Convergence of holomorphic chains

by Slawomir Rams (Kraków)

Abstract. We endow the module of analytic p-chains with the structure of a second-countable metrizable topological space.

1. Introduction. A holomorphic *p*-chain in an open subset Ω of \mathbb{C}^n is a formal locally finite sum $Z = \sum_{j \in J} k_j Z_j$ where Z_j are pairwise distinct irreducible analytic subsets of Ω of pure dimension *p* and $k_j \in \mathbb{Z} \setminus \{0\}$ for $j \in J$. The set $\bigcup_{j \in J} Z_j$ is called the *support* of the chain Z and denoted by |Z|. Each Z_j is called a *component* of Z and the number k_j is the *multiplicity* of Z_j .

A holomorphic *p*-chain Z is *positive* if the multiplicities of all its components are positive. $\mathcal{G}^p_+(\Omega)$ denotes the set of positive *p*-chains in Ω . The set of holomorphic *p*-chains in Ω is endowed with the structure of a free \mathbb{Z} -module. We denote it by $\mathcal{G}^p(\Omega)$.

Given a 0-chain and an open relatively compact subset U of Ω the *total* multiplicity of Z in U is defined as the sum of multiplicities of all its components contained in U. We denote the total multiplicity by $\deg_U Z$. When J is finite we extend this definition putting $\deg Z = \sum_{i \in J} k_j$.

One can define convergence of chains as the classical weak convergence of the associated currents (for details see e.g. [Ch, §14.1-2]). An attempt to explain the geometrical meaning of this convergence is made in [Ch].

In [Ch, § 12.2] the author proves that proper intersection is sequentially continuous and also states that this operation is continuous [Ch, §12.4]. However, he neither defines a topology nor proves the equivalence of sequential continuity and continuity.

The main aim of this note is to define a topology on $\mathcal{G}^p(\Omega)$ and to study some properties of this topological space. We shall prove that the result of this construction is second-countable, metrizable, and convergence in it coincides with the one defined in [Ch, §12.2].

Key words and phrases: holomorphic chains, currents, convergence of chains.

¹⁹⁹¹ Mathematics Subject Classification: 32B15, 32C25, 32C30, 32C99.

The topology constructed here is useful in studying the intersections of analytic sets (see [Tw], [R]).

2. Topology of *p*-chains. Let $0 \le p < n$ be integers, Ω be an open subset of \mathbb{C}^n . We shall use the following notation:

- $E = \{ z \in \mathbb{C} : |z| < 1 \},\$
- $\Lambda(n,p) = \{\lambda : \{1,\ldots,p\} \rightarrow \{1,\ldots,n\} : \lambda(1) < \ldots < \lambda(p)\},\$
- e_1, \ldots, e_n —the canonical basis of \mathbb{C}^n ,
- $\pi_{\lambda}: (z_1, \dots, z_n) \to (z_{\lambda(1)}, \dots, z_{\lambda(p)}), \ \pi = \pi_{(1,\dots,p)} \mid E^n,$
- $\mathcal{A}(\Omega) = \{ f : \mathbb{C}^n \to \mathbb{C}^n : f \text{ an affine isomorphism, } f(\overline{E^n}) \subset \Omega \},\$
- $\mu(h)$ —order of a finite branched holomorphic covering h,
- for $Z = \sum k_j Z_j, z \in Z_s \setminus \bigcup_{j \neq s} Z_j, m(z, Z) = k_s.$

Suppose that Ω_1 , Ω_2 are open subsets of \mathbb{C}^n and $\Omega \subset \Omega_2$. Given a biholomorphic mapping $f : \Omega_1 \to \Omega_2$ and $Z = \sum_{j \in J} k_j Z_j$ belonging to $\mathcal{G}^p(\Omega)$, a new *p*-cycle in $f^{-1}(\Omega)$ can be defined by $f^*(Z) = \sum_{j \in J} k_j f^{-1}(Z_j)$.

DEFINITION 2.1. Let V be an open subset of \mathbb{C}^n containing $\overline{E^n}$, and $Z \in \mathcal{G}^p(V), Z = \sum_{j \in J} k_j Z_j$, such that $|Z| \cap (\overline{E^p} \times \partial E^{n-p}) = \emptyset$. Define

$$\mu(Z) = \sum_{j \in J} k_j \mu(\pi \mid Z_j \cap E^n)$$

DEFINITION 2.2. Let $f_j \in \mathcal{A}(\Omega)$, $c_j \in \mathbb{Z}$ for $j = 1, \ldots, m$ and let K be a compact subset of Ω . Define $U(\{(f_1, c_1), \ldots, (f_m, c_m)\}, K)$ to be the set of all p-chains Z in Ω such that $|Z| \cap K = \emptyset$ and

$$|Z| \cap f_j(\overline{E^p} \times \partial E^{n-p}) = \emptyset, \quad \mu(f_j^*(Z)) = c_j \quad \text{for} \quad j = 1, \dots, m.$$

It is easy to verify the following

PROPOSITION 2.3. If Ω is an open subset of \mathbb{C}^n , then in $\mathcal{G}^p(\Omega)$ the family $\mathcal{U}(\Omega) = \{U(A, K) : A \text{ is a finite subset of } \mathcal{A}(\Omega) \times \mathbb{Z}, K \text{ is compact in } \Omega\}$, is a base of a topology.

DEFINITION 2.4. The topology of *p*-chains in Ω is defined to be the topology generated by $\mathcal{U}(\Omega)$.

The next proposition is an immediate consequence of the last definition. PROPOSITION 2.5. Let $Z, Z^{\nu}, \widetilde{Z}^{\nu}, \widetilde{Z} \in \mathcal{G}^p(\Omega)$.

1. If $Z^{\nu} \to Z$, $\widetilde{Z}^{\nu} \to \widetilde{Z}$, and $|Z + \widetilde{Z}| = |Z| \cup |\widetilde{Z}|$, then $Z^{\nu} + \widetilde{Z}^{\nu} \to \widetilde{Z} + Z$. 2. If $Z^{\nu} \to Z$, $a \in \mathbb{Z}$, then $a \cdot Z^{\nu} \to a \cdot Z$.

3. $\sum_{\nu=0}^{\infty} Z^{\nu}$ is convergent iff $Z^{\nu} \to 0$.

4. If f is an affine isomorphism, then $\mathcal{G}^p(\Omega) \ni Z \mapsto f^*(Z) \in \mathcal{G}^p(f^{-1}(\Omega))$ is a homeomorphism.

EXAMPLE 2.6. $\Omega = \mathbb{C}^2$, $Z^{\nu} = \{1/\nu\} \times \mathbb{C}$, $Z = \{0\} \times \mathbb{C}$, $\widetilde{Z}^{\nu} = (-1) \cdot (\{-1/\nu\} \times \mathbb{C})$, $\widetilde{Z} = (-1) \cdot (\{0\} \times \mathbb{C})$. Then $Z^{\nu} \to Z$ and $\widetilde{Z}^{\nu} \to \widetilde{Z}$ but $Z^{\nu} + \widetilde{Z}^{\nu}$ does not converge to $\widetilde{Z} + Z$. Hence addition is not continuous on $\mathcal{G}^p(\Omega)$. Proposition 2.5.1 and Theorem 2.9 give its continuity on $\mathcal{G}^p_+(\Omega)$.

Given Z^1, \ldots, Z^k belonging to $\mathcal{G}^{p_1}(\Omega), \ldots, \mathcal{G}^{p_k}(\Omega)$, respectively, and satisfying the conditions

- 1. the sum of the codimensions of $|Z^j|$ is equal to n,
- 2. $\bigcap_{i=1}^{k} |Z^{j}|$ is zero-dimensional,

a 0-chain is defined by

$$Z^{1} \wedge \ldots \wedge Z^{k} = \sum_{a \in |Z^{1}| \cap \ldots \cap |Z^{k}|} i(Z^{1} \wedge \ldots \wedge Z^{k}, a) \cdot \{a\}$$

where $i(Z^1 \wedge \ldots \wedge Z^k, a)$ denotes the intersection multiplicity defined in [Dr] (see also [Ch]). It is easy to prove that in Definition 2.1,

(1)
$$\mu(Z) = \deg_{E^n}((\{w\} \times E^{n-p}) \wedge Z) \quad \text{for } w \in E^p$$

If $f: \Omega_1 \to \Omega_2 \supset \Omega$ is biholomorphic, then by [Ch, §12.3],

(2)
$$i(Z^1 \wedge \ldots \wedge Z^k, f(a)) = i(f^*(Z^1) \wedge \ldots \wedge f^*(Z^k), a)$$

PROPOSITION 2.7. Let $Z^{\nu}, Z \in \mathcal{G}^p(\Omega)$. If for each compact $K \subset \Omega \setminus |Z|$ we have $|Z^{\nu}| \cap K = \emptyset$ for almost all ν , then the following conditions are equivalent:

1. For each point $a \in \operatorname{Reg} |Z|$, each (n-p)-dimensional plane transversal to |Z| at a and each open set U relatively compact in L such that $\overline{U} \cap |Z| =$ $\{a\}$ there is an index ν_0 such that $\dim(|Z^{\nu}| \cap U) = 0$, $\deg_U(Z^{\nu} \wedge L) = \deg_U(Z \wedge L)$ for all $\nu > \nu_0$.

2. For each point a from a given dense subset $D \subset \text{Reg} |Z|$, each (n-p)dimensional plane transversal to |Z| at a and each open set U relatively compact in L such that $\overline{U} \cap |Z| = \{a\}$ there is an index ν_0 such that $\dim(|Z^{\nu}| \cap U) = 0$, $\deg_U(Z^{\nu} \wedge L) = \deg_U(Z \wedge L)$ for all $\nu > \nu_0$.

3. $Z^{\nu} \rightarrow Z$ in the topology of p-chains.

Proof. The proposition is obvious for p = 0 or Z = 0. Let p > 0, $Z \neq 0$.

 $1 \Rightarrow 2$. Obvious.

2⇒3. Let $Z \in U(A, K)$, $A = \{(f_1, c_1), \ldots, (f_m, c_m)\}$. We check that $Z^{\nu} \in U(A, K)$ for sufficiently large ν . Since $U(A, K) = \bigcap_{j=1}^{m} U(\{(f_j, c_j)\}, K)$ we can assume m = 1. By Proposition 2.5.4 it suffices to consider $f_1 = \mathrm{id}_{\mathbb{C}^n}$. Fix $w \in E^p$ such that $\{w\} \times E^{n-p}$ is transversal to |Z| at each point of the set $(\{w\} \times E^{n-p}) \cap |Z| = \{z_1, \ldots, z_s\}$. There exist $\varepsilon > 0$ and open pairwise disjoint relatively compact subsets U_1, \ldots, U_s of E^{n-p} such that:

- $w + \varepsilon \overline{E^p} \subset E^p$,
- $|Z| \cap (\{w\} \times \overline{U}_j) = \{z_j\}$ for $j = 1, \dots, s$,
- $|Z| \cap K_1 = \emptyset$ where $K_1 = (w + \varepsilon \overline{E^p}) \times (\overline{E^{n-p}} \setminus (U_1 \cup \ldots \cup U_s)).$
- Choose $\widetilde{z}_j \in D \cap ((w + \varepsilon E^p) \times U_j)$ for $j = 1, \ldots, s$. Then

$$\mu(Z) = \sum_{j=1}^{s} \deg(\{w\} \times U_j) \wedge Z = \sum_{j=1}^{s} \deg(\{\pi(\widetilde{z}_j)\} \times U_j) \wedge Z.$$

For sufficiently large ν we have $|Z^{\nu}| \subset \Omega \setminus (K \cup K_1)$, and so

$$\sum_{j=1}^{s} \deg(\{\pi(\widetilde{z_j})\} \times U_j) \wedge Z = \sum_{j=1}^{s} \deg(\{\pi(\widetilde{z_j})\} \times U_j) \wedge Z^{\nu} = \mu(Z^{\nu}).$$

Then $Z^{\nu} \in U(A, K)$ for sufficiently large ν and condition 3 follows.

 $3 \Rightarrow 1$. Fix $a = (a_1, \ldots, a_n), L, U$ as in 1. By Proposition 2.5.4 and (2) we can assume that $a = 0, L = \mathbb{C}\{e_{p+1}, \ldots, e_n\}$ and $\overline{E^{n-p}} \subset U$.

There is $\varepsilon > 0$ such that $|Z| \cap (\varepsilon \overline{E^p} \times \partial E^{n-p}) = \emptyset$ and $\varepsilon \overline{E^p} \times \overline{E^{n-p}} \subset \Omega$. Moreover,

$$|Z^{\nu}| \cap ((\varepsilon \overline{E^p} \times \partial E^{n-p}) \cup (\{0\}^p \times (U \setminus E^{n-p}))) = \emptyset$$

and

$$\mu(f^*(Z^{\nu})) = \mu(f^*(Z)),$$

where $f = (\varepsilon \operatorname{id}_{\mathbb{C}^p}, \operatorname{id}_{\mathbb{C}^{n-p}})$ and ν is large enough.

The set $|Z^{\nu}| \cap U$ is compact and non-empty, hence $\dim(|Z^{\nu}| \cap U) = 0$. By (1),

$$\deg_U(Z^{\nu} \wedge L) = \deg_U(Z \wedge L).$$

 Remark . Condition 2 resembles the one given in [Ch, §12.2]. The following example shows the slight difference between them.

EXAMPLE 2.8. $\Omega = \mathbb{C}^2, Z^{\nu} = (\{1/\nu\} \times \mathbb{C}) + (\{1 - 1/\nu\} \times \mathbb{C}), Z = (\{0\} \times \mathbb{C}) + (\{1\} \times \mathbb{C}), \widetilde{Z} = (\{0\} \times \mathbb{C}) + 2(\{1\} \times \mathbb{C}).$ One can see that $Z^{\nu} \to Z$ and $Z^{\nu} \to \widetilde{Z}$ in the sense of [Ch, §12.2]. The definition in [Ch, §12.2] seems to be erroneous, for $[Z^{\nu}]$ does not converge to $[\widetilde{Z}]$ as a sequence of currents. Neither does it converge to \widetilde{Z} in the topology of *p*-chains.

Let us define:

•
$$\mathcal{A}_{\mathbb{Q}}(\Omega) = \{ f \in \mathcal{A}(\Omega) : f(0), f(e_1), \dots, f(e_n) \in (\mathbb{Q} + i\mathbb{Q})^n \},$$

- $\mathcal{K} = \{ [q_1, q_2] \times \ldots \times [q_{4n-1}, q_{4n}] : q_1, \ldots, q_{4n} \in \mathbb{Q} \},\$
- $\mathcal{K} = \{ \bigcup \mathcal{B} : \mathcal{B} \subset \widetilde{\mathcal{K}}, \mathcal{B} \text{ is finite} \},\$
- $\mathcal{U}_{\mathbb{Q}}(\Omega) = \{ U(A, K) : A \subset \mathcal{A}_{\mathbb{Q}}(\Omega) \times \mathbb{Z}, A \text{ is finite}, K \in \widetilde{\mathcal{K}}, K \subset \Omega \},\$
- $E(r_1, r_2) = r_1 E^p \times r_2 E^{n-p}$ for $r_1, r_2 > 0$.

THEOREM 2.9. $\mathcal{U}_{\mathbb{Q}}(\Omega)$ is a base for the topology of p-chains in Ω .

230

Proof. The assertion is obvious for p = 0. Suppose that p > 0 and let $Z = \sum_{i \in J} k_j Z_j \in U(A, K)$. We can assume $A = \{(f_1, c_1)\}$ (see the proof of Proposition 2.7). Then there are $\widetilde{K} \in \mathcal{K}$ and $\varepsilon > 0$ satisfying

(3)
$$\widetilde{K} \cap |Z| = \emptyset, \quad K \subset \widetilde{K} \subset \Omega, \quad f_1(E(1+\varepsilon, 1+\varepsilon)) \subset \Omega,$$

(4)
$$f_1(E(1+\varepsilon,1+\varepsilon) \setminus E(1+\varepsilon,1-\varepsilon)) \subset K.$$

Fix 0 < r < 1. By a simple computation there is a neighborhood $U \subset \mathcal{A}(\Omega)$ of f_1 in the Banach space of affine mappings $\mathbb{C}^n \to \mathbb{C}^n$ such that each $f \in U$ satisfies the following conditions:

(5)
$$f(E(1+\varepsilon/2,1+\varepsilon/2)\setminus \overline{E(1+\varepsilon/2,1-\varepsilon/2)} \subset f_1(E(1+\varepsilon,1+\varepsilon)\setminus \overline{E(1+\varepsilon,1-\varepsilon)}),$$

(6)
$$f_1(\{0\}^p \times E^{n-p}) \subset f(E(r/2,1+\varepsilon/2)) \subset f_1(E(r,1+\varepsilon)),$$

(7)
$$(f_1^{-1} \circ f)(\{0\}^p \times E^{n-p}) \cap (E^n \setminus f_1^{-1}(\widetilde{K}))$$

$$= (f_1^{-1} \circ f)(\{0\}^p \times \mathbb{C}^{n-p}) \cap (E^n \setminus f_1^{-1}(\widetilde{K}))$$

(8) $(f_1^{-1} \circ f)(\{0\}^p \times \mathbb{C}^{n-p}) \cap E^n \subset E(r,1),$ (9) $\pi_{(p+1,\ldots,n)}|(f_1^{-1} \circ f)(\{0\}^p \times \mathbb{C}^{n-p})$ is a bijection.

Let $f \in U$ and $W = \sum l_j W_j \in U(\{(f, c_1)\}, \widetilde{K})$. Inclusions (4) and (5) give

$$(f_1^{-1}(|W|) \cup f^{-1}(|W|)) \cap (\overline{E^p} \times \partial E^{n-p}) = \emptyset.$$

If $f_1^{-1}(W_j) \cap E^n = \emptyset$ then by (4), $f_1^{-1}(W_j) \cap E(1, 1+\varepsilon) = \emptyset$. So, according to (6), $f^{-1}(W_j) \cap E(r/2, 1+\varepsilon/2) = \emptyset$. Thus, by Remmert's theorem we have $f^{-1}(W_j) \cap E^n = \emptyset$. Similarly $f^{-1}(W_j) \cap E^n = \emptyset \Rightarrow f_1^{-1}(W_j) \cap E^n = \emptyset$, which gives $\{j: f^{-1}(W_j) \cap E^n \neq \emptyset\} = \{j: f_1^{-1}(W_j) \cap E^n \neq \emptyset\}.$

By (1),

$$\mu(f_1^*(W_j)) = \deg(f_1^{-1}(W_j) \land (\{0\}^p \times E^{n-p})).$$

By [Wi, Theorem 9.1] and (8), (9),

 $\deg_{E^n}(f_1^{-1}(W_j) \wedge (\{0\}^p \times E^{n-p})) = \deg_{E^n}(f_1^{-1}(W_j) \wedge (f_1^{-1} \circ f)(\{0\}^p \times \mathbb{C}^{n-p})).$ From (7),

$$\deg_{E^n}(f_1^{-1}(W_j) \wedge (f_1^{-1} \circ f)(\{0\}^p \times \mathbb{C}^{n-p})) = \deg_{E^n}(f_1^{-1}(W_j) \wedge (f_1^{-1} \circ f)(\{0\}^p \times E^{n-p})).$$

By (4) and (6),

$$deg_{E^{n}}(f_{1}^{-1}(W_{j}) \wedge (f_{1}^{-1} \circ f)(\{0\}^{p} \times E^{n-p})) = deg(f_{1}^{-1}(W_{j}) \wedge (f_{1}^{-1} \circ f)(\{0\}^{p} \times E^{n-p})), deg(f_{1}^{-1}(W_{j}) \wedge (f_{1}^{-1} \circ f)(\{0\}^{p} \times E^{n-p})) = deg(W_{j} \wedge f(\{0\}^{p} \times E^{n-p})) = deg(f^{-1}(W_{j}) \wedge (\{0\}^{p} \times E^{n-p})) = \mu(f^{*}(W_{j})).$$

We have obtained $Z \in U(\{(f, c_1)\}, \widetilde{K}) \subset U(\{(f_1, c_1)\}, K)$. Density of $\mathcal{A}_{\mathbb{Q}}(\Omega)$ in $\mathcal{A}(\Omega)$ ends the proof.

3. Metric on $\mathcal{G}^p(\Omega)$. Let $Z \in \mathcal{G}^p(\Omega)$. For each compact subset K of Ω we fix $0 < d_K < \min\{1, \operatorname{dist}(K, \partial \Omega)\}$ and define $H(K) = \bigcup_{x \in K} B(x, d_K)$.

Definition 3.1.

$$d(Z,K) = \begin{cases} \operatorname{dist}(|Z| \cap H(K), K) & \text{if } |Z| \cap H(K) \neq \emptyset, \\ d_K & \text{if } |Z| \cap H(K) = \emptyset. \end{cases}$$

LEMMA 3.2. $d(\cdot, K)$ is continuous.

Proof. Let $Z^{\nu} \to Z$ and d(Z, K) > 0. Fix $\tilde{d} < d(Z, K)$. Then we have $|Z^{\nu}| \cap \bigcup_{x \in K} B(x, \tilde{d}) = \emptyset$ for almost all ν . We obtain $\liminf_{\nu \to \infty} d(Z^{\nu}, K) \ge d(Z, K)$. If $|Z| \cap H(K) = \emptyset$ then $d(Z, K) = d_K$ and the lemma follows.

If $|Z| \cap H(K) \neq \emptyset$ then $\operatorname{dist}(|Z| \cap H(K), K) = |z - y|$ where $y \in K$, $z \in |Z| \cap \overline{H(K)}$. By Rückert's lemma there is a sequence $\{z_{\nu}\}, z_{\nu} \in |Z^{\nu}|, z_{\nu} \to z$, which gives

$$\limsup_{\nu \to \infty} d(Z^{\nu}, K) \le d(Z, K).$$

By the same argument the previous inequality holds when d(Z, K) = 0.

Let $l \in \mathbb{Z}$ and let $\overline{E^n} \subset \Omega$.

DEFINITION 3.3. If $|Z| \cap (\overline{E^p} \times \partial E^{n-p}) = \emptyset$, $|Z| \cap E^n \neq \emptyset$, $\mu(Z) = l$ we define $m_l(Z) = d(Z, \overline{E^p} \times \partial E^{n-p})$. We put $m_l(Z) = 0$ otherwise.

LEMMA 3.4. m_l is continuous.

Proof. Let $Z^{\nu} \to Z$. If $m_l(Z) \neq 0$ then $m_l(Z^{\nu}) = d(Z^{\nu}, \overline{E^p} \times \partial E^{n-p})$ for sufficiently large ν and we can use Lemma 3.2 . If $m_l(Z) = 0$ and $|Z| \cap (\overline{E^p} \times \partial E^{n-p}) \neq \emptyset$ then $|m_l(Z^{\nu})| \leq |d(Z^{\nu}, \overline{E^p} \times \partial E^{n-p})| \to 0$. Suppose that $|Z| \cap (\overline{E^p} \times \partial E^{n-p}) = \emptyset$ and $|Z| \cap E^n = \emptyset$. By Remmert's theorem $|Z^{\nu}| \cap E^n = \emptyset$ for almost all ν . If $m_l(Z) = 0, |Z| \cap (\overline{E^p} \times \partial E^{n-p}) = \emptyset$ and $|Z| \cap E^n \neq \emptyset$, then

$$\mu(Z^{\nu}) = \mu(Z) \neq l$$

for sufficiently large ν .

Set
$$\mathcal{P}(\Omega) = \{m_l \circ f^* : f \in \mathcal{A}_{\mathbb{Q}}(\Omega), \ l \in \mathbb{Z}\}$$
, and observe that we have
 $\Big\{\prod_{h \in J} h \cdot d(\cdot, K) : J \subset \mathcal{P}(\Omega), \ J \text{ is finite}, \ K \in \mathcal{K}\Big\},$

a countable family of continuous functions. Let $\{G_j\}$ denote a sequence of all its elements.

DEFINITION 3.5. Let $X, Z \in \mathcal{G}^p(\Omega)$. We define

$$\varrho(X,Z) = \sum_{j=0}^{\infty} \frac{1}{2^j} |G_j(X) - G_j(Z)|$$

THEOREM 3.6. ρ is a metric on $\mathcal{G}^p(\Omega)$. The topology induced by ρ coincides with the topology of p-chains.

Proof. It is sufficient to prove that the sequence $\{G_i\}$ gives an embedding of $\mathcal{G}^p(\Omega)$ in the Hilbert cube. According to [En, 2.3, Theorem 10] we need to prove that:

{G_j}_{j∈N} separates elements of G^p(Ω),
 {G_j}_{j∈N} separates elements of G^p(Ω) from closed subsets of G^p(Ω).

1) We can assume that $|Z| \neq \emptyset$. If $|X| \neq |Z|$ then there is $K \in \widetilde{K}$ satisfying $|X| \cap K = \emptyset$, $|Z| \cap K \neq \emptyset$. We obtain

$$0 = d(Z, K) \neq d(X, K).$$

Suppose |X| = |Z|. There is $z \in \text{Reg} |X|$ satisfying $m(z, X) \neq m(z, Z)$. Fix $g \in \mathcal{A}_{\mathbb{Q}}(\Omega)$ such that $\mu(\pi|g^{-1}(|Z|)) = 1$. Consequently,

$$(m_{m(z,Z)} \circ g^*)(Z) \neq (m_{m(z,Z)} \circ g^*)(X) = 0$$

2) Let $X \in U(\{(f_1, c_1), \ldots, (f_m, c_m)\}, K) \subset \mathcal{G}^p(\Omega) \setminus C$, where C is a closed subset of $\mathcal{G}^p(\Omega)$. Without loss of generality $U(\{(f_1, c_1), \ldots, (f_m, c_m)\}, K)$ $\in \mathcal{U}_{\mathbb{O}}(\Omega).$

If $|X| \neq \emptyset$ set $G_n = \prod_{j=1}^m (m_{c_j} \circ f_j^*) \cdot d(\cdot, K)$. If $|X| = \emptyset$ choose $G_n =$ $d(, \widetilde{K})$ where $\widetilde{K} \in \mathcal{K}$ and

$$U(\widetilde{K}) \subset U(\{(f_1, c_1), \dots, (f_m, c_m)\}, K).$$

In both cases we obtain $G_n|_C = 0, G_n(X) \neq 0.$

Acknowledgements. I would like to express my sincere thanks to Piotr Tworzewski for many helpful conversations.

References

- [Ch] E. M. Chirka, Complex Analytic Sets, Kluwer Acad. Publishers, 1989.
- R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), [Dr] 175 - 204.
- [En] R. Engelking, General Topology, Heldermann, 1989.
- R. C. Gunning, Introduction to Holomorphic Functions of Several Complex Vari-[Gu] ables. Local Theory, Wadsworth & Brooks/Cole, 1990.
- [Ha] R. Harvey, Holomorphic chains and their boundaries, in: Proc. Sympos. Pure Math. 30, Part 1, Amer. Math. Soc., 1977, 309-382.

- [Lo] S. Lojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- [R] S. Rams, Bezout-type theorem for certain analytic sets, in preparation.
- [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177–191.
- [TW] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, ibid. 42 (1983), 387–393.
- [Wi] T. Winiarski, Continuity of total number of intersection, ibid. 47 (1986), 155– 178.

Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland E-mail: rams@im.uj.edu.pl

> Reçu par la Rédaction le 3.4.1996 Révisé le 26.7.1996

234