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A generalized periodic boundary value problem
for the one-dimensional p-Laplacian

by DAQING JIANG and JUNYU WANG (Changchun)

Abstract. The generalized periodic boundary value problem —[g(u')]" = f(t,u,u’),
a <t < b, with u(a) = &u(b) + ¢ and u’(b) = nu'(a) is studied by using the generalized
method of upper and lower solutions, where £,7 > 0, a, b, ¢ are given real numbers,
g(s) = |s|P72s, p > 1, and f is a Carathéodory function satisfying a Nagumo condition.
The problem has a solution if and only if there exists a lower solution o and an upper
solution B with a(t) < (t) for a <t <b.

1. Introduction. The present paper is a continuation of the papers [1]
and [2].

In this paper, we study the following generalized periodic boundary value
problem for the one-dimensional p-Laplacian:

)] = f(tud), tel=(ab],
(L) {u<a> Zeub)+c, w(b)=mi(a),

by using the generalized method of upper and lower solutions. Here £, > 0,
a, b, ¢ are given real numbers, g(s) = [s|P72s, p > 1, and f(t,u,v) is a
Carathéodory function satisfying a Nagumo condition.

We name the problem a generalized periodic boundary value problem
since the periodic boundary value problem is its particular case.

We call a function a : I — R a lower solution to problem (1.1) if o €
CY(I), g(o’) € AC(I), and

{ —[g(a/ ()] < f(t,a(t),d/(t)) for ae. tel,
a(a) =&a(d) +c, o (b) <nd(a),

where AC(I) is the set of all absolutely continuous functions defined on 1.
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Similarly, a function 5 : I — R is called an upper solution to (1.1) if
B eC(I), g(f') € AC(I), and

{—[g(ﬂ’(t))]’ > f(t,B8(t),3'(t)) forae. tel,
Bla) =EB(0b) + ¢, B'(b) = nB(a).

A function u : I — R is said to be a solution to (1.1) if it is both a lower
solution and an upper solution to (1.1).

We call a function f : I xR? — R a Carathéodory function if the following
two conditions are satisfied:

(1) for almost all ¢ € I, the function (u,v) — f(t,u,v) is continuous on
R2, and

(2) for every (u,v) € R?, the function ¢t — f(¢,u,v) is measurable on I.

The function f is said to satisfy a Nagumo condition on the set
D= {(t,u,v) : t eI, a(t) <u<p(t), veR}

for given «a, 8 € C(I) with a(t) < §(t) on I if there exists a positive mea-
surable function k£ € L,(I), 1 < o < oo, and a positive continuous function
H e C(Ry), Ry :=[0,00) such that

(1.2) |f(t,u,v)| < E()H(Jv]) a.e. on D
and

T 1G(s)| (o —V/e (0—1)/
(1.3) —=—————ds>B 1kl &,

N Heen
where G is the function inverse to g,
(1.4) A = max{|B(a) — a(b)],|B(b) — a(a)[}/(b— a),
(1.5) B := max{f(t): t € I} —min{a(t): t € I}
and

b 1/c
Ikl = (g Ik (s)]” ds) if o € [1,00),

a

esssup{|k(t)| : t € I} if 0 = c0.
Here we set B? := 1 and |G(s)| := 1.

The main result of this paper is as follows.

THEOREM 1. Assume that f is a Carathéodory function satisfying a
Nagumo condition. Then a necessary and sufficient condition for the prob-
lem (1.1) to have a solution u is that there exists a lower solution o and an
upper solution 3 with a(t) < (t) on I. Moreover,

alt) <u(t) <pEt) and [W ()| <N onl,

where N is a constant depending only on «, B, g, H and k.
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Obviously, Theorem 1 extends and improves Theorem 1 of [1] and The-
orem 2.4 of [2].

2. Proof of Theorem 1. The necessity part is obvious. We prove the
sufficiency.

Now assume that o and 8 are lower and upper solutions to problem
(1.1), respectively, and a(t) < () on I. To prove the existence of solutions
(1.1), we consider the modified problem

—lg()) + Mg(u) . ]
(2.1 = 1 (att. attn)) + dg( Gatew). e
u(a) = &q(b,u(b)) + ¢, u'(b) = nu'(a),
where M is a positive number such that e™(®=) > pp—1
a(t) fu<alt), tel,
q(t,u) =< u if a(t) <u<pt), tel,
B(t) ifu>pt), tel,
and
f(t,u,—N) ifv<—N,
fr(tu,v) =4 f(t,u,v) if [v] < N,
ft,u,N) ifv> N.
Here we choose N so large that
N > max{|a/(t)],|3'(t)|: t € [} + A
and
g(N) o—1)/o
G(s)|7 Y
H
L HIGE))
(A and B are defined by (1.4) and (1.5) respectively). (1.3) assures the
existence of such an N.

ds > B=Y/7|k]|,

LEMMA 1. For any u € E := C(I), the following two statements hold:

(1) (d/dt)q(t,u(t)) exists for a.e. t € 1.
(2) If up,uj € E and uj — ug in E, then

%ﬁt%(ﬂ) — %q(t,uo(t)) for a.e. t € 1.

Proof. The proof can be found in [1, 3].
LEMMA 2. Let u be a solution to (2.1). Then

(1) a(t) <wu(t) < B(t) on I, and
(2) [u/(t)] < N foralltel.

That is to say, the solution u is also a solution to (1.1).
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Proof. We first prove that u(t) < 3(¢t) on I. Let y(t) = u(t) — B(t).
Then we have
(2.2) y(a) = Elq(b,u(b)) = BO)] <0, y'(b) < ny'(a).
Assume now that y(t)
t* € (a,b] such that y(t
two cases.

Case (i): t* < b. In this case, y'(t*) = u/(t*) — B(t*) = 0 and there
exists a point t; € [a,t*) such that y(¢1) = 0 and y(¢) > 0 in (¢1,¢*]. Thus,
we have

~[g(B'(1))] +M9(ﬁ'(t)) f(t,8(t),8'(t) + Mg(B'(t))
~[g(u/ ()] + Mg(u'(t)) a.e. on [t1,t"]
(since q(t,u(t)) = B(t) and |5'(t)] < N on [t1,t*]), i.e.,
e M g (1)~ g(F D)} 20 ae. on [t
This shows that

e Mg/ (1) — g(B'(1)] < e M [g(u' (1)) = g(F'(t))] =0 on [ts,t7],
ie., y'(t) <0 on [t1,t*]. Consequently, we get a contradiction: 0 = y(t;) >
y(t*) > 0.

Case (ii): t* =b. If y'(b) = 0, we can get a contradiction again as in
Case (i). If y/(b) > 0, then by (2.2),
(2.3) y(a)=0, n>0 and ¢'(a)>0.
When y(t) > 0 in (a,b], we easily obtain
e g (1) ~ 9B} 20 ae on T,

as in Case (i), i.e.,

e Mlg(u/ (b)) — g(B'(0)] = e~ M[g(u’ (a)) — g(B'(a))]-
Since v/ (b) = nu'(a) and B'(b) > nB'(a), we have

(P~ = M) g(u' (a)) — g(B'(a))] 2 O,

ie., y'(a) = u'(a) — f'(a) <0, which contradicts the assumption y’(a) > 0.

When there is a point ¢4 € (a, b) such that y(t4) < 0, it follows from (2.3)
that there exists an interval (ta,t3), a < to < t3 < t4, such that y(¢) > 0 in
(t2,t3) and y(t2) = y(t3) = 0. Therefore, there is a point t** € (t2,t3) such
that y(t**) is the positive maximum value of y(¢) on [t2,t3]. As in Case (i),
we can get a contradiction again. This shows that u(t) < 8(t) on I.

In very much the same way, we can prove that a(t) < u(t) on I. (1) is
thus proved.

*

> 0 for some t € (a,b]. Then there exists a point
) is the positive maximum value. We can distinguish
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The proof of (2) can be found in [1, 2]. The Nagumo condition is employed
only here.

To prove the existence of solutions to problem (2.1), we define a mapping
¢:FE — FE by

(Pu)(t) := S G(TEM(T_G) - § M=) (Fu)(s) ds) dr

a a

+ &q(b,u(b)) +c
for u € E, where the mapping F' : E — L,(I) is defined by

(24 (Fue) = £ttt u(t). att. ()

+ Mg<%q(t,u(t))> Vue E
and
(2.5) 7= [eMO7a) — i)t l§eM(bS)(Fu)(s) ds.

a

Obviously, F' is well defined, since for any u € F,
(2.6) [(Fu)(®)| < M*k(t) + Mg(N) € Lo (I),
where M* := max{H(s): 0 <s < N}.

LEMMA 3. @ is a completely continuous mapping.

Proof. Let w(t) = (Pu)(t). From the definition of @, we have for u € E,
t
w'(t) = G(TeM(t*“) — SeM(t*s)(Fu)(s) ds) e C(I)

and there exists an N*, independent of u, such that
7], [0 @) [w(®)] < N* (€ D).

This shows that ®(FE) is a bounded subset of E.
Since the set

t
{TeM(t*“) — SeM(t*s)(Fu)(s) ds:ue€ E}

a

is bounded and equicontinuous on I, so is the set {w'(t) : u € E}. By the
Arzela—Ascoli theorem, ¢(F) is compact in E.
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Let up,u; € E and u; — ug in . By Lemma 1 and the dominated
convergence theorem, we conclude that as 7 — oo,

T = [M(b a) 18 M(b—s) Fu )( )dS
b

— [ M(b—a) _ 18 M(b— S) FUO)( )dS =70,

and hence du; — Pup in E. This shows that @ is continuous on FE. The
proof is complete.

From Lemma 3, the Schauder fixed point theorem asserts that @ has at
least one fixed point in E. Let u € E be a fixed point of @. Then

ul(t) = §G<T€M(r_a) Mo [ Iz <s, a(s,u(s)), %q(s,u(s))>

a a

- Mg<%q(s, u(s))ﬂ ds) dr + &q(b,u(b)) +¢ onl,

where 7 is determined by (2.5). It is easy to see that the fixed point u is a
solution to (2.1). Of course, the w is also a solution to (1.1).
Theorem 1 is proved.
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