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Convergence of holomorphic chains

by S lawomir Rams (Kraków)

Abstract. We endow the module of analytic p-chains with the structure of a second-
countable metrizable topological space.

1. Introduction. A holomorphic p-chain in an open subset Ω of Cn is
a formal locally finite sum Z =

∑
j∈J kjZj where Zj are pairwise distinct

irreducible analytic subsets of Ω of pure dimension p and kj ∈ Z \ {0} for
j ∈ J . The set

⋃
j∈J Zj is called the support of the chain Z and denoted by

|Z|. Each Zj is called a component of Z and the number kj is the multiplicity
of Zj .

A holomorphic p-chain Z is positive if the multiplicities of all its com-
ponents are positive. Gp+(Ω) denotes the set of positive p-chains in Ω. The
set of holomorphic p-chains in Ω is endowed with the structure of a free
Z-module. We denote it by Gp(Ω).

Given a 0-chain and an open relatively compact subset U of Ω the total
multiplicity of Z in U is defined as the sum of multiplicities of all its com-
ponents contained in U . We denote the total multiplicity by degU Z. When
J is finite we extend this definition putting degZ =

∑
j∈J kj .

One can define convergence of chains as the classical weak convergence
of the associated currents (for details see e.g. [Ch, §14.1-2]). An attempt to
explain the geometrical meaning of this convergence is made in [Ch].

In [Ch, § 12.2] the author proves that proper intersection is sequentially
continuous and also states that this operation is continuous [Ch, §12.4]. How-
ever, he neither defines a topology nor proves the equivalence of sequential
continuity and continuity.

The main aim of this note is to define a topology on Gp(Ω) and to study
some properties of this topological space. We shall prove that the result
of this construction is second-countable, metrizable, and convergence in it
coincides with the one defined in [Ch, §12.2].
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The topology constructed here is useful in studying the intersections of
analytic sets (see [Tw], [R]).

2. Topology of p-chains. Let 0 ≤ p < n be integers, Ω be an open
subset of Cn. We shall use the following notation:

• E = {z ∈ C : |z| < 1},
• Λ(n, p) = {λ : {1, . . . , p} → {1, . . . , n} : λ(1) < . . . < λ(p)},
• e1, . . . , en—the canonical basis of Cn,
• πλ : (z1, . . . , zn)→ (zλ(1), . . . , zλ(p)), π = π(1,...,p) |En,
• A(Ω) = {f : Cn → Cn : f an affine isomorphism, f(En) ⊂ Ω},
• µ(h)—order of a finite branched holomorphic covering h,
• for Z =

∑
kjZj , z ∈ Zs \

⋃
j 6=s Zj , m(z, Z) = ks.

Suppose that Ω1, Ω2 are open subsets of Cn and Ω ⊂ Ω2. Given a
biholomorphic mapping f : Ω1 → Ω2 and Z =

∑
j∈J kjZj belonging to

Gp(Ω), a new p-cycle in f−1(Ω) can be defined by f∗(Z) =
∑
j∈J kjf

−1(Zj).

Definition 2.1. Let V be an open subset of Cn containing En, and
Z ∈ Gp(V ), Z =

∑
j∈J kjZj , such that |Z| ∩ (Ep × ∂En−p) = ∅. Define

µ(Z) =
∑
j∈J

kjµ(π |Zj ∩ En).

Definition 2.2. Let fj ∈ A(Ω), cj ∈ Z for j = 1, . . . ,m and let K be a
compact subset of Ω. Define U({(f1, c1), . . . , (fm, cm)},K) to be the set of
all p-chains Z in Ω such that |Z| ∩K = ∅ and

|Z| ∩ fj(Ep × ∂En−p) = ∅, µ(f∗j (Z)) = cj for j = 1, . . . ,m.

It is easy to verify the following

Proposition 2.3. If Ω is an open subset of Cn, then in Gp(Ω) the
family U(Ω) = {U(A,K) : A is a finite subset of A(Ω) × Z, K is compact
in Ω}, is a base of a topology.

Definition 2.4. The topology of p-chains in Ω is defined to be the
topology generated by U(Ω).

The next proposition is an immediate consequence of the last definition.

Proposition 2.5. Let Z,Zν , Z̃ν , Z̃ ∈ Gp(Ω).

1. If Zν → Z, Z̃ν → Z̃, and |Z+ Z̃| = |Z|∪ |Z̃|, then Zν + Z̃ν → Z̃+Z.
2. If Zν → Z, a ∈ Z, then a · Zν → a · Z.
3.
∑∞
ν=0 Z

ν is convergent iff Zν → 0.
4. If f is an affine isomorphism, then Gp(Ω) 3Z 7→f∗(Z)∈ Gp(f−1(Ω))

is a homeomorphism.
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Example 2.6. Ω = C2, Zν = {1/ν} × C, Z = {0} × C, Z̃ν = (−1) ·
({−1/ν} × C), Z̃ = (−1) · ({0} × C). Then Zν → Z and Z̃ν → Z̃ but
Zν + Z̃ν does not converge to Z̃ + Z. Hence addition is not continuous on
Gp(Ω). Proposition 2.5.1 and Theorem 2.9 give its continuity on Gp+(Ω).

Given Z1, . . . , Zk belonging to Gp1(Ω), . . . ,Gpk(Ω), respectively, and sat-
isfying the conditions

1. the sum of the codimensions of |Zj | is equal to n,
2.
⋂k
j=1 |Zj | is zero-dimensional,

a 0-chain is defined by

Z1 ∧ . . . ∧ Zk =
∑

a∈|Z1|∩...∩|Zk|

i(Z1 ∧ . . . ∧ Zk, a) · {a}

where i(Z1∧ . . .∧Zk, a) denotes the intersection multiplicity defined in [Dr]
(see also [Ch]). It is easy to prove that in Definition 2.1,

(1) µ(Z) = degEn(({w} × En−p) ∧ Z) for w ∈ Ep.
If f : Ω1 → Ω2 ⊃ Ω is biholomorphic, then by [Ch, §12.3],

(2) i(Z1 ∧ . . . ∧ Zk, f(a)) = i(f∗(Z1) ∧ . . . ∧ f∗(Zk), a).

Proposition 2.7. Let Zν , Z ∈ Gp(Ω). If for each compact K ⊂ Ω \ |Z|
we have |Zν | ∩ K = ∅ for almost all ν, then the following conditions are
equivalent :

1. For each point a ∈ Reg |Z|, each (n−p)-dimensional plane transversal
to |Z| at a and each open set U relatively compact in L such that U ∩ |Z| =
{a} there is an index ν0 such that dim(|Zν | ∩ U) = 0, degU (Zν ∧ L) =
degU (Z ∧ L) for all ν > ν0.

2. For each point a from a given dense subset D ⊂ Reg |Z|, each (n−p)-
dimensional plane transversal to |Z| at a and each open set U relatively
compact in L such that U ∩ |Z| = {a} there is an index ν0 such that
dim(|Zν | ∩ U) = 0, degU (Zν ∧ L) = degU (Z ∧ L) for all ν > ν0.

3. Zν → Z in the topology of p-chains.

P r o o f. The proposition is obvious for p = 0 or Z = 0. Let p > 0,
Z 6= 0.

1⇒2. Obvious.
2⇒3. Let Z∈U(A,K), A = {(f1, c1), . . . , (fm, cm)}. We check that Zν ∈

U(A,K) for sufficiently large ν. Since U(A,K) =
⋂m
j=1 U({(fj , cj)},K) we

can assume m = 1. By Proposition 2.5.4 it suffices to consider f1 = idCn .
Fix w ∈ Ep such that {w} ×En−p is transversal to |Z| at each point of the
set ({w} ×En−p)∩ |Z| = {z1, . . . , zs}. There exist ε > 0 and open pairwise
disjoint relatively compact subsets U1, . . . , Us of En−p such that:
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• w + εEp ⊂ Ep,
• |Z| ∩ ({w} × U j) = {zj} for j = 1, . . . , s,
• |Z| ∩K1 = ∅ where K1 = (w + εEp)× (En−p \ (U1 ∪ . . . ∪ Us)).
Choose z̃j ∈ D ∩ ((w + εEp)× Uj) for j = 1, . . . , s. Then

µ(Z) =
s∑
j=1

deg({w} × Uj) ∧ Z =
s∑
j=1

deg({π(z̃j)} × Uj) ∧ Z.

For sufficiently large ν we have |Zν | ⊂ Ω \ (K ∪K1), and so
s∑
j=1

deg({π(z̃j)} × Uj) ∧ Z =
s∑
j=1

deg({π(z̃j)} × Uj) ∧ Zν = µ(Zν).

Then Zν ∈ U(A,K) for sufficiently large ν and condition 3 follows.
3⇒1. Fix a=(a1, . . . , an), L, U as in 1. By Proposition 2.5.4 and (2) we

can assume that a = 0, L = C{ep+1, . . . , en} and En−p ⊂ U .
There is ε > 0 such that |Z| ∩ (εEp×∂En−p) = ∅ and εEp×En−p ⊂ Ω.

Moreover,

|Zν | ∩ ((εEp × ∂En−p) ∪ ({0}p × (U \ En−p))) = ∅
and

µ(f∗(Zν)) = µ(f∗(Z)),
where f = (ε idCp , idCn−p) and ν is large enough.

The set |Zν | ∩ U is compact and non-empty, hence dim(|Zν | ∩ U) = 0.
By (1),

degU (Zν ∧ L) = degU (Z ∧ L).
R e m a r k. Condition 2 resembles the one given in [Ch, §12.2]. The fol-

lowing example shows the slight difference between them.

Example 2.8. Ω = C2, Zν = ({1/ν} × C) + ({1 − 1/ν} × C), Z =
({0}×C) + ({1}×C), Z̃ = ({0}×C) + 2({1}×C). One can see that Zν→Z

and Zν → Z̃ in the sense of [Ch, §12.2]. The definition in [Ch, §12.2] seems
to be erroneous, for [Zν ] does not converge to [Z̃] as a sequence of currents.
Neither does it converge to Z̃ in the topology of p-chains.

Let us define:

• AQ(Ω) = {f ∈ A(Ω) : f(0), f(e1), . . . , f(en) ∈ (Q + iQ)n},
• K̃ = {[q1, q2]× . . .× [q4n−1, q4n] : q1, . . . , q4n ∈ Q},
• K = {

⋃
B : B ⊂ K̃,B is finite},

• UQ(Ω) = {U(A,K) : A ⊂ AQ(Ω)× Z, A is finite, K ∈ K̃, K ⊂ Ω},
• E(r1, r2) = r1E

p × r2En−p for r1, r2 > 0.

Theorem 2.9. UQ(Ω) is a base for the topology of p-chains in Ω.
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P r o o f. The assertion is obvious for p = 0. Suppose that p > 0 and let
Z =

∑
j∈J kjZj ∈ U(A,K). We can assume A = {(f1, c1)} (see the proof of

Proposition 2.7). Then there are K̃ ∈ K and ε > 0 satisfying

(3) K̃ ∩ |Z| = ∅, K ⊂ K̃ ⊂ Ω, f1(E(1 + ε, 1 + ε)) ⊂ Ω,
(4) f1(E(1 + ε, 1 + ε) \ E(1 + ε, 1− ε)) ⊂ K̃.
Fix 0 < r < 1. By a simple computation there is a neighborhood U ⊂ A(Ω)
of f1 in the Banach space of affine mappings Cn → Cn such that each f ∈ U
satisfies the following conditions:

(5) f(E(1 + ε/2, 1 + ε/2) \ E(1 + ε/2, 1− ε/2)
⊂ f1(E(1 + ε, 1 + ε) \ E(1 + ε, 1− ε)),

(6) f1({0}p × En−p) ⊂ f(E(r/2, 1 + ε/2)) ⊂ f1(E(r, 1 + ε)),

(7) (f−1
1 ◦ f)({0}p × En−p) ∩ (En \ f−1

1 (K̃))

= (f−1
1 ◦ f)({0}p × Cn−p) ∩ (En \ f−1

1 (K̃)),
(8) (f−1

1 ◦ f)({0}p × Cn−p) ∩ En ⊂ E(r, 1),
(9) π(p+1,...,n)|(f−1

1 ◦ f)({0}p × Cn−p) is a bijection.

Let f ∈ U and W =
∑
ljWj ∈ U({(f, c1)}, K̃). Inclusions (4) and (5)

give
(f−1

1 (|W |) ∪ f−1(|W |)) ∩ (Ep × ∂En−p) = ∅.
If f−1

1 (Wj) ∩ En = ∅ then by (4), f−1
1 (Wj)∩E(1, 1 + ε) = ∅. So, according

to (6), f−1(Wj) ∩ E(r/2, 1 + ε/2) = ∅. Thus, by Remmert’s theorem we
have f−1(Wj)∩En = ∅. Similarly f−1(Wj)∩En = ∅ ⇒ f−1

1 (Wj)∩En = ∅,
which gives {j : f−1(Wj) ∩ En 6= ∅} = {j : f−1

1 (Wj) ∩ En 6= ∅}.
By (1),

µ(f∗1 (Wj)) = deg(f−1
1 (Wj) ∧ ({0}p × En−p)).

By [Wi, Theorem 9.1] and (8), (9),

degEn(f−1
1 (Wj)∧({0}p×En−p)) = degEn(f−1

1 (Wj)∧(f−1
1 ◦f)({0}p×Cn−p)).

From (7),

degEn(f−1
1 (Wj) ∧ (f−1

1 ◦ f)({0}p × Cn−p))
= degEn(f−1

1 (Wj) ∧ (f−1
1 ◦ f)({0}p × En−p)).

By (4) and (6),

degEn(f−1
1 (Wj) ∧ (f−1

1 ◦ f)({0}p × En−p))
= deg(f−1

1 (Wj) ∧ (f−1
1 ◦ f)({0}p × En−p)),

deg(f−1
1 (Wj) ∧ (f−1

1 ◦ f)({0}p × En−p)) = deg(Wj ∧ f({0}p × En−p))
= deg(f−1(Wj) ∧ ({0}p × En−p)) = µ(f∗(Wj)).
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We have obtained Z ∈ U({(f, c1)}, K̃) ⊂ U({(f1, c1)},K). Density of
AQ(Ω) in A(Ω) ends the proof.

3. Metric on Gp(Ω). Let Z ∈ Gp(Ω). For each compact subset K of Ω
we fix 0 < dK < min{1,dist(K, ∂Ω)} and define H(K) =

⋃
x∈K B(x, dK).

Definition 3.1.

d(Z,K) =
{

dist(|Z| ∩H(K),K) if |Z| ∩H(K) 6= ∅,
dK if |Z| ∩H(K) = ∅.

Lemma 3.2. d(·,K) is continuous.

P r o o f. Let Zν → Z and d(Z,K) > 0. Fix d̃ < d(Z,K). Then we have

|Zν | ∩
⋃
x∈K B(x, d̃) = ∅ for almost all ν. We obtain lim infν→∞ d(Zν ,K) ≥

d(Z,K). If |Z| ∩H(K) = ∅ then d(Z,K) = dK and the lemma follows.
If |Z| ∩ H(K) 6= ∅ then dist(|Z| ∩ H(K),K) = |z − y| where y ∈ K,

z ∈ |Z| ∩H(K). By Rückert’s lemma there is a sequence {zν}, zν ∈ |Zν |,
zν → z, which gives

lim sup
ν→∞

d(Zν ,K) ≤ d(Z,K).

By the same argument the previous inequality holds when d(Z,K) = 0.

Let l ∈ Z and let En ⊂ Ω.

Definition 3.3. If |Z| ∩ (Ep × ∂En−p) = ∅, |Z| ∩En 6= ∅, µ(Z) = l we
define ml(Z) = d(Z,Ep × ∂En−p). We put ml(Z) = 0 otherwise.

Lemma 3.4. ml is continuous.

P r o o f. Let Zν → Z. If ml(Z) 6= 0 then ml(Zν) = d(Zν , Ep × ∂En−p)
for sufficiently large ν and we can use Lemma 3.2 . If ml(Z) = 0 and
|Z|∩ (Ep×∂En−p) 6= ∅ then |ml(Zν)| ≤ |d(Zν , Ep×∂En−p)| → 0. Suppose
that |Z| ∩ (Ep × ∂En−p) = ∅ and |Z| ∩ En = ∅. By Remmert’s theorem
|Zν | ∩ En = ∅ for almost all ν. If ml(Z) = 0, |Z| ∩ (Ep × ∂En−p) = ∅ and
|Z| ∩ En 6= ∅, then

µ(Zν) = µ(Z) 6= l

for sufficiently large ν.

Set P(Ω) = {ml ◦ f∗ : f ∈ AQ(Ω), l ∈ Z}, and observe that we have{∏
h∈J

h · d(·,K) : J ⊂ P(Ω), J is finite, K ∈ K
}
,

a countable family of continuous functions. Let {Gj} denote a sequence of
all its elements.
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Definition 3.5. Let X,Z ∈ Gp(Ω). We define

%(X,Z) =
∞∑
j=0

1
2j
|Gj(X)−Gj(Z)|.

Theorem 3.6. % is a metric on Gp(Ω). The topology induced by % coin-
cides with the topology of p-chains.

P r o o f. It is sufficient to prove that the sequence {Gj} gives an embed-
ding of Gp(Ω) in the Hilbert cube. According to [En, 2.3, Theorem 10] we
need to prove that:

1. {Gj}j∈N separates elements of Gp(Ω),
2. {Gj}j∈N separates elements of Gp(Ω) from closed subsets of Gp(Ω).

1) We can assume that |Z| 6= ∅. If |X| 6= |Z| then there is K ∈ K̃
satisfying |X| ∩K = ∅, |Z| ∩K 6= ∅. We obtain

0 = d(Z,K) 6= d(X,K).

Suppose |X| = |Z|. There is z ∈ Reg |X| satisfying m(z,X) 6= m(z, Z).
Fix g ∈ AQ(Ω) such that µ(π|g−1(|Z|)) = 1. Consequently,

(mm(z,Z) ◦ g∗)(Z) 6= (mm(z,Z) ◦ g∗)(X) = 0.

2) Let X ∈U({(f1, c1), . . . , (fm, cm)},K)⊂Gp(Ω)\C, where C is a closed
subset of Gp(Ω). Without loss of generality U({(f1, c1), . . . , (fm, cm)},K)
∈ UQ(Ω).

If |X| 6= ∅ set Gn =
∏m
j=1(mcj

◦ f∗j ) · d( ,K). If |X| = ∅ choose Gn =
d( , K̃) where K̃ ∈ K and

U(K̃) ⊂ U({(f1, c1), . . . , (fm, cm)},K).

In both cases we obtain Gn|C = 0, Gn(X) 6= 0.
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