
ANNALES

POLONICI MATHEMATICI

LXV.3 (1997)

Upper and lower solutions satisfying the inverse inequality

by Irena Rach̊unková (Olomouc)

Abstract. We consider multipoint and two-point BVPs for second order ordinary
differential equations with a Carathéodory right hand side. We prove the existence of
solutions provided there exist upper and lower solutions of the BVP and the upper solution
is less than the lower one.

1. Introduction. In this paper we consider the four-point boundary
value problem

x′′ = f(t, x, x′),(1)

x(a) = x(c), x(d) = x(b),(2)

where a, b, c, d ∈ R, a < c ≤ d < b, J = [a, b] and f : J × R
2 → R is

a function satisfying the Carathéodory conditions. We prove an existence
result for (1), (2) under the assumption that there exist upper and lower
solutions of (1), (2) which fulfil the inverse inequality, i.e. the upper solution
is less than the lower one (Theorem 1).

Since the four-point conditions (2) can be considered as an approxima-
tion of the Neumann conditions

(3) x′(a) = 0, x′(b) = 0,

our result is valid for problem (1), (3) as well. Moreover, one of the sign
conditions for f may be omitted (Theorem 5). The same approach can be
used for the periodic conditions

(4) x(a) = x(b), x′(a) = x′(b)

(Theorem 5).
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Let us recall that σ1, σ2 ∈ AC
1(J) (i.e. with absolutely continuous first

derivatives on J) are lower and upper solutions of (1), (k) if for a.e. t ∈ J ,

(5) σ′′
1 (t) ≥ f(t, σ1, σ

′
1), σ′′

2 (t) ≤ f(t, σ2, σ
′
2),

and for k = 2,

σ1(c) ≥ σ1(a), σ1(b) ≤ σ1(d),

σ2(c) ≤ σ2(a), σ2(b) ≥ σ2(d);

for k = 3,

σ′
1(a) ≥ 0, σ′

1(b) ≤ 0,

σ′
2(a) ≤ 0, σ′

2(b) ≥ 0;

for k = 4,

σ1(b) = σ1(a), σ′
1(b) ≤ σ′

1(a),

σ2(b) = σ2(a), σ′
2(b) ≥ σ′

2(a).

Under the classical assumption that

(6) σ1(t) ≤ σ2(t) for all t ∈ J

the existence of solutions of various second order boundary value problems
has been proved by many authors.We can refer for example to [1], [3], [5]–[7],
[17]. For the periodic problem with a Carathéodory right hand side f and a
generalized Nagumo condition see [4] or [12].

Here, we investigate the case where σ1, σ2 satisfy the opposite ordering
condition

(7) σ2(t) ≤ σ1(t) for all t ∈ J.

Conditions (5) and (7) are satisfied for example if

(8) lim sup
|x|→∞

f(t, x, 0)/x < 0,

uniformly for a.e. t ∈ J . We can see that (8) yields the existence of constants
r1 > 0 and r2 < 0 such that f(t, r1, 0) ≤ 0, f(t, r2, 0) ≥ 0 for a.e. t ∈ J . So,
we put σ1(t) ≡ r1, σ2(t) ≡ r2 and get lower and upper solutions for problem
(1), (k), k ∈ {2, 3, 4}. On the other hand, condition (8) expresses the fact
that for large |x| the nonlinearity f(t, x, 0)/x lies on the side of the spectrum
of the linear differential operator L : x 7→ x′′ acting on the space of functions
belonging to AC1(J) and satisfying (k), k ∈ {2, 3, 4}. This means that the
nonlinearity f(t, x, 0)/x could interact with higher eigenvalues of L. This
situation was considered e.g. in [2], [9]–[11], [16], [18], mainly for periodic or
Dirichlet boundary conditions and for special differential equations like the
Liénard or Rayleigh equations.

Our approach is quite different and we present other types of conditions
which guarantee the existence of solutions of (1), (k), k ∈ {2, 3, 4}, provided
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(7) is valid. We do not impose growth restrictions on f with respect to x or
x′ but we need some sign conditions for f .

2. Main results

Theorem 1. Let σ1 be a lower solution and σ2 an upper solution of (1),
(2), σ′′

1 , σ′′
2 ∈ L∞(J) and let (7) be satisfied. Suppose that there exist real

numbers R1, R2, R3, R4 such that R1 6= R3, R2 6= R4, R1 ≤ σ′
i(t) ≤ R2,

R3 ≤ σ′
i(t) ≤ R4 for each t ∈ J , i = 1, 2, and for a.e. t ∈ J ,

f(t, x, σ′
2) ≥ σ′′

2 for all x ∈ [c1, σ2(t)],(9)

f(t, x, σ′
1) ≤ σ′′

1 for all x ∈ [σ1(t), c2],(10)

and for all x ∈ [c1, c2],

f(t, x,R1) ≤ 0, f(t, x,R2) ≥ 0 for a.e. t ∈ J,(11)

f(t, x,R3) ≥ 0, f(t, x,R4) ≤ 0 for a.e. t ∈ [d, b],(12)

where c1 = (b−a)L1+min{σ2(t) : t ∈ J}, c2 = (b−a)L2+max{σ1(t) : t ∈ J},
L1 = min{R1, R3} and L2 = max{R2, R4}. Then problem (1), (2) has at

least one solution u with

(13) σ2(tu) ≤ u(tu) ≤ σ1(tu) for some tu ∈ J.

Corollary 2. Let f be nonincreasing in the second variable x. Then, in

Theorem 1, conditions (9), (10) can be omitted and (11), (12) can be replaced

by

f(t, c1, R1) ≤ 0, f(t, c2, R2) ≥ 0 for a.e. t ∈ J,(14)

f(t, c2, R3) ≥ 0, f(t, c1, R4) ≤ 0 for a.e. t ∈ [d, b].(15)

Exemple 3. The function f(t, x, y) = x−x3+cos 2πt+αy(y2−1) satisfies
the conditions of Theorem 1 for sufficiently large α. If we choose J = [0, 1],
we can put σ1 = 1.35, σ2 = −1.35, R1 = −0.4, R2 = 0.4, R3 = −1.1,
R4 = 1.1 and |α| ≥ 60.

Exemple 4. The function f(t, x, y) = −x + sin t + α sin y satisfies the
conditions of Corollary 2 for sufficiently large α. If we choose J = [a, b], we
can put σ1 = 1, σ2 = −1, R1 = −π/2, R2 = π/2, R3 = −3π/2, R4 = −3π/2,
|α| > 3π(b − a)/2 + 1.

Theorem 5. Let σ1 be a lower solution and σ2 an upper solution of

(1), (k), k ∈ {3, 4}, with σ′′
1 , σ′′

2 ∈ L∞(J), and let (7) be satisfied. Suppose

that there exist real numbers R1, R2 such that R1 ≤ σ′
i(t) ≤ R2 for each

t ∈ J , i = 1, 2, conditions (9), (10) are satisfied for a.e. t ∈ J and condition

(11) is satisfied for all x ∈ [c1, c2], where c1 = (b−a)R1 +min{σ2(t) : t ∈ J}
and c2 = (b− a)R2 + max{σ1(t) : t ∈ J}. Then problem (1), (k), k ∈ {3, 4},
has at least one solution satisfying (13).



238 I. Rachůnková

Corollary 6. Let f be nonincreasing in the second variable x. Then,
in Theorem 5, conditions (9), (10) can be omitted and (11) can be replaced

by (14).

Example 7. If we choose f , J , σ1, σ2, R1, R2 as in Example 3, then the
conditions of Theorem 5 are satisfied for |α| > 1.

Example 8. If we choose f , J , σ1, σ2, R1, R2 as in Example 4, then the
conditions of Corollary 6 are satisfied for |α| > π(b − a)/2 + 1.

R e m a r k. Let f be bounded (sublinear or linear with appropriately
small coefficients) in x and y. Further, suppose that there exist upper and
lower solutions of problem (1), (k), k ∈ {2, 3, 4}, with σ′′

1 , σ′′
2 ∈ L∞(J), and

for a.e. t ∈ J ,

f(t, x, σ′
2) ≥ σ′′

2 for all x ≤ σ2(t),(16)

f(t, x, σ′
1) ≤ σ′′

1 for all x ≥ σ1(t).

Then condition (7) is sufficient for the solvability of (1), (k), k ∈ {2, 3, 4}.
See Lemma 11 for f bounded and [15] for sublinear and linear cases.

3. Proofs. We will consider a one-parameter system of equations

(17) x′′ = λf∗(t, x, x′, λ), λ ∈ [0, 1],

where f∗ : J × R
2 × [0, 1] → R satisfies the Carathéodory conditions, i.e.

• f(·, x, y, λ) : J → R is measurable for all (x, y, λ) ∈ R
2 × [0, 1],

• f(t, ·, ·, ·) : R
2 × [0, 1] → R is continuous for a.e. t ∈ J ,

• sup{|f(·, x, y, λ)| : |x| + |y| < ̺, λ ∈ [0, 1]} ∈ L(J) for any ̺ ∈ R+.

Let f∗ be chosen such that f∗(t, x, y, 1) = f(t, x, y) on J ×R
2. Further, put

f0k(x) =
1

b − a

b\
a

f∗(t, x, 0, 0) dt for k ∈ {3, 4}

and

f02(x) =
1

c0

[

1

b − d

b\
d

s\
a

f∗(τ, x, 0, 0) dτ ds −
1

c − a

c\
a

s\
a

f∗(τ, x, 0, 0) dτ ds

]

where

c0 =
b + d

2
−

c + a

2
.

In our proofs we exploit the following lemma:

Lemma 9. Let k ∈ {2, 3, 4} and suppose there exists an open bounded set

Ω ⊂ C
1(J) such that : (a) for any λ ∈ (0, 1), every solution u of problem

(17), (k) satisfies u 6∈ ∂Ω; (b) for any root x0 ∈ R of the equation f0k(x) = 0,
the condition x0 6∈ ∂Ω holds, where x0 is considered as a constant function
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on J ; (c) the Brouwer degree d[f0k,D, 0] is not zero, where D ⊂ R is the set

of constants c such that the constant functions u(t) ≡ c belong to Ω. Then

problem (17), (k) has at least one solution in Ω.

P r o o f. For k = 2 see [13] or [14], for k ∈ {3, 4} see [3] or [8].

First we prove the existence for problem (1), (k), k ∈ {2, 3, 4}, provided
f is bounded and upper and lower solutions are constants.

Lemma 10. Suppose that there exist r1, r2 ∈ R and K ∈ (0,∞) such that

r1 ≥ r2 and for a.e. t ∈ J ,

f(t, x, 0) ≥ 0 for all x ≤ r2,

f(t, x, 0) ≤ 0 for all x ≥ r1

and
b\
a

|f(t, x, y)| dt ≤ K for all x, y ∈ R.

Then problem (1), (k), k ∈ {2, 3, 4}, has at least one solution u with

r2 ≤ u(tu) ≤ r1,

where tu is a point from J.

P r o o f. For every m ∈ N, m ≥ 2, and (t, x, y) ∈ J × R
2, set

fm(t, x, y) =











f(t, x, y) for |y| > 2/m,
f(t, x, y) + [f(t, x, 0) − f(t, x, y)]m(2/m − |y|)

for 1/m < |y| ≤ 2/m,
f(t, x, 0) for |y| ≤ 1/m,

and consider system (17) where

f∗(t, x, y, λ) = λfm(t, x, y) + (1 − λ)
r1 − x

|r1| + |x|
.

Define

Ω = {x ∈ C
1(J) : ‖x‖∞ < r, ‖x′‖∞ < K + 2(b − a)},

where r = max{|r1|, |r2|}+ 1 + (b − a)K + 2(b − a)2. Now we use Lemma 9
and first prove that for any λ ∈ (0, 1) no solution of (17), (k), k ∈ {2, 3, 4},
belongs to ∂Ω. Suppose that u is a solution of (17), (k), k ∈ {2, 3, 4}, for
some λ ∈ (0, 1). Put v(t) = u(t) − r1 − 1/m and suppose

min{v(t) : t ∈ J} = v(t0) > 0.

Then there exists an interval [α, β] ⊂ J containing t0 with v(t) ≥ 0 and
|v′(t)| ≤ 1/m for all t ∈ [α, β], v′(α) ≤ 0, v′(β) ≥ 0. Then for a.e. t ∈ (α, β)
we get

v′′(t) = u′′(t) = λfm(t, u, u′) + (1 − λ)
r1 − u

|r1| + |u|
< λf(t, u, 0) ≤ 0.
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On the other hand,
Tβ
α

v′′(t) dt = v′(β) − v′(α) ≥ 0, a contradiction. Analo-
gously we can get a contradiction if

max{u(t) : t ∈ J} < r2 − 1/m.

Thus there exists tu ∈ J such that

r2 − 1/m ≤ u(tu) ≤ r1 + 1/m.

Now, by integrating (1) from t̄ to t, where t̄ is a zero of u′, we get |u′(t)| ≤
K + 2(b − a) for all t ∈ J , and integrating the last inequality from tu to t
we get |u(t)| ≤ max{|r1|, |r2|} + 1/m + 2(b − a)2 + K(b − a) for all t ∈ J.
Thus u 6∈ ∂Ω.

Now, consider the function f0k from Lemma 9 which has for all three
cases of k = 2, 3, 4 the same form f0k(x) = (r1 − x)/(|r1| + |x|). Since the
unique root of the equation f0k(x) = 0 is x0 = r1 and the constant function
x0 6∈ ∂Ω, condition (b) of Lemma 9 is satisfied. Finally, we compute the
Brouwer degree d[f0k, (−r, r), 0]. It is equal to ±1, because f0k(−r) < 0 and
f0k(r) > 0. Therefore problem (17), (k), k ∈ {2, 3, 4}, has for λ = 1, m ≥ 2,
at least one solution um ∈ Ω. Following these considerations for each m ∈ N,
m ≥ 2, we get a sequence (um)∞m=2 of solutions of the problems

x′′ = fm(t, x, x′), (k), k ∈ {2, 3, 4}.

This sequence is equi-continuous and bounded in C
1(J) and therefore, by the

Arzelà–Ascoli Theorem, we can choose a subsequence converging in C
1(J)

to u0 which is a solution of (17), (k), k ∈ {2, 3, 4}. Moreover, there exists a
sequence (tum

)∞m=2 of points with the property

r2 − 1/m ≤ um(tum
) ≤ r1 + 1/m,

which implies the existence of τ ∈ J such that r2 ≤ u0(τ) ≤ r1.

The second step consists in the change of constant upper and lower
solutions to functions depending on t.

Lemma 11. Let σ1, σ2 be lower and upper solutions of (1), (k), k ∈
{2, 3, 4}, with σ′′

1 , σ′′
2 ∈ L∞(J). Suppose that conditions (7) and (16) are

fulfilled. Further , suppose there exists K ∈ (0,∞) such that

b\
a

|f(t, x, y)| dt ≤ K for all x, y ∈ R.

Then problem (1), (k), k ∈ {2, 3, 4}, has at least one solution u satisfying

(13).
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P r o o f. For n ∈ N and (t, x, y) ∈ J × R
2 set

fn(t, x, y) =







f(t, x, y) + (−1)i/n for |y − σ′
i(t)| > 2/n,

f(t, x, y) + (−1)i/n + κi,n for 1/n < |y − σ′
i(t)| ≤ 2/n,

f(t, x, σ′
i(t)) + (−1)i/n for |y − σ′

i(t)| ≤ 1/n,

where

κi,n = [f(t, x, σ′
i(t)) − f(t, x, y)]n(2/n − |y − σ′

i(t)|), i = 1, 2,

and

gn(t, x, y) =























fn(t, x, σ′
1) + A+1/n−x

x−A ‖σ′′
1 ‖∞ for x ≥ A + 1/n,

fn(t, x, y) + w1,n for A < x < A + 1/n,
fn(t, x, y) for −A ≤ x ≤ A,
fn(t, x, y) − w2,n for −A − 1/n < x < −A,

fn(t, x, σ′
2) + A+1/n+x

A+x ‖σ′′
2 ‖∞ for x ≤ −A − 1/n,

where

wi,n = [fn(t, x, σ′
i(t)) − fn(t, x, y)]n(x + (−1)iA), i = 1, 2,

A = (b − a)L +
1

n
+ max{‖σ1‖∞, ‖σ2‖∞},

L = K +
b − a

n
+ 2(b − a)max{‖σ′′

1 ‖∞, ‖σ′′
2 ‖∞}.

We can easily see that wi,n ≡ 0 for |y − σ′
i(t)| ≤ 1/n. Now consider the

problem

(18) x′′ = gn(t, x, x′), (k), k ∈ {2, 3, 4}.

We can check that for r1 = 2A + 1/n and r2 = −2A − 1/n the function gn

satisfies all assumptions of Lemma 10, so problem (18) has a solution un for
each n ∈ N. Now, using similar arguments to the proof of Lemma 10, we
can prove that there exist tn = tn(un) ∈ J such that

(19) −1/n + σ2(tn) ≤ un(tn) ≤ σ1(tn) + 1/n.

Indeed, putting v(t) = un(t) − σ1(t) − 1/n (or v(t) = σ2(t) − un(t) − 1/n)
and supposing min{v(t) : t ∈ J} > 0 (or max{v(t) : t ∈ J} < 0), we get a
contradiction. We can also easily check that

b\
a

|gn(t, x, y)| dt ≤ L for all x, y ∈ R.

From the latter inequality we get ‖u′
n‖∞ ≤ L and ‖un‖∞ ≤ A, so un is a

solution of the problem

x′′ = fn(t, x, x′), (k), k ∈ {2, 3, 4}.



242 I. Rachůnková

Using the Arzelà–Ascoli Theorem for the sequence (un)∞n=1 in the space
C

1(J), by a limiting process we obtain a solution u of problem (1), (k),
k ∈ {2, 3, 4}, satisfying (13).

P r o o f o f T h e o r e m 1. Suppose that R1 < R3 and R2 > R4. Then
for sufficiently large n0 ∈ N we have R4 + 2/n0 < R2 and R3 − 2/n0 > R1.
Suppose that n ∈ N, n ≥ n0 and put r1 = max{σ1(t) : t ∈ J}, r2 =
min{σ2(t) : t ∈ J},

g(t, x, y) =







f(t, r1 + R2(b − a), y) for x > r1 + R2(b − a),

f(t, x, y) for r2 + R1(b − a) ≤ x ≤ r1 + R2(b − a),

f(t, r2 + R1(b − a), y) for x < r2 + R1(b − a),

hn(t, x, y) =



























































g(t, x,R2) for y ≥ R2,

g(t, x, y) for R4 + 2/n ≤ y < R2,

g(t, x,R4 + 2/n) + w4 for R4 + 1/n < y < R4 + 2/n,

g(t, x,R4) for R4 < y ≤ R4 + 1/n,

g(t, x, y) for R3 ≤ y ≤ R4,

g(t, x,R3) for R3 − 1/n ≤ y < R3,

g(t, x,R3 − 2/n) − w3 for R3 − 2/n < y < R3 − 1/n,

g(t, x, y) for R1 < y ≤ R3 − 2/n ,

g(t, x,R1) for R1 ≥ y,

where

w3 = [g(t, x,R3 − 2/n) − g(t, x,R3)]n(y − R3 + 2/n),

w4 = [g(t, x,R4 + 2/n) − g(t, x,R4)]n(y − R4 − 2/n).

Then for all x, y ∈ R,

b\
a

|hn(t, x, y)| dt ≤

b\
a

h(t) dt = K,

where h(t) = sup{|hn(t, x, y)| : x ∈ [r2 + R1(b − a), r1 + R2(b − a)], y ∈
[R1, R2]}. We can see that hn satisfies the conditions of Lemma 11 and so
the problem

x′′ = hn(t, x, x′), (2)

has a solution un satisfying (13).

Let us prove a priori estimates for u′
n. It follows from (2) that there

exist a0 ∈ (a, c) and b0 ∈ (d, b) with u′
n(a0) = u′

n(b0) = 0. Suppose that
max{u′

n(t) : t ∈ [a, b0]} = u′
n(γ) > R2 + 1/n. Then γ 6= b0 and there exists

(α, β) ⊂ (a, b0) such that u′
n(β) = R2, u′

n(α) = R2 + 1/n and R2 ≤ u′
n(t) ≤

R2 +1/n for all t ∈ (α, β). Thus
Tβ
α

u′′
n(t) dt = −1/n < 0. On the other hand,
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by (11), (12) and the construction of hn,

β\
α

u′′
n(t) dt =

β\
α

g(t, un, R2) dt ≥ 0,

a contradiction. Similarly, supposing min{u′
n(t) : t ∈ [a, b0]} < R1−1/n, we

get a contradiction. Therefore

(21) R1 − 1 ≤ R1 − 1/n ≤ u′
n(t) ≤ R2 + 1/n ≤ R2 + 1

for all t ∈ [a, b0].
Now, suppose that max{u′

n(t) : t ∈ [b0, b]} = u′
n(γ) > R4 + 1/n. Then

γ ∈ (b0, b] and there exists (α, β) ⊂ (b0, b) such that u′
n(α) = R4, u′

n(β) =

R4 + 1/n, and R4 ≤ u′
n(t) ≤ R4 + 1/n for all t ∈ (α, β). Thus

Tβ
α

u′′
n(t) dt =

1/n > 0. On the other hand, by (11), (12) and the construction of hn,

β\
α

u′′
n(t) dt =

β\
α

g(t, un, R4) dt ≤ 0,

a contradiction. Similarly, supposing min{u′
n(t) : t ∈ [b0, b]} < R3−1/n, we

get a contradiction. Thus, by (21),

(22) R1 − 1/n ≤ u′
n(t) ≤ R2 + 1/n

for all t ∈ J . Integrating (22) from tu to t and using (13), we get

(23) r2 + R1(b − a) −
b − a

n
≤ un(t) ≤ r1 + R2(b − a) +

b − a

n
for all t ∈ J.

For each n ∈ N, n ≥ n0, we have a solution un satisfying estimates (22)
and (23). Since the sequence (un)∞n=n0

is bounded and equi-continuous in
C

1(J), we can use the Arzelà–Ascoli Theorem and get a solution u of the
problem

x′′ = g(t, x, x′), (2),

with r2 + R1(b − a) ≤ u(t) ≤ r1 + R2(b − a) and R1 ≤ u′(t) ≤ R2 for all
t ∈ J . Hence u is a solution of (1), (2) as well.

P r o o f o f T h e o r e m 5. We can follow the previous proof and make
some simplifications. E.g. instead of hn we use

h(t, x, y) =







g(t, x,R2) for y > R2,
g(t, x, y) for R1 ≤ y ≤ R2,
g(t, x,R1) for y < R1,

and for a priori estimates of u′ we only need condition (11), because in the
case of problem (1), (3), u′ has zero values at the end points, and if we
consider periodic problem (1), (4), it is sufficient to prove the estimate of u′

only at one of the end points.
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