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A generalized periodic boundary value problem

for the one-dimensional p-Laplacian

by Daqing Jiang and Junyu Wang (Changchun)

Abstract. The generalized periodic boundary value problem −[g(u′)]′ = f(t, u, u′),
a < t < b, with u(a) = ξu(b) + c and u′(b) = ηu′(a) is studied by using the generalized
method of upper and lower solutions, where ξ, η ≥ 0, a, b, c are given real numbers,
g(s) = |s|p−2s, p > 1, and f is a Carathéodory function satisfying a Nagumo condition.
The problem has a solution if and only if there exists a lower solution α and an upper
solution β with α(t) ≤ β(t) for a ≤ t ≤ b.

1. Introduction. The present paper is a continuation of the papers [1]
and [2].

In this paper, we study the following generalized periodic boundary value
problem for the one-dimensional p-Laplacian:

(1.1)

{

−[g(u′)]′ = f(t, u, u′), t ∈ I := [a, b],
u(a) = ξu(b) + c, u′(b) = ηu′(a),

by using the generalized method of upper and lower solutions. Here ξ, η ≥ 0,
a, b, c are given real numbers, g(s) = |s|p−2s, p > 1, and f(t, u, v) is a
Carathéodory function satisfying a Nagumo condition.

We name the problem a generalized periodic boundary value problem

since the periodic boundary value problem is its particular case.

We call a function α : I → R a lower solution to problem (1.1) if α ∈
C1(I), g(α′) ∈ AC(I), and

{

−[g(α′(t))]′ ≤ f(t, α(t), α′(t)) for a.e. t ∈ I,
α(a) = ξα(b) + c, α′(b) ≤ ηα′(a),

where AC(I) is the set of all absolutely continuous functions defined on I.
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Similarly, a function β : I → R is called an upper solution to (1.1) if
β ∈ C1(I), g(β′) ∈ AC(I), and

{

−[g(β′(t))]′ ≥ f(t, β(t), β′(t)) for a.e. t ∈ I,
β(a) = ξβ(b) + c, β′(b) ≥ ηβ′(a).

A function u : I → R is said to be a solution to (1.1) if it is both a lower
solution and an upper solution to (1.1).

We call a function f : I×R
2 → R a Carathéodory function if the following

two conditions are satisfied:

(1) for almost all t ∈ I, the function (u, v) → f(t, u, v) is continuous on
R

2, and
(2) for every (u, v) ∈ R

2, the function t → f(t, u, v) is measurable on I.

The function f is said to satisfy a Nagumo condition on the set

D := {(t, u, v) : t ∈ I, α(t) ≤ u ≤ β(t), v ∈ R}

for given α, β ∈ C(I) with α(t) ≤ β(t) on I if there exists a positive mea-
surable function k ∈ Lσ(I), 1 ≤ σ ≤ ∞, and a positive continuous function
H ∈ C(R+), R+ := [0,∞) such that

(1.2) |f(t, u, v)| ≤ k(t)H(|v|) a.e. on D

and

(1.3)

∞\
g(A)

|G(s)|(σ−1)/σ

H(|G(s)|)
ds > B(σ−1)/σ‖k‖σ ,

where G is the function inverse to g,

A := max{|β(a) − α(b)|, |β(b) − α(a)|}/(b − a),(1.4)

B := max{β(t) : t ∈ I} − min{α(t) : t ∈ I}(1.5)

and

‖k‖σ :=











(

b\
a

|k(s)|σ ds
)1/σ

if σ ∈ [1,∞),

ess sup{|k(t)| : t ∈ I} if σ = ∞.

Here we set B0 := 1 and |G(s)|0 := 1.
The main result of this paper is as follows.

Theorem 1. Assume that f is a Carathéodory function satisfying a

Nagumo condition. Then a necessary and sufficient condition for the prob-

lem (1.1) to have a solution u is that there exists a lower solution α and an

upper solution β with α(t) ≤ β(t) on I. Moreover ,

α(t) ≤ u(t) ≤ β(t) and |u′(t)| ≤ N on I,

where N is a constant depending only on α, β, g, H and k.
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Obviously, Theorem 1 extends and improves Theorem 1 of [1] and The-
orem 2.4 of [2].

2. Proof of Theorem 1. The necessity part is obvious. We prove the
sufficiency.

Now assume that α and β are lower and upper solutions to problem
(1.1), respectively, and α(t) ≤ β(t) on I. To prove the existence of solutions
(1.1), we consider the modified problem

(2.1)











−[g(u′)]′ + Mg(u′)

= f∗

(

t, q(t, u),
d

dt
q(t, u)

)

+ Mg

(

d

dt
q(t, u)

)

, t ∈ I,

u(a) = ξq(b, u(b)) + c, u′(b) = ηu′(a),

where M is a positive number such that eM(b−a) > ηp−1,

q(t, u) :=







α(t) if u < α(t), t ∈ I,
u if α(t) ≤ u ≤ β(t), t ∈ I,
β(t) if u > β(t), t ∈ I,

and

f∗(t, u, v) :=







f(t, u,−N) if v < −N ,
f(t, u, v) if |v| ≤ N ,
f(t, u,N) if v > N .

Here we choose N so large that

N > max{|α′(t)|, |β′(t)| : t ∈ I} + A

and
g(N)\
g(A)

|G(s)|(σ−1)/σ

H(|G(s)|)
ds > B(σ−1)/σ‖k‖σ

(A and B are defined by (1.4) and (1.5) respectively). (1.3) assures the
existence of such an N .

Lemma 1. For any u ∈ E := C1(I), the following two statements hold :

(1) (d/dt)q(t, u(t)) exists for a.e. t ∈ I.
(2) If u0, uj ∈ E and uj → u0 in E, then

d

dt
q(t, uj(t)) →

d

dt
q(t, u0(t)) for a.e. t ∈ I.

P r o o f. The proof can be found in [1, 3].

Lemma 2. Let u be a solution to (2.1). Then

(1) α(t) ≤ u(t) ≤ β(t) on I, and

(2) |u′(t)| ≤ N for all t ∈ I.

That is to say , the solution u is also a solution to (1.1).
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P r o o f. We first prove that u(t) ≤ β(t) on I. Let y(t) = u(t) − β(t).
Then we have

(2.2) y(a) = ξ[q(b, u(b)) − β(b)] ≤ 0, y′(b) ≤ ηy′(a).

Assume now that y(t) > 0 for some t ∈ (a, b]. Then there exists a point
t∗ ∈ (a, b] such that y(t∗) is the positive maximum value. We can distinguish
two cases.

C a s e (i): t∗ < b. In this case, y′(t∗) = u′(t∗) − β(t∗) = 0 and there
exists a point t1 ∈ [a, t∗) such that y(t1) = 0 and y(t) > 0 in (t1, t

∗]. Thus,
we have

−[g(β′(t))] + Mg(β′(t)) ≥ f(t, β(t), β′(t)) + Mg(β′(t))

= −[g(u′(t))]′ + Mg(u′(t)) a.e. on [t1, t
∗]

(since q(t, u(t)) = β(t) and |β′(t)| ≤ N on [t1, t
∗]), i.e.,

d

dt
{e−Mt[g(u′(t)) − g(β′(t))]} ≥ 0 a.e. on [t1, t

∗].

This shows that

e−Mt[g(u′(t)) − g(β′(t))] ≤ e−Mt∗ [g(u′(t∗)) − g(β′(t∗))] = 0 on [t1, t
∗],

i.e., y′(t) ≤ 0 on [t1, t
∗]. Consequently, we get a contradiction: 0 = y(t1) ≥

y(t∗) > 0.

C a s e (ii): t∗ = b. If y′(b) = 0, we can get a contradiction again as in
Case (i). If y′(b) > 0, then by (2.2),

(2.3) y(a) = 0, η > 0 and y′(a) > 0.

When y(t) > 0 in (a, b], we easily obtain

d

dt
{e−Mt[g(u′(t)) − g(β′(t))]} ≥ 0 a.e. on I,

as in Case (i), i.e.,

e−Mb[g(u′(b)) − g(β′(b))] ≥ e−Ma[g(u′(a)) − g(β′(a))].

Since u′(b) = ηu′(a) and β′(b) ≥ ηβ′(a), we have

(ηp−1 − eM(b−a))[g(u′(a)) − g(β′(a))] ≥ 0,

i.e., y′(a) = u′(a) − β′(a) ≤ 0, which contradicts the assumption y′(a) > 0.
When there is a point t4 ∈ (a, b) such that y(t4) ≤ 0, it follows from (2.3)

that there exists an interval (t2, t3), a ≤ t2 < t3 ≤ t4, such that y(t) > 0 in
(t2, t3) and y(t2) = y(t3) = 0. Therefore, there is a point t∗∗ ∈ (t2, t3) such
that y(t∗∗) is the positive maximum value of y(t) on [t2, t3]. As in Case (i),
we can get a contradiction again. This shows that u(t) ≤ β(t) on I.

In very much the same way, we can prove that α(t) ≤ u(t) on I. (1) is
thus proved.
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The proof of (2) can be found in [1, 2]. The Nagumo condition is employed
only here.

To prove the existence of solutions to problem (2.1), we define a mapping
Φ : E → E by

(Φu)(t) :=

t\
a

G
(

τeM(r−a) −

r\
a

eM(r−s)(Fu)(s) ds
)

dr

+ ξq(b, u(b)) + c

for u ∈ E, where the mapping F : E → Lσ(I) is defined by

(Fu)(t) := f∗

(

t, q(t, u(t)),
d

dt
q(t, u(t))

)

(2.4)

+ Mg

(

d

dt
q(t, u(t))

)

∀u ∈ E

and

(2.5) τ := [eM(b−a) − ηp−1]−1
b\
a

eM(b−s)(Fu)(s) ds.

Obviously, F is well defined, since for any u ∈ E,

(2.6) |(Fu)(t)| ≤ M∗k(t) + Mg(N) ∈ Lσ(I),

where M∗ := max{H(s) : 0 ≤ s ≤ N}.

Lemma 3. Φ is a completely continuous mapping.

P r o o f. Let w(t) = (Φu)(t). From the definition of Φ, we have for u ∈ E,

w′(t) = G
(

τeM(t−a) −

t\
a

eM(t−s)(Fu)(s) ds
)

∈ C(I)

and there exists an N∗, independent of u, such that

|τ |, |w′(t)|, |w(t)| ≤ N∗ (t ∈ I).

This shows that Φ(E) is a bounded subset of E.

Since the set

{

τeM(t−a) −

t\
a

eM(t−s)(Fu)(s) ds : u ∈ E
}

is bounded and equicontinuous on I, so is the set {w′(t) : u ∈ E}. By the
Arzelà–Ascoli theorem, Φ(E) is compact in E.
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Let u0, uj ∈ E and uj → u0 in E. By Lemma 1 and the dominated
convergence theorem, we conclude that as j → ∞,

τj := [eM(b−a) − ηp−1]−1
b\
a

eM(b−s)(Fuj)(s) ds

→ [eM(b−a) − ηp−1]−1
b\
a

eM(b−s)(Fu0)(s) ds =: τ0,

and hence Φuj → Φu0 in E. This shows that Φ is continuous on E. The
proof is complete.

From Lemma 3, the Schauder fixed point theorem asserts that Φ has at
least one fixed point in E. Let u ∈ E be a fixed point of Φ. Then

u(t) =

t\
a

G

(

τeM(r−a) −

r\
a

eM(r−s)

[

f∗

(

s, q(s, u(s)),
d

ds
q(s, u(s))

)

+ Mg

(

d

ds
q(s, u(s))

)]

ds

)

dr + ξq(b, u(b)) + c on I,

where τ is determined by (2.5). It is easy to see that the fixed point u is a
solution to (2.1). Of course, the u is also a solution to (1.1).

Theorem 1 is proved.
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