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On highly nonintegrable functions

and homogeneous polynomials

by P. Wojtaszczyk (Warszawa)

Abstract. We construct a sequence of homogeneous polynomials on the unit ball Bd
in C

d which are big at each point of the unit sphere S. As an application we construct a
holomorphic function on Bd which is not integrable with any power on the intersection of
Bd with any complex subspace.

1. Introduction. Let S denote the unit sphere in the complex space
C

d. In the paper [5] a sequence (pn(z))∞n=0 of homogenous polynomials in
C

d was constructed such that |pn(z)| ≤ 1 for all n and all z ∈ S andT
S
|pn(z)|2 dσ(z) ≥ c > 0 for all n. Such polynomials can be used to produce

holomorphic functions in Bd (the unit ball of C
d) with “bad” behaviour on

almost all slices (cf. [5], Remark 1.10). The “almost all” restriction is caused
by the fact that each pn(z) has zeros on S (unless d = 1, which is a trivial
case), and to conclude something on all slices one has to control the location
of the sets where pn(z) is small. On the other hand, from the function theory
point of view it is interesting to have results for all slices (see e.g. [2]). In this
note we construct a sequence of homogeneous polynomials which allows us to
control behaviour on all slices. Our arguments in this note are modifications
of some arguments from [5], [7] and [1]. As an application we construct a
holomorphic function in the unit ball Bd which is not integrable with any
power on any slice.

The author would like to express his gratitude to Prof. J. Siciak for
suggesting this problem.

1.1. Geometric notions. In the complex d-dimensional space C
d we will

always consider the natural scalar product 〈·, ·〉. On the unit sphere S we
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will consider a unitarily invariant pseudo-metric ̺(z1, z2) defined as

(1) ̺(z1, z2) :=
√

1 − |〈z1, z2〉|.
It is clear that ̺(z1, z2) = 0 if and only if z1 = λz2 for some λ ∈ C (and
clearly |λ| = 1). As usual, we denote by B(z; r) the open ball with center z
and radius r, i.e.

B(z0; r) := {z ∈ S : ̺(z0, z) < r}.
There is a natural, unitarily invariant (Lebesgue) measure on S. We normal-
ize it so that the measure of the whole sphere S equals 1 and we denote this
measure by σ. Using (1.4.5) of [4] we easily compute that

(2) σ
(
B(z; r)

)
=

(
2r2 − r4

)d−1
.

This clearly gives

(3) r2d−2 ≤ σ(B(z; r)) ≤ 2d−1r2d−2.

Clearly for small r’s the constant on the right hand side can be made as close
to 1 as we wish. A subset A ⊂ S is called α-separated if ̺(z1, z2) > α for all
distinct elements z1 and z2 of A. It is clear that for α > 0 each α-separated
subset of S is finite. We will consider maximal α-separated sets. We always
mean maximal in the sense of inclusion of sets.

2. Some homogeneous polynomials. All homogeneous polynomials
of degree n constructed in this paper will have the form

(4) p(z) =

s∑

j=1

〈z, ζj〉n

for some finite subset {ζ1, . . . , ζs} of S. In order to be able to control val-
ues of the polynomial p we will usually assume that the set {ζ1, . . . , ζs} is
α-separated for some α. The natural and useful degree of separation for
polynomials of degree n is 1/

√
n. We start with two lemmas on separated

sets.

Lemma 1. Suppose that {ζ1, . . . , ζs} is a C/
√

N -separated subset of S.

For z ∈ S let

Ak(z) :=

{
i :

kC

2
√

N
≤ ̺(z, ζi) ≤

(k + 1)C

2
√

N

}
.

Then for k = 1, 2, . . . the set Ak(z) has at most 2d−1(k + 2)2d−2 elements.

The set A0(z) has at most one element.
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P r o o f. The assertion about A0 is clear. Since the balls B(ζj ;C/(2
√

N))
are disjoint and

⋃

i∈Ak(z)

B

(
ζi;

C

2
√

N

)
⊂ B

(
z;

(k + 2)C

2
√

N

)

we get

#Ak(z) ≤ #

{
i : ̺(z, ζi) <

(k + 1)C

2
√

N

}

≤
σ
(
B

(
z; (k+2)C

2
√

N

))

σ
(
B

(
z; C

2
√

N

))

≤
2d−1

( (k+2)C

2
√

N

)2d−2

(
C

2
√

N

)2d−2
= 2d−1(k + 2)2d−2.

Lemma 2. If A ⊂ S is α/
√

N -separated then for each β > α there exists

an integer K = K(α, β) such that A can be partitioned into K disjoint

β/
√

N -separated sets.

P r o o f. Let us select from A a maximal β/
√

N -separated subset A1. Next
from A \ A1 we select a maximal β/

√
N -separated subset A2. We continue

in this way till we exhaust A. Let As be the last non-empty set in this
procedure. Take ζ ∈ As. Since As−1 is a maximal β/

√
N -separated subset

of A\⋃s−2
j=1 Aj we see that ζ 6∈ As−1, so B(ζ;β/

√
N)∩As−1 6= ∅. Analogously

B(ζ;β/
√

N)∩As−2 6= ∅ etc. So we see that B(ζ;β/
√

N) contains at least s
distinct elements of A. Looking at the measures of balls as in Lemma 1 we

see that B
(
ζ; β+α/2√

N

)
contains s disjoint balls of radius α/(2

√
N). From (3)

we obtain

s

(
α

2
√

N

)2d−2

≤ 2d−1

(
β + α/2√

N

)2d−2

so s ≤ 23d−3(β/α + 1/2)2d−2. This gives the required decomposition.

Now we are ready to state some estimates for polynomials (4).

Proposition 1. There exists a constant C (rather large) such that for

all integers N large enough, for each C/
√

N -separated subset {ζ1, . . . , ζs} of

S and each integer k with N ≤ k ≤ 2N the polynomial

p(z) :=
s∑

j=1

〈z, ζj〉k

satisfies

(i) |p(z)| ≤ 2 for all z ∈ S,
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(ii) |p(z)| ≥ 0.5 for each z ∈ S such that ̺(z, ζj) ≤ 1/(4
√

N) for some

j = 1, . . . , s.

P r o o f. Note that if ̺(z, ζj) ≥ α/
√

N and N ≤ k ≤ 2N then

(5) |〈z, ζj〉k| ≤ (1 − α2/N)k ≤ e−α2k/N ≤ e−α2

.

Consider the sets Ak(z) defined in Lemma 1. From Lemma 1 we obtain

|p(z)| ≤
s∑

j=1

|〈z, ζj〉|k ≤
∞∑

k=0

∑

i∈Ak(z)

|〈z, ζi〉|k

≤ 1 +
∞∑

k=1

e−(kC/2)22d−1(k + 2)2d−2.

It is clear that we can fix a C > 0.5 such that
∞∑

k=1

e−(kC/2)22d−1(k + 2)2d−2 ≤ 0.1.

Such a choice of C clearly ensures (i).
For a fixed j and z ∈ S such that ̺(z, ζj) < 1/(4

√
N) we have, for i 6= j,

(6) ̺(z, ζi) ≥
C√
N

− 1

4
√

N
≥ 1

4
√

N
.

This shows that

|〈z, ζj〉k| ≥
(

1 − 1

16N

)k

≥
(

1 − 1

16N

)2N

so for N large enough we have

(7) |〈z, ζj〉k| ≥ (1/3)1/8 ≥ 0.87.

Analogously to the argument for (i) we see from (6) that

(8)
∑

i 6=j

|〈z, ζi〉k| ≤
∞∑

k=1

∑

i∈Ak(z)

|〈z, ζi〉k| ≤ 0.1.

Since

|p(z)| ≥ |〈z, ζj〉k| −
∑

i 6=j

|〈z, ζi〉k|,

from (7) and (8) we obtain (ii).

Now we are ready for the main technical result of this note.

Theorem 1. There exists an integer k = k(d) and a sequence pn(z) of

homogeneous polynomials of degree n (for n large enough) such that

(i) |pn(z)| ≤ 2 for all z ∈ S,

(ii) for each s (large enough),
∑k(s+1)−1

n=ks |pn(z)| ≥ 0.5 for all z ∈ S.
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P r o o f. Let k be the integer given by Lemma 2 for α = 0.25 and β = C
where C is the constant given by Proposition 1. For N = sk (and such
that the estimate of Proposition 1 holds) fix a maximal 1/(4

√
N)-separated

subset A ⊂ S and using Lemma 2 divide it into k disjoint C/
√

N -separated
subsets A0, A1, . . . , Ak−1. For n = sk + j we define

pn(z) :=
∑

ζ∈Aj

〈z, ζ〉n.

From Proposition 1 we infer that |pn(z)| ≤ 2 (so (i) holds) and |pn(z)| ≥ 0.5
for

z ∈
⋃

ζ∈Aj

B

(
ζ;

1

4
√

N

)
.

Since A =
⋃k−1

l=0 Al is a maximal 1/(4
√

N)-separated subset of S we infer
that

k−1⋃

j=0

⋃

ζ∈Aj

B

(
ζ;

1

4
√

N

)
=

⋃

ζ∈A

B

(
ζ;

1

4
√

N

)
= S.

This gives (ii).

R e m a r k 1. The sets Aj used in the above proof need not be maximal

C/
√

N -separated subsets of S. If we enlarge them to get such subsets, say

Ãj , then there are signs εn
ζ such that the polynomials

p̃n(z) =
∑

ζ∈Ãj

εn
ζ 〈z, ζ〉n

will satisfy \
S

|p̃n(z)|2 dσ(z) > c > 0

for all n and some C. This follows from the arguments following Lemma 2.7
of [5]. Clearly those polynomials will also satisfy (i) and (ii) of Theorem 1.

R e m a r k 2. The possibility of generalizing arguments from [5] to yield
results like our Theorem 1 was known to A. B. Aleksandrov. In his paper [1]
he states (Theorem 4) that there is a K (depending only on the dimension
d) such that for each n there are homogeneous polynomials ps

n(z) of degree
n, where s = 1, . . . ,K, such that for some constants C ≥ c > 0 we have
C ≥ ∑K

s=1 |ps
n(z)| ≥ c > 0 for all s ∈ S. It is easy to modify our proof of

Theorem 1 to get this fact.

3. An application. As an easy application of Theorem 1 let us show
the following fact:
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The function ∑

n

nln npn(z) =: f(z)

is a holomorphic function in Bd such that for each hyperplane Π ⊂ C
d and

any p > 0,

(9)
\

Π∩Bd

|f(z)|p dν(z) = ∞

where dν is the volume measure on Π ∩ Bd.

Since |pn(z)| ≤ 2|z|n and the series
∑

nln n|z|n converges for |z| < 1 we
see that f(z) is a holomorphic function in Bd. Hence we easily see that (9)
is equivalent to

(10)
\

z∈Π,0.5<|z|<1

|f(z)|p dν(z) = ∞.

Writing (10) in polar coordinates (see e.g. 1.4.3 in [4]) we see that in order
to show (9) it suffices to consider complex lines Π only. It is also clear that
only small p’s matter. Thus we must show that for each w ∈ S and each
1 > p > 0 the function gw(λ) := f(λw) defined for λ ∈ C and |λ| < 1
satisfies

(11)
\

|λ|<1

|gw(λ)|p dν(λ) = ∞.

But it is known (cf. [3] or [6]) that if a function g(λ) =
∑∞

n=0 anλn on the
unit disc satisfies \

|λ|<1

|g(z)|p dν(λ) < ∞

then

(12) |an| = o(n2/p−1).

But gw(λ) has the power series expansion

gw(λ) =
∑

n

nlnnpn(w)λn

so we infer from Theorem 1 that (12) does not hold. This shows our claim.
This example improves a bit upon Theorem 1 of [2].
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