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On the intertwinings of regular dilations

by Dumitru Gaşpar and Nicolae Suciu (Timişoara)

W lodzimierz Mlak in memoriam

Abstract. The aim of this paper is to find conditions that assure the existence of the
commutant lifting theorem for commuting pairs of contractions (briefly, bicontractions)
having (∗-)regular dilations. It is known that in such generality, a commutant lifting
theorem fails to be true. A positive answer is given for contractive intertwinings which
doubly intertwine one of the components. We also show that it is possible to drop the
doubly intertwining property for one of the components in some special cases, for instance
for semi-subnormal bicontractions. As an application, a result regarding the existence of
a unitary (isometric) dilation for three commuting contractions is obtained.

0. Introduction. It is well known that the theorem of B. Sz.-Nagy and
C. Foiaş regarding the lifting of the commutant of a pair of contractions
plays an important role in the applications of dilation theory in operator
interpolation problems, optimization and control, in geology and geophysics.
This is excellently illustrated in the book [5] of C. Foiaş and A. E. Frazho.

Lately, the dilation theory method was extended to the study of com-
muting multioperators by many authors (W. Mlak, M. S lociński, M. Kosiek,
M. Ptak, E. Albrecht, V. Müller, R. E. Curto, F. H. Vasilescu, A. Octavio,
B. Chevreau and others). In 1993, at the B. Sz.-Nagy Anniversary Inter-
national Conference in Szeged, C. Foiaş raised the problem of obtaining a
commutant lifting theorem for a pair of bicontractions having regular uni-
tary dilations. In 1994, at the XV-th International Conference on Operator
Theory in Timişoara, V. Müller proved that in such a generality, the com-
mutant lifting theorem fails.

In the present work it is our aim to find conditions that assure the
existence of such a lifting. In this frame a structure for regular (or ∗-regular)
dilations is needed.
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1. Preliminaries. For a complex separable Hilbert space H, B(H)
means the C∗-algebra of all bounded linear operators on H (with Hilbert
adjoint as involution). The elements of the (closed) unit ball in B(H) are
called contractions on H. An n-tuple of operators will be called a multiop-
erator . If the members of the n-tuple commute, then we have a commuting
multioperator . A commuting multioperator consisting of contractions will
be called a multicontraction (bicontraction if n = 2) on H.

For a multicontraction T := (T1, . . . , Tn) we define T ∗ := (T ∗1 , . . . , T
∗
n).

We shall also use the multiindex notation

Tm := Tm1
1 . . . Tmn

n , m = (m1, . . . ,mn) ∈ Zn
+,

where Z (resp. Z+) is the set of all (resp. positive) integers. A multicontrac-
tion T on H will be briefly denoted by [H, T ].

An isometric (resp. unitary) dilation of a multicontraction [H, T ] is a
multicontraction [K, U ] consisting of isometric (resp. unitary) operators,
such that K contains H as a closed subspace and

(1) Tm = PHU
m|H (m ∈ Zn

+),

where PH = PK,H is the orthogonal projection of K on H.
It is known (see [1]) that each bicontraction has an isometric (and uni-

tary) dilation, and generally speaking, an n-tuple consisting of more than
three commuting contractions has no isometric dilation (see [15]). An iso-
metric, respectively unitary, dilation [K, U ] of [H, T ] is called minimal if

(2) K =
∨

m∈Zn
+

UmH,

or respectively,

(2′) K =
∨

m∈Zn

UmH.

Let us first note that if [K, V ] is an isometric minimal dilation of the mul-
ticontraction [H, T ], then by (2), H is invariant with respect to V ∗ and
V ∗i |H = T ∗i (i = 1, . . . , n). Let us also mention that if [K, V ] is an isometric
minimal dilation of [H, T ], and [K̃, U ] is the minimal unitary extension (see
[18]) of [K, V ], then it is the unitary minimal dilation of [H, T ].

On the other hand, it is known that in case of a single contraction, the
minimality condition (2) or (2′) implies that the isometric (resp. unitary)
dilation is uniquely determined up to a unitary equivalence which fixes H.
But for n > 1 this is not true ([1], [18]).

An isometric (resp. unitary) minimal dilation [K, U ] of the multicontrac-
tion [H, T ] is called regular (respectively ∗-regular) if it satisfies

(3) T ∗m−Tm+ = PHU
∗m−Um+ |H (m ∈ Zn),
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or respectively,

(3∗) Tm+T ∗m− = PHU
∗m−Um+ |H (m ∈ Zn),

where m+ := (m+
1 , . . . ,m

+
n ), m− = (m−1 , . . . ,m

−
n ) and m+

i := max{mi, 0},
m−i := max{−mi, 0}.

Regular dilations were studied in [3], [10], [18] and recently in [4] and
[8]. Their existence is not assured for any multicontraction, not even for
n = 2. However, if such a dilation exists, then by the minimality condition
(2) or (2′) it is uniquely determined up to unitary equivalence (see [18]). It
is easy to see from (3) and (3*) that [K, U ] is a regular (resp. ∗-regular)
unitary dilation of [H, T ] iff [K, U∗] is a ∗-regular (resp. regular) unitary
dilation of [H, T ∗]. We also note that if [K, V ] is a regular (resp. ∗-regular)
isometric dilation of [H, T ] then the minimal unitary extension [K̃, U ] of
[K, V ] is a regular (resp. ∗-regular) unitary dilation. On the other hand,
if [K, U ] is a regular unitary dilation, by putting K+ :=

∨
m∈Zn

+
UmH,

K+
∗ :=

∨
m∈Zn

+
U∗mH, V∗i := U∗i |K+

∗ and Vi := Ui|K+ (i = 1, . . . , n),

then [K+, V ] is a regular isometric dilation of [H, T ], whereas [K+
∗ , V∗] is

a ∗-regular isometric dilation of [H, T ∗]. Let us also recall that a multicon-
traction [H, T ] has a regular isometric dilation iff

∆T :=
∑
|m|≤n

(−1)|m|T ∗m−Tm+ ≥ 0,

where |m| := m1 + . . .+mn (see [18], [4]).
A multicontraction is called a polydisc isometry ([4]) when ∆T = 0. It

is easily seen that if Ti (i = 1, . . . , n) are isometries (i.e. T is an n-toral
isometry [2]), then T is a polydisc isometry. Now if I−

∑n
i=1 T

∗
i Ti ≥ 0, then

∆T ≥ 0. If
∑n

i=1 T
∗
i Ti = I, then [H, T ] is called a spherical isometry ([2]).

When [H, T ∗] is a polydisc or a spherical isometry, we say that [H, T ] is a
polydisc or a spherical coisometry , respectively. If the multicontraction is
doubly commuting, then obviously ∆T = (I − T ∗1 T1) . . . (I − T ∗nTn) ≥ 0.

Furthermore, it is easy to verify

Proposition 0. For a multicontraction [H, T ] the following statements
are equivalent :

(i) [H, T ] is doubly commuting ;
(ii) [H, T ] has a regular isometric dilation which is doubly commuting ;
(iii) [H, T ] has a regular unitary dilation [K, U ] such that [K, U∗] is a

regular unitary dilation for [H, T ∗].
In particular , a multicontraction consisting of coisometries has a regular

isometric (or unitary) dilation iff it is doubly commuting.
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Let us observe that Proposition 0(iii) means more than that T has a reg-
ular and a ∗-regular dilation. For example, for a bicontraction T = (T0, T1)
with ‖T0‖2 + ‖T1‖2 ≤ 1, we have ∆T ≥ 0 and ∆T∗ ≥ 0 but it is possible
that T0T

∗
1 6= T ∗1 T0.

Finally, also recall that an isometric pair [H, V ] is called a shift n-tuple
(see [7], [8]) or a multishift (see [4]) if there exists a wandering (closed)
subspace E in H (i.e. V mE ⊥ V pE , m 6= p, m, p ∈ Zn

+) such that H =⊕
m∈Zn

+
V mE . For the sake of simplicity we shall work in the case n = 2.

2. ∗-Regular isometric dilations. The isometric dilations consisting
of doubly commuting isometries are in some sense connected with regular
dilations. Precisely this is given in

Theorem 1. For a bicontraction [H, T ] with T = (T0, T1) the following
assertions are equivalent :

(i) T has a doubly commuting minimal isometric dilation;
(ii) T has a minimal isometric dilation of the form [M⊕ G,W ⊕ V ],

where W is a bishift on M and V is a bidisc coisometry on G;
(iii) If [K0, S0] is the minimal isometric dilation of T0, then there exists

a contraction S1 on K0 which doubly commutes with S0, such that PHS1 =
T1PH;

(iv) T has a ∗-regular isometric (unitary) dilation.

P r o o f. (i)⇒(ii). Let [K, U ] be a minimal isometric dilation of T with
U0, U1 doubly commuting isometries on K. By the Wold decomposition ([17],
[7]) we have K = Ku⊕Ks⊕Ks0⊕Ks1, so that U0 and U1 reduce each subspace
and U0, U1 are unitary on Ku, U is a shift pair on Ks and Ui is unitary
(resp. a shift) on Ks1−i (resp. Ksi), i = 0, 1. Put G = Ku ⊕ Ks0 ⊕ Ks1,
Vi = V i

i ⊕ V 1−i
i with V i

i = Ui|Ku ⊕ Ks0, V
1−i
i = Ui|Ks1 (i = 0, 1) and

V = (V0, V1), W ′ = (V 0
0 , V

1
1 ), W ′′ = (V 1

0 , V
0
1 ). Because V 1

1 is unitary, W ′∗

is a bidisc isometry on Ku ⊕ Ks0, and since V 1
0 is unitary, W ′′∗ is a bidisc

isometry on Ks1. Then

∆V ∗ = ∆W ′∗ +∆W ′′∗ = 0,

so V ∗ is a bidisc isometry on G. Therefore since W := (U0|Ks, U1|Ks) is a
bishift on M = Ks and K =M⊕G, W ⊕ V = U , we see that the dilation
[K, U ] of T has the form described in (ii).

(ii)⇒(iii). Let [M⊕G,W⊕V ] be as in (ii). Since W is a bishift onM, the
isometries W0 and W1 doubly commute onM ([16]). Also the isometries V0

and V1 doubly commute on G, because V has a ∗-regular dilation. Therefore
the isometries U0 = W0⊕V0 and U1 = W1⊕V1 doubly commute onM⊕G.



On the intertwinings of regular dilations 109

Put

K0 =
∨

m∈Z+

Wm
0 H, S0 = U0|K0, S1 = PK0U1|K0.

Then [K0, S0] is the minimal isometric dilation of T0, S0S1 = S1S0 and
PHS1 = T1PH. Since U∗0 |H = T ∗0 = S∗0 |H, we also have U∗0 |K0 = S∗0 .
Furthermore, for k =

∑
p∈Z+

Sp
0hp ∈ K with the sequence {hp} ⊂ H with

finite support, we obtain

S1S
∗
0k = S1S

∗
0h0 +

∑
p≥1

S1S
p−1
0 hp

= PK0U1U
∗
0h0 +

∑
p≥1

Sp−1
0 S1hp

= PK0U
∗
0U1h0 +

∑
p≥1

S∗0S
p
0S1hp

= S∗0S1h0 + S∗0
∑
p≥1

S1S
p
0hp = S∗0S1k,

where we have used the fact that PK0U
∗
0U1|K0 = S∗0S1. Consequently, S0

and S1 doubly commute on K0.
(iii)⇒(iv). If K0, S0 and S1 are as in (iii), then S∗i |H = T ∗i (i = 0, 1) and

since S0 and S1 doubly commute, we have

∆T∗ = I − T0T
∗
0 − T1T

∗
1 + T0T1T

∗
0 T
∗
1

= PH(I − S0S
∗
0 − S1S

∗
1 + S0S1S

∗
0S
∗
1 )|H

= PH(I − S0S
∗
0 )(I − S1S

∗
1 )|H ≥ 0.

Consequently, T has a ∗-regular isometric (or unitary) dilation.
(iv)⇒(i). Suppose ∆T∗ ≥ 0. Denote by M = H2(T2,H) and Z =

(Z0, Z1) the shift pair (that is, Z0 and Z1 are the operators of multiplication
with the coordinate functions) on M. Using Theorem 3.15 of [4], there are
a Hilbert space H1, a bicontraction N = (N0, N1) on H1 with N0 and N1

normal operators and with N∗ a bidisc isometry, and an isometry A of H in
M⊕H1 such that AH is invariant for (Zi ⊕Ni)∗ and (Zi ⊕Ni)∗A = AT ∗i ,
i = 0, 1. Then it results that

T p
0 T

q
1 = A∗(Z0 ⊕N0)p(Z1 ⊕N1)qA (p, q ∈ Z+).

Let now [K1, (M0,M1)] be a minimal isometric dilation of N with M0

and M1 doubly commuting isometries on K1. Put

K =M⊕K1, Ui = Zi ⊕Mi (i = 0, 1).

Then U0 and U1 are doubly commuting isometries on K. Denoting by J the
embedding of M⊕H1 in K, we find that JA is an isometry of H into K.



110 D. Gaşpar and N. Suciu

For m = (p, q) ∈ Z2
+ and h ∈ H we obtain

(JA)∗UmJAh = (JA)∗Up
0U

q
1 (PH0Ah⊕ PH1Ah)

= (JA)∗(ZmPH0Ah⊕MmPH1Ah)
= A∗(PH0Z

mPH0Ah⊕ PH1M
mPH1Ah)

= A∗(ZmPH0Ah⊕NmPH1Ah)
= A∗(Z0 ⊕N0)p(Z1 ⊕N1)qAh = Tmh.

Let us observe that the subspace AH is invariant for U∗i (i = 0, 1), because
for h ∈ H we have

U∗i Ah = U∗i (PH0Ah⊕ PH1Ah) = Z∗i PH0Ah⊕M∗i PH1Ah

= Z∗i PH0Ah⊕N∗i PH1Ah = (Zi ⊕Ni)∗Ah = AT ∗i h.

Now define

K+ =
∨

m∈Z2
+

UmAh, Vi = Ui|K+ (i = 0, 1)

and B = J+A, where J+ is the embedding ofM⊕H1 in K+. Then B is an
isometry of H into K+ and we have

Tm = B∗V mB (m ∈ Z2
+).

IdentifyingH with BH in K+, we deduce that [K+, V ] is a minimal isometric
dilation of T . It remains to prove that V0V

∗
1 = V ∗1 V0. First, since U0 and

U1 doubly commute on K, it results that K+ is invariant for U∗i , i = 0, 1.
Indeed, for k =

∑
m∈Z2

+
UmAhm with the sequence {hm} ⊂ H with finite

support, we obtain

U∗0 k =
∑
q≥0

U∗0U
q
1Ah0q +

∑
p≥1
q≥0

U∗0U
p
0U

q
1Ahpq

=
∑
q≥0

Uq
1U
∗
0Ah0q +

∑
p≥1
q≥0

Up−1
0 Uq

1Ahpq

=
∑
q≥0

Uq
1AT

∗
0 h0q +

∑
p≥1
q≥0

Up−1
0 Uq

1Ahpq.

Therefore U∗0K+ ⊂ K+ and analogously U∗1K+ ⊂ K+. Then V ∗i = U∗i |K+

(i = 0, 1), and consequently, V0V
∗
1 = V ∗1 V0. Hence [K+, (V0, V1)] is a doubly

commuting minimal isometric dilation of T .

Corollary 2. A bicontraction T on H has a regular isometric (uni-
tary) dilation if and only if T has a doubly commuting minimal coisometric
extension.
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P r o o f. If ∆T ≥ 0, then T ∗ has a doubly commuting minimal isometric
dilation [K, (W0,W1)]. Hence (W ∗0 ,W

∗
1 ) is a minimal coisometric extension

of T and W ∗0 , W
∗
1 doubly commute on K. The converse is obvious.

R e m a r k. If K = Ki
u ⊕ Ki

s is the Wold decomposition of K relative to
Wi (in the previous proof), then W1−i reduces Ki

u and Ki
s, i = 0, 1. Thus,

the matrix of W ∗1−i relative to the decomposition K = Ki
u⊕Ki

s has diagonal
form for i = 0, 1, that is, T is diagonally extendable (see [11]).

Now we can give the following characterization of the double commuta-
tivity of an isometric dilation of [H, T ].

Proposition 3. Suppose T = (T0, T1) is a bicontraction on H and
[K, (U0, U1)] a minimal isometric dilation of T . Then the isometries U0 and
U1 doubly commute on K iff [K, U ] is a ∗-regular isometric dilation of [H, T ].
In particular , the doubly commuting minimal isometric dilation of T (if it
exists) is unique up to unitary equivalence.

P r o o f. It is not difficult to see that the condition (3∗) is equivalent to

(4) T p
i T
∗q
1−i = PHU

∗q
1−iU

p
i |H (p, q ∈ Z+; i = 0, 1).

Suppose that the dilation U = (U0, U1) satisfies (4) and let [K̃, (Ũ0, Ũ1)] be
the minimal unitary extension of U . Then for p, q∈Z+ and i = 0, 1 we have

T p
i T
∗q
1−i = PH̃U

∗q
1−ĩU

p
i |H = PHŨ

p
i Ũ
∗q
1−i|H

and we deduce that [K̃, (Ũ∗0 ,̃ U∗1 )] is a regular minimal unitary dilation for
T ∗. By Theorem 1, T has a doubly commuting minimal isometric dilation
[M, (V0, V1)]. Obviously, Vi satisfies (4) (in place of Ui) and consequently

(∗) PHU
∗q
i Up

1−i|H = PHV
∗q
i V p

1−i|H (p, q ∈ Z+; i = 0, 1).

Let us prove that the dilations U = (U0, U1) and V = (V0, V1) are unitar-
ily equivalent. Let {hn}n∈Z2

+
⊂ H be a sequence with finite support. Since

U and V are dilations of T and satisfy (∗), by defining m := (i, j) ∈ Z2
+ and

n := (p, q) ∈ Z2
+ we obtain∥∥∥ ∑

n∈Z2
+

Unhn

∥∥∥2

=
∑

m,n∈Z2
+

(Unhn, U
mhm)

=
∑
j<q

(U∗i0 U
p
0U

q−j
1 hn, hm) +

∑
j≥q

(U∗i0 U
∗(j−q)
1 Up

0hn, hm)

=
∑
i<p
j<q

(Up−i
0 Uq−j

1 hn, hm) +
∑
i≥p
j<q

(U∗(i−p)
0 Uq−j

1 hn, hm)
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+
∑
i<p
j≥q

(U∗(j−q)
1 Up−i

0 hn, hm) +
∑
i≥p
j≥q

(U∗(i−p)
0 U

∗(j−q)
1 hn, hm)

=
∑
i<p
j<q

(V p−i
0 V q−j

1 hn, hm) +
∑
i≥p
j<q

(V ∗(i−p)
0 V q−j

1 hn, hm)

+
∑
i<p
j≥q

(V ∗(j−q)
1 V p−i

0 hn, hm) +
∑
i≥p
j≥q

(V ∗(i−p)
0 V

∗(j−q)
1 hn, hm)

=
∑

m,n∈Z2
+

(V ∗mV nhn, hm) =
∥∥∥ ∑

n∈Z2
+

V nhn

∥∥∥2

.

Using the minimality conditions of the spaces K and M and the norm
equalities above, we deduce that there exists a unitary operator W from K
to M satisfying

W
∑

n∈Z2
+

Unhn =
∑

n∈Z2
+

V nhn

for {hn} ⊂ H with finite support. Consequently, W |H = I and WUi = ViW ,
i = 0, 1, and in particular, it results that U0 and U1 doubly commute on K.
Since the other assertions were also implicitly proved, the proof is finished.

Now, having in mind the condition (iii) of Theorem 1, we obtain

Corollary 4. Let T = (T0, T1) be a bicontraction on H and [K0, S0] (re-
spectively [K∗0, S∗0]) the minimal isometric dilation of T0 (resp. T ∗0 ). Then
T has a ∗-regular (resp. regular) isometric dilation if and only if T ∗1 (resp.
T1) has a contractive extension on K0 (resp. K∗0) which doubly commutes
with S0 (resp. S∗0).

It is obvious (by the proof of Proposition 3) that if [K, V ] is a ∗-regular
(resp. regular) isometric dilation of [H, T ] and if [K̃, U ] is the minimal unitary
extension of V then the regular (resp. ∗-regular) isometric dilation of T ∗ is
[K∗, (V∗0, V∗1)], where

(5) K∗ =
∨

m,n∈Z+

U∗m0 U∗n1 H, V∗i = U∗i |K∗ (i = 0, 1).

Furthermore, with the notations of Theorem 1(iii), the ∗-regular isometric
dilation [K, V ] of T is the regular and ∗-regular isometric dilation of the
doubly commuting bicontraction S = (S0, S1) (see Proposition 0), and in
fact, [K, V1] is the minimal isometric dilation of S1.

3. Intertwinings of regular dilations. Let H and H′ be two Hilbert
spaces and T = (T0, T1) and T ′ = (T ′0, T

′
1) two bicontractions on H and

H′ respectively. A bounded linear operator A : H → H′ intertwines T and
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T ′ if ATi = T ′iA, i = 0, 1. The operator A doubly intertwines T and T ′ if
ATi = T ′iA and AT ∗i = T ′∗i A, i = 0, 1.

V. Müller has shown in [14] that if A intertwines two bicontractions
which have regular dilations, then in general, A cannot be “lifted” in the
sense of [5], [18] to an operator which intertwines these dilations. In order
to give conditions under which this is possible, we will first prove

Theorem 5. Let [H, T ] and [H′, T ′] be two bicontractions having ∗-
regular isometric dilations [K, U ] and [K′, U ′] respectively. Let A be a con-
traction from H in H′ such that ATi = T ′iA (i = 0, 1) and AT ∗0 = T ′∗0 A.
Then there is a contraction B from K in K′ with BUi = U ′iB (i = 0, 1),
BU∗0 = U ′∗0 and PH′B = APH.

P r o o f. Let A : H → H′ be a contraction which satisfies ATi = T ′iA
(i = 0, 1) and AT ∗0 = T ′∗0 A. Let [K0, S0] and [K′0, S′0] be the minimal iso-
metric dilations of T0 and T ′0 respectively. By Theorem 1(iii) there are con-
tractions S1 on K0 and S′1 on K′0 such that S1 doubly commutes with S0

and PHS1 = T1PH, while S′1 doubly commutes with S′0 and PH′S′1 = T ′1PH′ .
Since

K0 = H⊕
⊕

p∈Z+

Sp
0 (S0 − T0)H, K′0 = H′ ⊕

⊕
p∈Z+

S′p0 (S′0 − T ′0)H′

(see [5], [18]), and A doubly intertwines T0 and T ′0, we can define a contrac-
tion A0 : K0 → K′0 by setting

A0k0 := Ah+
∑
p≥0

S′p0 (S′0 − T ′0)Ahp

for k0 = h +
∑

p∈Z+
Sp

0 (S0 − T0)hp, where h, hp ∈ H. We have A0|H = A,
and for k0 ∈ K0 as above,

A0S0k0 = A0

[
T0h+ (S0 − T0)h+

∑
p≥0

Sp+1
0 (S0 − T0)hp

]
= AT0h+ (S′0 − T ′0)Ah+

∑
p≥0

S′p+1
0 (S′0 − T ′0)Ahp

= S′0

[
Ah+

∑
p≥0

S′p0 (S′0 − T ′0)Ahp

]
= S′0A0k0.

Therefore A0S0 = S′0A0. Also, A0S
∗
0 = S′∗0 A0 and A∗0|H′ = A∗, because for

k =
∑

p≥0 S
p
0hp (finite sum) with hp ∈ H, we have

A0S
∗
0k = AT ∗0 h0 +

∑
p≥1

A0S
p−1
0 hp = T ′∗0 Ah0 +

∑
p≥1

S′p−1
0 Ahp

= S′∗0 Ah0 + S′∗0
∑
p≥1

S′p0 Ahp = S′∗0
∑
p≥0

S′p0 Ahp = S′∗0 A0k,
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and for h′ ∈ H′,

(A∗0h
′, k) =

∑
p

(h′, S′p0 Ahp) =
∑

p

(T ′∗p0 h′, Ahp) =
∑

p

(A∗T ′∗p0 h′, hp)

=
∑

p

(T ∗p0 A∗h′, hp) =
∑

p

(A∗h′, Sp
0hp) = (A∗h′, k).

Next, we also have A0S1 = S′1A0, because for {h′p}p≥0 ⊂ H′ with finite
support,

A∗0S
′∗
1

∑
p

S′p0 h
′
p =

∑
p

A∗0S
′p
0 S
′∗
1 h
′
p =

∑
p

Sp
0A
∗
0T
′∗
1 h
′
p =

∑
p

Sp
0A
∗T ′∗1 h

′
p

=
∑

p

Sp
0T
∗
1A
∗h′p =

∑
p

Sp
0S
∗
1A
∗
0h
′
p = S∗1A

∗
0

∑
p

S′p0 h
′
p,

and consequently, A∗0S
′∗
1 = S∗1A

∗
0, whence A0S1 = S′1A0. We conclude that

A intertwines S1 and S′1 and doubly intertwines S0 and S′0, and A0 is an
extension for A, while A∗0 is an extension for A∗. Hence PH′A0 = APH.

Now let [K, U1], [K′, U ′1] be the minimal isometric dilations of S1, S
′
1

respectively, and let U0, U
′
0 be the ∗-extensions of S0 (on K) and of S′0

(on K′), respectively, such that U0 doubly commutes with U1 and U ′0 doubly
commutes with U ′1. Using the sequences of n-step dilations for S1 and S′1
and the corresponding n-step intertwining liftings of A, we can define a
contraction B : K → K′ by

Bk = lim
n
AnPKn

k (k ∈ K),

where {Kn} and {An} are inductively defined with K1 = K0 ⊕ DS1 and
A1 : K0 ⊕DS1 → K′0 ⊕DS′1

of the form

A1 =
(

A0 0
X1DA0 Y1

)
,

DC being the defect space of the operator C. Here the operator (X1, Y1) :
DA0⊕DS1 → DS′1

is (X1, Y1) = Γ0P0, where P0 is the orthogonal projection
of DA0⊕DS1 on the subspace {DA0S1k⊕DS1k : k ∈ K0}− and Γ0(DA0S1k⊕
DS1k) = DS′1

A0k, k ∈ K0. Then B satisfies BU1 = U ′1B, BU0 = U ′0B, BU
∗
0

= U ′∗0 B and PK′0B = A0PK0 (see [9] for details). Hence PH′B = BPH and
since [K, (U0, U1)] and [K′, (U ′0, U ′1)] are the ∗-regular isometric dilations for
T and T ′ respectively, B is the desired operator. The proof is finished.

Corollary 6. Let [H, T ] and [H′, T ′] be two bicontractions which have
∗-regular (or regular) isometric dilations with the minimal unitary exten-
sions [K̃, Ũ ] and [K̃′, Ũ ′] respectively. If A is a contraction from H to H′
which satisfies ATi = T ′iA (i = 0, 1) and AT ∗0 = T ′∗0 A, then there ex-
ists a contraction Ã from K̃ to K̃′ such that ÃŨi = Ũ ′iÃ (i = 0, 1) and
PH′Ã|H = A.
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P r o o f. Suppose that T and T ′ have the ∗-regular isometric dilations
[K, U ] and [K′, U ′] and let [K̃, Ũ ] and [K̃′, Ũ ′] be the minimal unitary exten-
sions of U and U ′ respectively. If A is an intertwining contraction of T and
T ′ and B is an intertwining contraction of U and U ′ with PH′B = APH
given by Theorem 5, then there exists (see [12]) a contraction B̃ from K̃
into K̃′ which intertwines Ũ and Ũ ′, such that B̃|K = B. It results that
PH′B̃|H = A, whence PHB̃∗|H′ = A∗ and B̃∗ intertwines Ũ ′∗ and Ũ∗. Ob-
viously, [K̃, Ũ∗] and [K̃′, Ũ ′∗] are the regular unitary dilations of T ∗ and T ′∗

respectively.

Theorem 7. Let [H, T ] and [H′, T ′] be two bicontractions having regular
isometric dilations [K, U ] and [K′, U ′] respectively , such that T ∗1 or T ′1 is an
isometry. If A is a contraction of H into H′ such that ATi = T ′iA (i = 0, 1)
and AT ∗0 = T ′∗0 A, then there exists a contraction B from K to K′ with
BUi = U ′iB (i = 0, 1), and PH′B = APH.

P r o o f. Suppose that the bicontractions T = (T0, T1) and T ′ = (T ′0, T
′
1)

have regular isometric dilations. Then T ∗ = (T ∗0 , T
∗
1 ) has a ∗-regular isomet-

ric dilation and therefore if [K0∗, S0∗] is the minimal isometric dilation of
T ∗0 , then there is a contraction S1∗ on K0∗ which doubly commutes with S0∗,
such that PHS1∗ = T ∗1 PH. Let [K̃0, S̃0] be the minimal isometric dilation of
the coisometry S∗0∗ and let S̃1 be the ∗-extension of S∗1∗ to K̃0 which doubly
commutes with S̃0. But S̃0 is a unitary operator on K̃0 and [K0, S0] given by

K0 =
∨

n∈Z+

S̃n
0H, S0 = S̃0|K0,

is the minimal isometric dilation of T0. We have S∗1∗|H = T1 and therefore
S̃1|H = T1. Hence K0 is an invariant subspace for S̃1 and S1 = S̃1|K0 is a
contraction on K0 which satisfies S0S1 = S1S0 and S1|H = T1.

Analogously, if [K′0, S′0] is the minimal isometric dilation of T ′0, then there
is a contraction S′1 on K′0 which satisfies S′0S

′
1 = S′1S

′
0 and S′1|H′ = T ′1.

Now let A : H → H′ be a contraction which intertwines T1 and T ′1
and doubly intertwines T0 and T ′0. As in the proof of Theorem 5 there is a
contraction A0 : K0 → K′0 which doubly intertwines S0 and S′0, such that
A0|H = A. Then for any sequence {hn} ∈ H with finite support we have

A0S1

∑
n

Sn
0 hn =

∑
n

S′n0 A0S1hn =
∑

n

S′n0 AT1hn

=
∑

n

S′n0 T
′
1Ahn =

∑
n

S′n0 S
′
1A0hn = S′1A0

∑
n

Sn
0 hn,

therefore A0S1 = S′1A0. Let us remark that if T ∗1 or T ′1 is an isometry, then
so is S∗1 (respectively S′1). In this case it is known (see [5]) that A0 has
a unique contractive intertwining lifting of the minimal isometric dilations
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of S1 and S′1. Now as in the proof of Theorem 5 (see [9]) we can obtain
a contraction B : K → K′, where [K, U1] and [K′, U ′1] are the minimal
isometric dilations of S1 and S′1 respectively, such that PK′0B = A0PK0 and
BU1 = U ′1B, BU0 = U ′0B, U0 and U ′0 being the isometric extensions of S0

and S′0 to K and K′ which commute with U1 and U ′1 respectively. Finally, it
is easy to see that [K, (U0, U1)] and [K′, (U ′0, U ′1)] are the regular isometric
dilations of T and T ′ respectively. The proof is finished.

Now we can obtain the versions of Theorems 5 and 7 for double inter-
twinings which complete those obtained in [14].

Proposition 8. Let [H, T ] and [H′, T ′] be two bicontractions having
regular (or ∗-regular) isometric dilations [K, V ] and [K′, V ′] respectively. If
A is a contraction from H into H′ which doubly intertwines T and T ′, then
there exists a (unique) ∗-extension of A from K to K′ which preserves the
norm of A and doubly intertwines V and V ′.

P r o o f. Suppose first that T and T ′ have ∗-regular isometric dilations.
Let [K0, (S0, S1)] and [K′0, (S′0, S′1)] be as in the proof the Theorem 5. Con-
sider A : H → H′ a contractive double intertwining of T and T ′ and
A0 : K0 → K′0 with A0Si = S′iA0 (i = 0, 1), A0S

∗
0 = S′∗0 A0, A0|H = A,

A∗0|H′ = A∗ and ‖A0‖ = ‖A‖. Then for {hp}p≥0 ⊂ H with finite support,
we have

A0S
∗
1

∑
p

Sp
0hp =

∑
p

S′p0 A0S
∗
1hp =

∑
p

S′p0 AT
∗
1 hp =

∑
p

S′p0 T
′∗
1 Ahp

=
∑

p

S′p0 S
′∗
1 A0hp = S′∗1 A0

∑
p

Sp
0hp,

and so A0S
∗
1 = S′∗1 A0.

Now let [K, V1] and [K′, V ′1 ] be the minimal isometric dilations of S1 and
S′1 and let V0, V

′
0 be the extensions of S0, S

′
0 to K,K′ which doubly commute

with V1, V
′
1 respectively. As above, there exists a contraction B : K → K′

with BVi = V ′iB, BV
∗
i = V ′∗i B, (i = 0, 1), B|K0 = A0, B∗|K′0 = A∗0,

whence B|H = A, B∗|H′ = A∗ and ‖B‖ = ‖A0‖ = ‖A‖. So the conclusion
holds for the ∗-regular isometric dilations [K, V ] and [K′, V ′] of T and T ′.

Next let [K̃, Ũ ], [K̃′, Ũ ′] be the minimal unitary extensions of V , V ′ and
[K∗, V∗], [K′∗, V ′∗ ] be the regular isometric dilations of T ∗, T ′∗ respectively
(as in (5)). Then there exists ([12], [7]) a contraction Ã : K̃ → K̃′ such that
ÃŨi = Ũ ′iÃ (i = 0, 1), Ã|K = B, Ã∗|K′ = B∗ and ‖Ã‖ = ‖B‖. Because
Ã|H = A and ÃŨ∗i = Ũ ′∗i Ã (i = 0, 1), we have ÃK∗ ⊂ K′∗. But Ã∗|H′ = A∗

and Ã∗Ũ ′∗i = Ũ∗iA
∗ (i = 0, 1) imply Ã∗K′∗ ⊂ K∗. So we can define the

operator C : K∗ → K′∗ by C = Ã|K∗. Then C∗ = Ã∗|K′∗ and C|H = A,
C∗|H′ = A∗ and since V∗i = Ũ∗i |K∗, V ′∗i = Ũ ′∗i |K′∗ (i = 0, 1), it results that
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CV∗i = V ′∗iC and CV ∗∗i = V ′∗∗i C (i = 0, 1). Finally, ‖A‖ ≤ ‖C‖ ≤ ‖Ã‖ =
‖B‖ = ‖A‖ and so ‖C‖ = ‖A‖. Thus the conclusion holds for the regular
isometric dilations of T ∗ and T ′∗, and consequently, in the case when T and
T ′ have regular isometric dilations.

Under certain conditions we can drop the doubly intertwining property
on a component. The first fact in this context is contained in

Proposition 9. Let [H, T ] be a bicontraction with the first component
T0 a coisometry , and [H′, T ′] be another bicontraction which has a ∗-regular
isometric dilation. Let [K, U ] and [K′, U ′] be the ∗-regular isometric dilations
of T and T ′ respectively. If A is a contraction from H to H′ with ATi =T ′iA
(i = 0, 1), then there exists a contraction B from K to K′ such that BUi =
U ′iB (i = 0, 1), and PH′B = APH.

P r o o f. Let A : H → H′ be a contractive intertwining of T and T ′.
Preserving the notations of the proof of Theorem 5, we find (by the lifting
theorem) that there exists a contraction A0 from K0 to K′0 which satisfies
A0S0 = S′0A0 and PH′A0 = APH. Because T0 is a coisometry, its minimal
isometric dilation S0 is a unitary operator on K0. Then from Theorem B of
[6] (which can be extended to operators acting on different spaces) it results
that A0S

∗
0 = S′∗0 A0. So A0 doubly intertwines S0 and S′0. Furthermore,

A0 intertwines S1 and S′1, the doubly commuting commutants of S0 and S′0
which lift T1 and T ′1 respectively, given by Theorem 1(iii). By Theorem 5,
A0 has a contractive lift, which intertwines the ∗-regular isometric dilations
of S = (S0, S1) (of T ) and S′ = (S′0, S

′
1) (of T ′), whence the conclusion

follows.

The dual version of Proposition 9 is in fact an extension of Proposi-
tion 5.2 from [12] (for bicontractions) and of Proposition 10 from [2].

Corollary 10. Let [H, T ] be a bicontraction which has a regular isomet-
ric dilation, and [H′, T ′] be a bicontraction with T ′0 an isometry. We also
suppose that T ∗1 or T ′1 is an isometry. If A is a contraction of H into H′ which
intertwines T and T ′, then there exists a contraction B which intertwines
the regular isometric dilations of T and T ′ and satisfies PH′B = APH.

P r o o f. If [K0, S0] is the minimal isometric dilation of T0 and S1 is a
contraction on K0 with S0S1 = S1S0 and S1|H = T1, then A0 = APH is
a contraction from K0 into H′ and satisfies A0S0 = T ′0A0, A0S1 = T ′1A0,
and A0 is a lifting for A. Since S0 and T ′0 and respectively S∗1 or T ′1 are
isometries, there is a lifting for A0 which intertwines the regular isometric
dilations for (S0, S1) and (T ′0, T

′
1).

Recall ([13]) that a bounded linear operator S on H is subnormal if
there exists a normal operator N on a Hilbert space K ⊃ H such that H is
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invariant for N and S = N |H. If, furthermore, K =
∨

p≥0N
∗pH, then N is

said to be the minimal normal extension of S. In this case, N is unique (up
to unitary equivalence) and ‖N‖ = ‖S‖.

A bicontraction T = (T0, T1) will be called semi-subnormal if one of
the contractions is subnormal and the other one has an extension which
commutes (therefore doubly commutes) with the minimal normal extension
of the subnormal one. Such a bicontraction T has a regular isometric dilation
because, if T0 is subnormal and N1 is an extension of T1 commuting with the
minimal normal extension N0 of T0, then we have ∆T = PH∆(N0,N1)|H ≥ 0.

It is easy to see that every subnormal bicontraction is semi-subnormal.
Now we have the following completion of Corollary 10.

Proposition 11. Let T = (T0, T1) and T ′ = (T ′0, T
′
1) be two semi-

subnormal bicontractions on H and H′ respectively , such that T0 and T ′0
are subnormal and T ′1 is an isometry. If A is a contraction from H to H′
which intertwines T and T ′ and A has an extension which intertwines the
minimal normal extensions of T0 and T ′0, then A has an extension which
intertwines the regular isometric dilations of T and T ′.

P r o o f. Let T, T ′ and A be as in the hypothesis and let [H̃, N ] and
[H̃′, N ′], where N = (N0, N1) and N ′ = (N ′0, N

′
1), be such that N0

(resp. N ′0) is the minimal normal extension on H̃ (resp. H̃′) of T0 (resp.
T ′0) and N1 (resp. N ′1) is a contraction on H̃ (resp. H̃′) which extends T1

(resp. T ′1) and doubly commutes with N0 (resp. N ′0). From the hypothesis
and the Fuglede–Putnam Theorem, there is an operator Ã : H̃ → H̃′ which
doubly intertwines N0 and N ′0, and Ã|H = A. Then for q ≥ 0 and h ∈ H we
have

ÃN1N
∗q
0 h = ∗ ÃN∗q0 N1h = N ′∗q0 ÃT1h = N ′∗q0 AT1h

= N ′∗q0 T ′1Ah = N ′∗q0 N ′1Ãh = N ′1ÃN
∗q
0 h.

Using the structure of the space H̃, it results that ÃN1 = N ′1Ã. Let us
remark that because T ′1 is an isometry on H′, N ′1 is also an isometry on
H̃′, hence the minimal unitary extension [K′, V ′1 ] of N ′1 is just the minimal
coisometry extension of N ′1. Let [K, V1] be the minimal coisometry extension
of N1 and let V0, V

′
0 be the ∗-extensions of N0, N

′
0 which doubly commute

with V1, V
′
1 respectively. Since Ã intertwines N1 and N ′1, there exists a con-

traction Ã1 from K into K′ which satisfies Ã1V1 = V ′1Ã1 and Ã1|H̃ = Ã.
In fact, Ã1 doubly intertwines V1 and V ′1 (see [6]). Moreover, Ã1 doubly
intertwines the normal operators V0 and V ′0 , because for {hn}n≥0 ⊂ H̃ with
finite support we have
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Ã1V0

∑
n

V ∗n1 hn =
∑

n

V ′∗n1 Ã1V0hn =
∑

n

V ′∗n1 ÃN0hn

=
∑

n

V ′∗n1 N ′0Ãhn =
∑

n

V ′∗n1 V ′0Ã1hn = V ′0Ã1

∑
n

V ∗n1 hn.

Hence Ã1 doubly intertwines the bicontractions V = (V0, V1) and V ′ =
(V ′0 , V

′
1). Then by Proposition 8, Ã1 has an ∗-extension B̃ which inter-

twines the regular isometric dilations M = (M0,M1) on M of V and
M ′ = (M ′0,M

′
1) on M′ of V ′ respectively. Setting

K =
∨

n∈Z2
+

MnH, K′ =
∨

n∈Z2
+

M ′nH′

and Ui = Mi|K, U ′i = M ′i |K′ (i = 0, 1), we deduce that [K, (U0, U1)] and
[K′, (U ′0, U ′1)] are the regular isometric dilations of T and T ′ respectively.
Since B̃H = ÃH ⊂ H′ and B̃ intertwines Mi and M ′i (i = 0, 1), it results
that B̃K ⊂ K′. Consequently, B = B̃|K is a contraction of K in K′ with
BUi = U ′iB (i = 0, 1) and B|H = A.

Proposition 11 can be applied, in particular, to the case when T is a
subnormal bicontraction, which includes the spherical isometries ([2]) and
the bidisc isometries ([4]).

Now we can give sufficient conditions for three commuting contractions
in order to have unitary dilations.

Theorem 12. Let T0, T1, T2 be three pairwise commuting contractions
on H. If the bicontractions (T0, T1) and (T0, T2) have regular (or ∗-regular)
isometric dilations, then (T0, T1, T2) has a isometric (unitary) dilation.

P r o o f. Suppose first that (T0, T1) and (T0, T2) have ∗-regular isometric
dilations. Let [K0, S0] be the minimal isometric dilation of T0 and S1, S2 be
contractions on K0 which doubly commute with S0, such that PHSi = TiPH,
i = 1, 2. Then it results that S∗1S

∗
2 = S∗2S

∗
1 , and consequently, S1S2 = S2S1

on K0. Let [K1, (V0, V1)] be the ∗-regular isometric dilation of (S0, S1),
therefore with V0 and V1 doubly commuting isometries on K1. By Theorem 5
there exists a contraction V2 : K1 → K1 with PK0V2 = S2PK0 and V2Vi =
ViV2 (i = 0, 1), V2V

∗
0 = V ∗0 V2. Therefore V0 doubly commutes with (V1, V2)

and by Propositions 8 or 11, if [K, (U1, U2)] is the regular isometric dilation
of (V1, V2), then there is an isometry U0 on K such that U0|K1 = V0 and U0

commutes with U1 and respectively with U2. So for m,n, j ∈ Z+ and h ∈ H
we have

PHU
m
0 U

n
1 U

j
2h = PK1,HPK1U

n
1 U

j
2V

m
0 h

= PK1,HV
n
1 V

j
2 V

m
0 h = PK0,HPK0V

j
2 V

m
0 V n

1 h
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= PK0,HS
j
2PK0V

m
0 V n

1 h = PHS
m
0 S

n
1 S

j
2h

= Tm
0 PHS

n
1 S

j
2h = Tm

0 Tn
1 PHS

j
2h = Tm

0 Tn
1 T

j
2h.

Therefore [K, (U0, U1, U2)] is an isometric dilation of (T0, T1, T2).
Now if (T0, T1) and (T0, T2) have regular isometric dilations, then

(T ∗0 , T
∗
1 ) and (T ∗0 , T

∗
2 ) have ∗-regular isometric dilations, so (T ∗0 , T

∗
1 , T

∗
2 ) and

consequently (T0, T1, T2) have isometric dilations.

Corollary 13. Let T0, T1 and T2 be three pairwise commuting con-
tractions on H, such that T0 is subnormal and (T0, T1) and (T0, T2) are
semi-subnormal bicontractions. Then (T0, T1, T2) has a unitary dilation.

P r o o f. The bicontractions (T0, T1) and (T0, T2) have regular isometric
dilations and we apply Theorem 12.
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