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Convergence of holomorphic chains

by StAWOMIR RAMS (Krakdéw)

Abstract. We endow the module of analytic p-chains with the structure of a second-
countable metrizable topological space.

1. Introduction. A holomorphic p-chain in an open subset {2 of C" is
a formal locally finite sum Z = > jes kjZ; where Z; are pairwise distinct
irreducible analytic subsets of {2 of pure dimension p and k; € Z \ {0} for
j € J. The set |J jeg Zj s called the support of the chain Z and denoted by
|Z|. Each Z; is called a component of Z and the number k; is the multiplicity
of Zj.

A holomorphic p-chain Z is positive if the multiplicities of all its com-
ponents are positive. G (£2) denotes the set of positive p-chains in £2. The
set of holomorphic p-chains in {2 is endowed with the structure of a free
Z-module. We denote it by GP(£2).

Given a 0-chain and an open relatively compact subset U of {2 the total
multiplicity of Z in U is defined as the sum of multiplicities of all its com-
ponents contained in U. We denote the total multiplicity by deg;; Z. When
J is finite we extend this definition putting deg Z = ZjeJ kj.

One can define convergence of chains as the classical weak convergence
of the associated currents (for details see e.g. [Ch, §14.1-2]). An attempt to
explain the geometrical meaning of this convergence is made in [Ch].

In [Ch, § 12.2] the author proves that proper intersection is sequentially
continuous and also states that this operation is continuous [Ch, §12.4]. How-
ever, he neither defines a topology nor proves the equivalence of sequential
continuity and continuity.

The main aim of this note is to define a topology on GP({2) and to study
some properties of this topological space. We shall prove that the result
of this construction is second-countable, metrizable, and convergence in it
coincides with the one defined in [Ch, §12.2].
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The topology constructed here is useful in studying the intersections of
analytic sets (see [Tw], [R]).

2. Topology of p-chains. Let 0 < p < n be integers, {2 be an open
subset of C™. We shall use the following notation:

e E={2e€C:|z| <1},

e A(n,p) ={X:{1,...;p} = {1,...,n}: A(1) < ... < A(p)},

e ¢q,...,e,—the canonical basis of C",

® T (21, oo ,Zn) — (Z)\(l), ‘e ,Z)\(p)), ™ =T(1,...,p) | En,

e A(2)={f:C" — C": f an affine isomorphism, f(E™) C 2},

e ;i(h)—order of a finite branched holomorphic covering h,

o for Z =% k;jZj, 2 € Zs \U;j 4, Zj, m(z, Z) = ks.

Suppose that 2y, {25 are open subsets of C” and {2 C (2. Given a
biholomorphic mapping f : 27 — (2 and Z = ) jes kjZ; belonging to
GP(£2), anew p-cyclein f~1(£2) can be defined by f*(Z) = dies kif~4(Z;).

DEFINITION 2.1.  Let V' be an open subset of C" containing E", and
ZeGr(V), Z=73,c,kjZ;, such that [Z] N (EP x JE"™P) = (). Define

mZ) = kiu(r| Z; N E").
jeJ
DEFINITION 2.2. Let f; € A(f2),¢cj € Zfor j=1,...,m and let K be a

compact subset of 2. Define U({(f1,c1),..., (fm,cm)}, K) to be the set of
all p-chains Z in (2 such that |Z| N K = () and

Z|Nfj(EP x OE™ ) =0, u(fi(Z)=c¢; for j=1,...,m.

J
It is easy to verify the following
PROPOSITION 2.3. If 2 is an open subset of C™, then in GP({2) the
family U(2) = {U(A,K) : A is a finite subset of A(£2) x Z, K is compact
in 2}, is a base of a topology.

DEFINITION 2.4. The topology of p-chains in {2 is defined to be the
topology generated by U(f2).

The next proposition is an immediate consequence of the last definition.

PROPOSITION 2.5. Let Z,Z", 7", 7 € GP(12).

L If 2" — Z, 2" — Z, and | Z+ Z| = | Z|U|Z|, then Z¥ + 2" — Z+Z.

2. If Zv - Z, a€Z, thena-Z¥ — a- Z.

3. 3000 ZY is convergent iff Z" — 0.

4. If fis an affine isomorphism, then GP(£2) 37 — f*(Z) € GP(f~1(2))
is a homeomorphism.



Convergence of holomorphic chains 229

EXAMPLE 2.6. 2 =C2 2" = {1/v} xC, Z = {0} x C, Z" = (-1) -
({-1/v} x C), Z = (=1) - ({0} x C). Then Z” — Z and Z” — Z but
Z¥ + Z" does not converge to Z + Z. Hence addition is not continuous on
GP(£2). Proposition 2.5.1 and Theorem 2.9 give its continuity on G% (£2).

Given Z1, ..., Z¥ belonging to GP* (§2), ..., GP*(£2), respectively, and sat-
isfying the conditions
1. the sum of the codimensions of |Z7| is equal to n,
2. ﬂ?zl |Z7| is zero-dimensional,
a 0-chain is defined by
AN ARS Yo i(Z A NZRa) - {a}
a€|Zt|N...N|ZFk|

where i(Z'A...AZ* a) denotes the intersection multiplicity defined in [Dr]
(see also [Ch]). It is easy to prove that in Definition 2.1,

(1) w(Z) =degpn(({w} x E""PY)NZ) for w € EP.
If f:604 — {25 D (2 is biholomorphic, then by [Ch, §12.3],
(2) W(ZY AN NZE () =i(F(ZYY N A fH(Z5), ).

PROPOSITION 2.7. Let ZV,Z € GP(S2). If for each compact K C 2\ |Z]
we have |ZY| N K = () for almost all v, then the following conditions are
equivalent:

1. For each point a € Reg|Z|, each (n—p)-dimensional plane transversal
to |Z| at a and each open set U relatively compact in L such that UN|Z| =
{a} there is an index vy such that dim(|Z¥|NU) = 0, degy(Z¥ N L) =
degy (Z A L) for all v > vy.

2. For each point a from a given dense subset D C Reg|Z|, each (n—p)-
dimensional plane transversal to |Z| at a and each open set U relatively
compact in L such that U N |Z| = {a} there is an index vy such that
dim(|Z¥|NU) =0, degy (Z¥ A L) = degy;(Z A L) for all v > vy.

3. ZY — Z in the topology of p-chains.

Proof. The proposition is obvious for p = 0 or Z = 0. Let p > 0,
Z #0.

1=2. Obvious.

2=3. Let ZeU(A,K), A={(f1,¢c1),- -, (fm,cm)}. We check that Z" €
U(A, K) for sufficiently large v. Since U(A, K) = (/2 U({(fj,¢j)}, K) we
can assume m = 1. By Proposition 2.5.4 it suffices to consider f; = idcr.
Fix w € EP such that {w} x E™ P is transversal to |Z| at each point of the
set {w} x E"P)N|Z| ={#,...,2s}. There exist € > 0 and open pairwise
disjoint relatively compact subsets Uy, ...,Us of E"~P such that:
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e w+eEP C EP,

o |Z|N({w}xU;)={z}forj=1,....s,

o |Z|N K| =0 where K = (w+cEP) x (En=?\ (U U...UUy)).
Choose z; € DN ((w+eEP) x Uj) for j =1,...,s. Then

Zdeg{w}xU NZ = Zdeg{wz]}xU)

j=1 j=1
For sufficiently large v we have |Z¥| C 22\ (K U K1), and so

Zdeg (7Gx Uj))ANZ = Zdeg (m(Z)} x Uj) A Z¥ = u(Z").
Jj=1 Jj=1
Then Z¥ € U(A, K) for sufficiently large v and condition 3 follows.
3=1. Fix a=(ay,...,ay),L,U as in 1. By Proposition 2.5.4 and (2) we
can assume that a = 0, L = C{ep41,...,e,} and En~P C U.
There is € > 0 such that | Z|N (¢EP x JE"P) = () and e EP x En—P C (2.
Moreover,

12710 ((eBP x OE™ ") U ({0} x (U\ E"7))) =0
and
u(f*(27)) = u(f*(2)),
where f = (¢idcr,idcn-») and v is large enough.

The set |Z”| N U is compact and non-empty, hence dim(|Z*|NU) = 0.

By (1),
degy (ZY NL) = degy(Z AN L).

Remark. Condition 2 resembles the one given in [Ch, §12.2]. The fol-
lowing example shows the slight difference between them.

ExaMPLE 28. 2 = C? 2" = ({1/v} xC) + ({1 - 1/v} x C), Z =
({0} xC)+ ({1} x C), Z = ({0} xC) +2({1} XC). One can see that 2" — Z
and Z¥ — Z in the sense of [Ch, §12.2]. The definition in [Ch, §12.2] seems
to be erroneous, for [Z”] does not converge to [Z] as a sequence of currents.
Neither does it converge to Z in the topology of p-chains.

Let us define:

o Ag(2) ={f € A(£2) : f(0), f(e1), ..., f(en) € (Q+iQ)"},

o K ={la1,¢] x ee X [qan—1,Gan) : Q15 - -+, qan € Q},

o K={UB:BCK,B is finite},

o Ug(2) ={U(A,K): AC Ag(f2) X Z, A is finite, K € K, K C (2},

o E(r1,ry) =11 EP X ro E™7P for r1,7m9 > 0.

THEOREM 2.9. Ug(12) is a base for the topology of p-chains in (2.
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Proof. The assertion is obvious for p = 0. Suppose that p > 0 and let
Z =73 cskiZ; € U(A,K). We can assume A = {(f1,c1)} (see the proof of

Proposition 2.7). Then there are KeKande>0 satisfying
(3) Knl|Z|=0, KcKc, f(EQl+el+e))cCL,
(4) filE(Q+e14+e)\E(l+e,1—¢)) CK.

Fix 0 < r < 1. By a simple computation there is a neighborhood U C A(£2)
of f1 in the Banach space of affine mappings C* — C™ such that each f € U
satisfies the following conditions:

(5) f(EQ+e/2,1+e/2)\E(1+4+¢/2,1—¢/2)
CHh(E(l+e,1+e)\E(l+¢e1—¢)),
(6)  A({0} x E"7F) C f(E(r/2,14¢/2)) C f1(E(r,1+¢)),
(7)) (it e NHOY x E"7)n (B™\ fiH(K))
= (fi ' o HHOY x C )N (B™\ fiH(K)),
®)  (fite HHOY xC"P)nE™ C E(r,1),
(9 Tt (fT T 0 H{0}? x C"7P) is a bijection.
Let f e Uand W =) [;W; € U({(f, ¢1)}, K). Inclusions (4) and (5)

give

(WD U FHIWD) N (BP x 9E"P) = 0.
If f71(W;) N E™ = () then by (4), f; '(W;)NE(1,1+¢) = . So, according
to (6), f~1(W;) N E(r/2,1+¢/2) = 0. Thus, by Remmert’s theorem we
have f~Y(W;)NE™ = (). Similarly f~(W,)NE" =0 = f;'(W;)NE™ =0,
which gives {j : f~1(W;) N E™ £ 0} = {j : f{ 1(W;) N E™ # §}.
By (1),
(7 (Wy)) = deg(fi* (W;) A ({0} x E"7P)).
By [Wi, Theorem 9.1] and (8), (9),
degpn (fi  (WHA{O} < E"7P)) = degpn (fiH (WH)A(f1 T f)({0} xC"7P)).
From (7),
degpa (fi (W) A (F71 0 £)({0}P x C"7P))
= degp. (fi ' (W)) A (fT ' 0 ({0} x E"7P)).
By (4) and (6),
degpn (fi (W) A (F 0 HY{0}? x E"7P))
= deg(fi ' (W)) A (fi " o /)({0} x E"77)),
deg(fi(Wi) A (fi " o {0} x E"7P)) = deg(W; A f({0}" x E"7P))
= deg(f (W) A ({0} x E"7P)) = u(f*(W;)).
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We have obtained Z € U({(f,c1)},K) € U{(f1,¢1)}, K). Density of
Ag(£2) in A(£2) ends the proof.

3. Metric on GP(f2). Let Z € GP({2). For each compact subset K of {2
we fix 0 < dg < min{1, dist(K,02)} and define H(K) = {J,cx B(x,dK).

DEFINITION 3.1.
_Jdist(|[Z|nH(K),K) if|ZInH(K) #0,
A2, K) = {dK it 2] N H(K) = 0.

LEMMA 3.2. d(-, K) is continuous.

Proof. Let Z¥ — Z and d(Z,K) > 0. Fix d< d(Z,K). Then we have
12| NU,ex Blz, d) = 0 for almost all v. We obtain liminf,_, d(Z", K) >
d(Z,K). It |Z|Nn H(K) = 0 then d(Z, K) = dk and the lemma follows.

If |Z|NnH(K) # 0 then dist(|Z| N H(K),K) = |z — y| where y € K,

z € |Z] N H(K). By Riickert’s lemma there is a sequence {z,}, z, € |Z"|,
2z, — z, which gives

limsupd(Z”¥,K) < d(Z,K).

V—0Q

By the same argument the previous inequality holds when d(Z, K) = 0.
Let [ € Z and let E™ C 2.

DEFINITION 3.3. If |Z| N (EP x OE™P) =0, |Z|NE™ #0, u(Z) =1 we
define m;(Z) = d(Z, EP x OE™P). We put m;(Z) = 0 otherwise.

LEMMA 3.4. my; is continuous.

Proof. Let Z¥ — Z. If my(Z) # 0 then m;(Z*) = d(Z*,EP x OE"~P)
for sufficiently large v and we can use Lemma 3.2 . If m;(Z) = 0 and
|Z|N(EP x OE™P) # () then |my(Z¥)| < |d(Z¥, EP x OE™~P)| — 0. Suppose
that |Z| N (EP x OE""P) = () and |Z| N E™ = (. By Remmert’s theorem
|Z¥| N E™ = () for almost all v. If my(Z) =0, |Z| N (EP x OE"P) = () and
|Z| N E™ # (), then

w(z") =u(2) #1

for sufficiently large v.

Set P(£2) ={myo f*: f € Ag(f2), | € Z}, and observe that we have
{ [[h-d(.K):JCPQ), Tis finite, K € /c},
heJ

a countable family of continuous functions. Let {G;} denote a sequence of
all its elements.
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DEFINITION 3.5. Let X, Z € GP(£2). We define

[ee]

1

oX,2) =" 57 1G3(X) = G;(Z)].
§=0

THEOREM 3.6. ¢ is a metric on GP({2). The topology induced by o coin-
cides with the topology of p-chains.

Proof. It is sufficient to prove that the sequence {G;} gives an embed-
ding of GP(£2) in the Hilbert cube. According to [En, 2.3, Theorem 10] we
need to prove that:

1. {G,} en separates elements of GP({2),
2. {G,}jen separates elements of GP({2) from closed subsets of GP(£2).

1) We can assume that |Z| # 0. If |X| # |Z| then there is K € K
satisfying | X|NK =0, |Z| N K # (. We obtain

0=d(Z K)# d(X, K).

Suppose | X| = |Z|. There is z € Reg | X]| satisfying m(z, X) # m(z, Z).
Fix g € Ag(£2) such that u(m|g~1(|Z])) = 1. Consequently,

(Min(2,2) © 9 NZ) # (Mim(z,2) © g7)(X) = 0.

2)Let X eU({(f1,¢1), -y (fm,cm)}, K) CGP(2)\C, where C'is a closed
subset of GP(£2). Without loss of generality U({(f1,¢1),---s (fm,cm)}, K)
S U@(Q)

If | X[ # 0set Gy, =[]/ (me, o f)-d( ,K). If | X| =0 choose G,, =

Jj=1 J

d( ,K) where K € K and

UK) CU{(fr.e1)s s (fms cm) 1. K-
In both cases we obtain G, |c = 0,G,(X) # 0.
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