The only known examples of
domains without the Cluster Value Property seem to be N. Sibony’s coun-
terexamples to the Corona Theorem in two complex variables, where some
fibers over points t 6∈ G are nonempty, but the author knows no example of
(2.1) failing at a boundary point.
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In what follows we additionally assume that ξ is an essential boundary

point (i.e. not all functions from H∞(G) extend analytically to a neighbour-
hood of ξ in C

n). Otherwise, the cluster sets are singletons, not interesting
from our point of view.

We refer to [G] for standard terminology related to function algebras. In
particular, we treat H∞(G) as a function algebra A on M = M(G). The
Choquet boundary of ReA is the set

P-P(A)

of p-points, or generalized peak points γ of A, characterised by the existence
for any fixed neighbourhood U of γ and 1 > α > 0 of a function ϕ ∈ A

satisfying

(2.2) |ϕ| ≤ α on M\ U, |ϕ| > 1 on U.

By the classical Bishop–de Leeuw theorem [G, Chapter 12], every point of M
has a representing measure ν concentrated on the set P-P(A) of all p-points
of A (i.e. for any Borel set Y ⊂ M \ (P-P(A)) one has ν(Y ) = 0).

The fiber algebra (denoted here for brevity by Aξ) is the restriction of
A to the fiber Mξ, i.e.

Aξ = {ĥ|Mξ
: h ∈ H∞(G)}.

From now on we fix an essential boundary point ξ, imposing moreover the
following regularity condition.

Assumption 2.3. Assume that any p-point in the maximal ideal space
of Aξ is also a p-point with respect to A (i.e. P-P(Aξ) ⊂ P-P(A)). Moreover,
assume that the Cluster Value Theorem holds in G.

The first condition follows from Cor. 12.9 of [G], if Mξ is an intersection
of peak sets for A. This takes place if there exists a continuous function g

on G, analytic on G that peaks at ξ : for ζ ∈ G\{ξ} one has |g(ζ)| < 1, while
g(ξ) = 1. The first assumption holds not only at strongly pseudoconvex
points ξ, but also at boundary points of polydomains [G1]. It should be
remarked that in the latter case one can reduce the study of fiber algebras
to the case where ξ belongs to the distinguished boundary, via canonical
isomorphisms to “lower-dimensional fibers” constructed in [G1].

In what follows we fix an essential boundary point ξ and a bounded ana-
lytic function h on G such that Cl(h; ξ) contains an interior (in the Euclidean

topology) point, say ζ. By Assumption 2.3, ζ = ĥ(τ) for some τ ∈ Mξ. We
can further fix a representing measure η for this τ concentrated in the above
sense on the set of p-points for Aξ. Note that the fiber algebra consists
of continuous functions on the compact space Mξ, hence it is contained in
L2(η) and one can consider its closureH2(Aξ, η) in the L2(η) norm topology,
usually called the abstract Hardy space.
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Definition 2.4. The fiber multiplication operator T = T
(ξ,η)
h is defined

on H2(Aξ, η) by

(T
(ξ,η)
h f)(x) = ĥ(x)f(x) for [η] a.e. x ∈ Mξ, f ∈ H2(Aξ , η).

Lemma 2.5. T is a bounded subnormal operator with σ(T ) ⊆ Cl(h; ξ),
whose minimal normal extension has spectrum contained in the closure of

ĥ (P-P(Aξ)).

P r o o f. By the assumed cluster value property, the spectrum Σ of h
with respect to the fiber algebra (of continuous functions on Mξ) equals

Cl(h; ξ). If λ 6∈ Σ, the fiber multiplication by the inverse in Aξ of ĥ − λ

is equal on Mξ to ĝ for some g ∈ A and the fiber multiplication by g is
clearly (T − λ)−1. The remaining claim follows from standard properties of
multiplications defined on L2(η).

The purity of T is a more delicate question and we prove it along with
the Hardy type condition, although it holds under some weaker hypotheses.

Proposition 2.6. Assume that there exists a bounded plane domain Ω

such that Cl(h, ξ) ⊆ Ω and ĥ(P-P(Aξ)) ⊆ ∂Ω. Then the pure part Tpur of T

is a Hardy type operator with respect to Ω. Consequently , σ(T ) = Ω. Only

one of the following two possibilities may occur :

(1) T has nonempty point spectrum and ĥ is constant on some subset of

positive [η] measure,
(2) T is pure subnormal (Tpur = T ).

The second (most desirable) case takes place if one can embed an analytic
disc around τ in the fiber, i.e. a family {τz : z ∈ C, |z| < 1} ⊂ Mξ such that
τ0 = τ and the functions z 7→ ĝ(τz) are holomorphic in z for any g ∈ A.

P r o o f o f P r o p o s i t i o n 2.6. In view of Lemma 2.5 and the remark
following 1.1, the only nontrivial assertion to prove concerns the purity of
T . Assume that for some closed nonzero subspace W of H2(Aξ, η) invariant
under T , the restriction T |W is a normal operator. Then T |W is a direct
orthogonal summand of any normal extension of T and the assumptions
imply σ(T |W ) ⊆ ∂Ω. By our earlier assumption, Cl(h; ξ) contains an interior

point, namely ζ = ĥ(τ). Replacing T with T−ζ if necessary, we may assume
ζ = 0. Hence 0 ∈ Ω, 0 6∈ ∂Ω and this implies the invertibility of T |W . Now
W = T (W ) implies

(2.7) W ⊆
{
f ∈ H2(Aξ , η) :

\
fdη = 0

}
.

The diagonalisation procedure for multiplication operators (cf. [AK]) yields

equivalence of W to a reducing subspace of the form
T⊕
Kz dκ, where κ is

the image of η under ĥ, while Kz are subspaces of L2(ηz) for ηz obtained by
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disintegration of η with respect to ĥ. The element of L2(ηz) corresponding
to f is simply the equivalence class of f modulo equality a.e. [ηz]. From (2.7)
we get \(\

fdηz

)
dκ(z) = 0, f ∈W,

but the latter can occur for all elements of
T⊕
Kz only when the direct

integral decomposition is trivial (reduces to W = Kz0 for one point z0, an
atom of dκ). Hence T acts on W as a scalar multiple of the identity, with
z0 ∈ σp(T ).

If the τz form an analytic disc around τ , then W = TW (= T 2W = . . .),

ĥ(τ) = 0 implies that for any nonzero f ∈W the analytic function z 7→ f̂(τz)

is divisible by z 7→ (ĥ(τz))
k, k = 1, 2, . . . , hence has a zero of infinite order,

which is impossible.

Assumption 2.8. Let µ be a measure on M representing evaluation at
a point of G for A = H∞(G) such that any other point from a fixed dense
subset of G has a representing measure with support contained in supp(µ).

Well-known results on abstract function algebras [G] imply that such
a µ always exists. In the case of plane domains or polydomains, the har-
monic measure’s lift to the Shilov boundary satisfies 2.8 (cf. [G1]). So do
the measures implicit in integral formulae for functions in terms of certain
boundary values (cf. remarks that follow 2.10 below). The standard proof
of the following fact is omitted.

Lemma 2.9. If µ satisfies the above assumptions, then its closed support

must contain P-P(A).

Definition. The µ-asymptotic cluster set Clµ(h; ξ) of h ∈ H∞(G) at
ξ ∈ ∂G is the intersection over open sets U ⊃ Mξ of µU -essential images of

ĥ. Here µU is the restriction of µ to U .

In the case of lifted harmonic measure, these sets are nicely described
(cf. [G1]) in terms of behaviour of h at certain curves approaching ∂G.
Here (and for the mentioned measures related to integral formulae) the
asymptotic values at “measure zero sets” are negligeable. All such cluster
sets are contained in the standard asymptotic cluster set. The following
variant of Iversen’s theorem is now a consequence of the Spectral Inclusion
Theorem for subnormal operators.

Theorem 2.10. Assuming (2.3) and (2.9) we have

∂ Cl(h; ξ) ⊆ Clµ(h; ξ).

P r o o f. The left-hand side is ∂σ(T ), and hence is contained in the η-

essential image of ĥ, which, by continuity, is contained in the closure of
ĥ(P-P(Aξ)). Now the result becomes a topological consequence of (2.3).
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R e m a r k 1. The corresponding result in [G1] referred to the Shilov
boundary and required more delicate analysis. The methods were applicable
to a narrower class of domains (polydomains). Note also that by composing
h with an appropriate fractional linear function φ one extends the above
Iversen’s theorem to the case when h is meromorphic.

R e m a r k 2. The set Clµ(h; ξ) can be defined in a special geometric
manner mentioned above. Namely, assume that there exists a measure µ on
∂G and a collection of curves ℓz, z ∈ ∂G, in G terminating at z such that
any bounded holomorphic function h on G has boundary limits along ℓz for
[µ] almost every z ∈ ∂G, and the values h(z0) at any interior point z0 are
integrals of these boundary values for appropriate representing measures
on ∂G, absolutely continuous with respect to µ. Then appropriate limit
points of the ℓz can be used as points supporting the representing measures
mentioned in 2.8 on the maximal ideal space M. As Clµ(h; ξ) we can take
the asymptotic cluster set defined by the asymptotic boundary values along
ℓz, z ∈ U ∩ ∂G.
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Reçu par la Rédaction le 3.1.1996
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